
Supporting Password-Security
Decisions with Data

Blase Ur
CMU-ISR-16-110

September 2016

School of Computer Science
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Lorrie Faith Cranor, Chair

Alessandro Acquisti
Lujo Bauer
Jason Hong

Michael K. Reiter, UNC Chapel Hill

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

© 2016 Blase Ur

The research reported in this thesis has been supported in part by NSF grants DGE-0903659 and CNS-1116776, as well as gifts
from the PNC Center for Financial Services Innovation and Microsoft Research. It has also been supported by CyLab at Carnegie
Mellon under grants DAAD19-02-1-0389 and W911NF-09-1-0273 from the Army Research Office, by Air Force Research Lab
Award No. FA87501220139, and by the Facebook graduate fellowship program. In addition, it was conducted with government
support awarded by DoD, Air Force OSR, via the NDSEG Fellowship, 32 CFR 168a.

Keywords: Usable security, computer security, passwords, authentication

Abstract

Despite decades of research into developing abstract security advice and improving interfaces, users still
struggle to make passwords. Users frequently create passwords that are predictable for attackers or make
other decisions (e.g., reusing the same password across accounts) that harm their security. In this thesis, I use
data-driven methods to better understand how users choose passwords and how attackers guess passwords.
I then combine these insights into a better password-strength meter that provides real-time, data-driven
feedback about the user’s candidate password.

I first quantify the impact on password security and usability of showing users different password-
strength meters that score passwords using basic heuristics. I find in a 2,931-participant online study that
meters that score passwords stringently and present their strength estimates visually lead users to create
stronger passwords without significantly impacting password memorability. Second, to better understand how
attackers guess passwords, I perform comprehensive experiments on password-cracking approaches. I find
that simply running these approaches in their default configuration is insufficient, but considering multiple
well-configured approaches in parallel can serve as a proxy for guessing by an expert in password forensics.
The third and fourth sections of this thesis delve further into how users choose passwords. Through a series
of analyses, I pinpoint ways in which users structure semantically significant content in their passwords. I
also examine the relationship between users’ perceptions of password security and passwords’ actual security,
finding that while users often correctly judge the security impact of individual password characteristics, wide
variance in their understanding of attackers may lead users to judge predictable passwords as sufficiently
strong. Finally, I integrate these insights into an open-source password-strength meter that gives users
data-driven feedback about their specific password. I evaluate this meter through a ten-participant laboratory
study and 4,509-participant online study.

Thesis statement: The objective of this thesis is to demonstrate how integrating data-driven insights
about how users create and how attackers guess passwords into a tool that presents real-time feedback
can equip users to make better passwords.

Acknowledgments

I am deeply indebted to my advisor (Lorrie Cranor), my common-law co-advisor (Lujo Bauer), my other
committee members (Alessandro Acquisti, Jason Hong, and Mike Reiter), and my other frequent faculty
collaborators (Nicolas Christin and Michael Littman) for guiding my growth as a researcher over the last five
years. I particularly want to thank Lorrie for constantly pushing me, always giving very helpful and detailed
feedback, and usually inviting me to the kids’ guitar recitals.

In addition, I want to thank my teachers from throughout my life, particularly Andy DeNicola, who taught
me about resilience and hard work. I am indebted to my prior mentors (Vinod Ganapathy, Rachna Dhamija,
and Mike Smith) for setting me on the path to grad school, which I never would have considered otherwise.

I am very grateful for having the opportunity to work with many awesome collaborators over the past few
years. My time at CMU has been wonderful because of the people here at Cylab and Societal Computing. For
the projects I describe in this thesis, I was fortunate to have excellent collaborators: Felicia Alfieri, Maung
Aung, Lujo Bauer, Jonathan Bees, Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor, Henry Dixon,
Adam L. Durity, Pardis Emami Naeini, Hana Habib, Phillip (Seyoung) Huh, Noah Johnson, Patrick Gage
Kelley, Saranga Komanduri, Darya Kurilova, Joel Lee, Michael Maass, Stephanos Matsumoto, Michelle L.
Mazurek, William Melicher, Fumiko Noma, Timothy Passaro, Sean M. Segreti, Richard Shay, and Timothy
Vidas. I have learned a huge amount from all of you, and I hope I didn’t drive you too crazy in my quest
to “Make America Late Again” in the weeks before deadlines. Outside of the lab, I want to thank Carol
Frieze, Mary Widom, Kenny Joseph, Manya Sleeper, and everyone else from SCS4ALL, Women@SCS, and
BiasBusters. I especially want to thank my awesome SciTech students, some of whom I hope will continue to
think computationally.

Had my life over the past five years not continued past the edge of CMU’s campus, this thesis never
would have been written. For that, I am very grateful to the awesome friends in my life. I wish to thank my
wonderful Cedarhousemates, particularly Hillary, for keeping me sane. My Pittsburgh musical collaborators
(Molly, Mike, and Chase), the maintainers of the Pittsburgh-area bike trails, and the heroes/villains of greater
Bloomfield have made life in Pittsburgh far more tolerable over the last five years. Particular thanks go to
Thai Gourmet for their vegetarian-friendly food, convenient location, and sensible prices.

I don’t know where I would be without the support of Roxi and Barbie. I am very grateful to my extended
family for the support and the shenanigans. Particular thanks go to my sister (Marissa), who will always be
my favorite person, as well as the only reasonable one.

This thesis contains text from a number of prior papers [130, 181, 182, 183, 184, 185]. Additional text
written for this thesis will be used in subsequent publications.

v

vi ACKNOWLEDGMENTS

Contents

1 Introduction 1

2 Related Work 5
2.1 Threats to Password Security . 5
2.2 Password-Security Metrics . 7
2.3 Types of Guessing Attacks . 8

2.3.1 Brute-Force and Mask Attacks . 8
2.3.2 Probabilistic Context-Free Grammar . 8
2.3.3 Markov Models . 9
2.3.4 Neural Networks . 9
2.3.5 Mangled Wordlist Attacks . 10

2.4 How Users Choose Passwords . 10
2.4.1 Structural Characteristics of Human-Chosen Passwords 10
2.4.2 Linguistic and Semantic Properties of Passwords 11
2.4.3 Password Management and Reuse . 11

2.5 Helping Users Create Better Passwords . 12
2.5.1 Password-Composition Policies . 12
2.5.2 Proactive Password Checking . 13
2.5.3 Password Meters . 13

2.6 Users’ Perceptions of Security . 14
2.7 Data-Driven Feedback . 14

3 The Impact of Password-Strength Meters 17
3.1 Introduction . 17
3.2 Password Meters “In the Wild” . 18
3.3 Methodology . 19

3.3.1 Password-Scoring Algorithms . 19
3.3.2 Conditions . 21
3.3.3 Mechanical Turk . 22
3.3.4 Statistical Tests . 22
3.3.5 Calculating Guess Numbers . 23

3.4 Results . 23
3.4.1 Password Characteristics . 24

vii

viii CONTENTS

3.4.2 Password Guessability . 25
3.4.3 Password Memorability and Storage . 26
3.4.4 Password Creation Process . 27
3.4.5 Participant Demographics . 30

3.5 Participants’ Attitudes and Perceptions . 30
3.5.1 Attitudes Toward Password Meters . 31
3.5.2 Participant Motivations . 31

3.6 Discussion . 34
3.6.1 Effective Password Meters . 34
3.6.2 Ethical Considerations . 35
3.6.3 Limitations . 35

3.7 Conclusion . 36

4 Understanding Biases in Modeling Password Cracking 37
4.1 Introduction . 37
4.2 Methodology . 39

4.2.1 Datasets . 39
4.2.2 Training Data . 40
4.2.3 Simulating Password Cracking . 40
4.2.4 Computational Limitations . 43

4.3 Results . 44
4.3.1 The Importance of Configuration . 44
4.3.2 Comparison of Guessing Approaches . 46
4.3.3 Differences Across Approaches . 50
4.3.4 Robustness of Analyses to Approach . 53

4.4 Supplementary Experimental Results . 56
4.4.1 Alternate PCFG Configurations . 57
4.4.2 Alternate JTR Configurations . 58
4.4.3 Alternate Hashcat Configurations . 59
4.4.4 Ecological Validity . 60

4.5 Conclusion . 60

5 The Art of Password Creation: Semantics and Strategies 63
5.1 Introduction . 63
5.2 Datasets . 64
5.3 Methodology . 65

5.3.1 Reverse Engineering Passwords . 65
5.3.2 Semantic Analyses . 66
5.3.3 The Process of Password Creation . 67
5.3.4 Security Analysis . 68

5.4 Results . 68
5.4.1 General Password Characteristics . 68
5.4.2 Character Substitutions in Passwords . 69
5.4.3 Passwords Semantics . 71

CONTENTS ix

5.4.4 The Process of Password Creation . 74
5.5 Design Recommendations and Conclusions . 77

6 Do Users’ Perceptions of Password Security Match Reality? 79
6.1 Introduction . 79
6.2 Methodology . 80

6.2.1 Study Structure . 80
6.2.2 Recruitment . 82
6.2.3 Measuring Real-World Attacks on Passwords . 82
6.2.4 Quantitative Analysis . 83
6.2.5 Qualitative Analysis . 83
6.2.6 Limitations . 83

6.3 Results . 84
6.3.1 Participants . 84
6.3.2 Attacker Model . 84
6.3.3 Password Pairs . 88
6.3.4 Selected-Password Analysis . 92
6.3.5 Password-Creation Strategies . 92

6.4 Discussion . 93

7 Design and Evaluation of a Data-Driven Password Meter 95
7.1 Introduction . 95
7.2 Measuring Password Strength in our Data-Driven Meter . 96

7.2.1 The Difficulty of Accurate Client-Side Password-Strength Estimation 96
7.2.2 Neural Networks for Password-Strength Estimation 97
7.2.3 Advanced Heuristics for Password-Strength Estimation 98

7.3 Visual Design and User Experience . 103
7.3.1 Translating Scores to a Visual Bar . 104
7.3.2 Main Screen . 104
7.3.3 Specific-Feedback Modal . 108
7.3.4 Generic-Advice Modal . 108

7.4 Formative Laboratory Study . 110
7.4.1 Methodology . 111
7.4.2 Results . 112
7.4.3 Takeaways and Changes to the Meter . 113

7.5 Summative Online Study . 114
7.5.1 Methodology . 114
7.5.2 Limitations . 118
7.5.3 Participants . 119
7.5.4 Security Impact . 119
7.5.5 Usability Impact . 125
7.5.6 Interface Element Usage and Reactions . 127

7.6 Discussion . 131

x CONTENTS

8 Conclusion and Future Work 133
8.1 Conclusions and Lessons Learned . 133

8.1.1 Users’ Well-Ensconced Approaches . 134
8.1.2 The Mismatched Incentives of Professional Password Advice 134
8.1.3 Mismatch Between Reality and Perception . 135
8.1.4 Real-World Considerations in Modeling Attackers 135

8.2 Future Work . 136
8.2.1 Improve the Ecosystem . 136
8.2.2 Evaluating The Role of Password-Composition Policies 137
8.2.3 Natural Language and Passwords . 137
8.2.4 Automatically Modeling Targeted Attacks . 137
8.2.5 Improvements to the Meter . 138

Appendices 155

A Surveys from “How Does Your Password Measure Up...” 157
A.1 Survey Questions . 157

A.1.1 Day 1 Survey . 157
A.1.2 Day 2 Survey . 159

B Surveys and Full Data from “Do Users’ Perceptions...” 163
B.1 Survey Questions . 163

B.1.1 Part 1 . 163
B.1.2 Part 2 (Repeated 26 times) . 163
B.1.3 Part 3 (Repeated 20 times) . 164
B.1.4 Part 4 (Repeated 11 times) . 164
B.1.5 Part 5 . 164

B.2 Full List of Password Pairs . 165

C Scripts/Surveys from “...Data-Driven Password Meter...” 169
C.1 Script for Laboratory Study . 169

C.1.1 Introduction . 169
C.1.2 Part I – Open, Abstract Discussion of Password Creation 169
C.1.3 Part II – Password Feedback Slideshow . 170
C.1.4 Part III – Meter Testing . 170
C.1.5 Part IV – Ending . 172

C.2 Surveys from Online Study . 172
C.2.1 Day 1 Survey . 172
C.2.2 Day 2 Survey . 175

D Data-Driven Meter Details 177
D.1 Prioritization of Feedback from Advanced Heuristics . 177
D.2 Description of Open-Source Meter Files . 178

D.2.1 Files for Displaying the Meter . 178

CONTENTS xi

D.2.2 Files Related to Calculating Heuristic Scoring . 178
D.2.3 Files Related to Wordlists . 179
D.2.4 Files Related to Neural Networks . 179

xii CONTENTS

List of Figures

3.1 Password-strength indicators in the wild . 18
3.2 The password creation page participants saw . 20
3.3 Password guessability by condition . 27
3.4 Participants’ sentiment results by condition . 32

4.1 Hashcat’s guessing accuracy using different mangling rules 45
4.2 Automated approaches’ successing guessing the different password sets 47
4.3 The overlap between approaches in successful guessing . 48
4.4 Complexpilot guessability by trial . 49
4.5 Number of automated approaches that guessed a particular password 50
4.6 Guessing accuracy by # character classes for Basic passwords 51
4.7 Accuracy guessing passwords composed entirely of lowercase letters 51
4.8 Accuracy guessing passwords composed entirely of digits 52
4.9 Pros’ comparative success guessing each password set . 54
4.10 Guessability of all four password sets under Minauto . 54
4.11 Relative guessability of password sets using individual automated approaches 55
4.12 Differences in the order of magnitude of guess numbers across approaches 56
4.13 Comparative guessing accuracy of PCFG configurations 57
4.14 Comparative guessing accuracy of JTR rules . 58
4.15 Comparative guessing accuracy of Hashcat rules . 59
4.16 Comparison of guessing accuracy for Basic, Basicrockyou, and Basicyahoo passwords 61
4.17 Guessing accuracy by # character classes for Basicrockyou and Basicyahoo passwords 61

6.1 Example task for password pairs . 80
6.2 Example task for the selected-password analysis . 81
6.3 Security and memorability mean ratings for password-creation strategies 94

7.1 Main screen of the data-driven meter prior to meeting requirements 105
7.2 Main screen of the data-driven meter . 106
7.3 Example suggested improvements . 107
7.4 Modal window providing feedback on a specific password 109
7.5 The generic-advice modal window . 110
7.6 Security impact of composition policy and meter . 121

xiii

xiv LIST OF FIGURES

7.7 Security impact of 1class8 feedback . 122
7.8 Security impact of 3class12 feedback . 123
7.9 Security impact of 3class12 stringency . 123

A.1 Example meter shown to participants. 158

C.1 Slideshow of example meters . 171
C.2 Example colored bar shown to participants. 172
C.3 Example text feedback shown to participants. 173
C.4 Example suggested improvement shown to participants. 174

List of Tables

3.1 Password characteristics by condition . 24
3.2 Password guessability at different thresholds by condition 26
3.3 Password-creation characteristics by condition . 28

4.1 Password characteristics per set . 40
4.2 Four trials of pros guessing Complexpilot passwords . 49

5.1 Password length and character class usage by set . 69
5.2 The occurence of character subsitutions in passwords . 70
5.3 The 20 most frequent substitution mappings . 70
5.4 Dictionaries in which alphabetic chunks appeared . 72
5.5 The 15 most common Wikipedia categories used in passwords 73
5.6 The natural-language corpora in which n-grams appeared 73
5.7 How words and phrases appeared in passwords . 74
5.8 Security impact of complying with a password-composition policy 74
5.9 The impact of modifying a password to comply with a composition policy 75
5.10 Comparison of the character classes the meter suggested adding and those the user added . . 76

6.1 Perceptions of the types of attackers . 85
6.2 Perceptions of why attackers try to guess your password 86
6.3 Perceptions of how attackers try to guess your password 87
6.4 The 25 hypotheses we investigated among password pairs 89
6.5 Password pairs for which perceptions of security differed from reality 90
6.6 How password characteristics correlate with security ratings 91
6.7 How password characteristics correlate with memorability ratings 92
6.8 Perceptions of the security and memorability of password-creation strategies 93

7.1 Regression results correlating advanced heuristics to guessability 102
7.2 List of conditions for online study Experiment 1 . 117
7.3 List of conditions for online study Experiment 2 . 117
7.4 Initial security results for Experiment 1 . 119
7.5 Security results for Experiment 1, 1class8 . 120
7.6 Security results for Experiment 1, 3class12 . 120
7.7 Initial security results for Experiment 2 . 121

xv

xvi LIST OF TABLES

7.8 Security results for Experiment 2, 1class8 . 121
7.9 Security results for Experiment 2, 3class12 . 121
7.10 Password characteristics by condition . 124
7.11 Password creation and password recall by condition . 125
7.12 Summary of how meter dimensions impacted key metrics 126
7.13 Participants’ sentiment about password creation . 128
7.14 Participants’ agreement with statements about meter features 129
7.15 Participants’ interactions with the colored bar . 132

B.1 Full list of password pairs and results . 167

Chapter 1

Introduction

Despite decades of research into alternatives, text passwords continue to be used by billions of people because
of their comparative advantages [24]. These advantages—passwords’ familiarity, ease of implementation,
and lack of anything to carry—make a world without text passwords unlikely in the near future. Two-factor
authentication, single-sign-on systems, password managers, and biometrics promise to obviate remembering
a distinct password for each account, but passwords will not disappear entirely.

Unfortunately, users frequently choose passwords that are easy for attackers to guess, either within a
handful of guesses in the case of an online attack, or within millions of guesses in offline attacks. For
example, celebrities’ private photos were recently obtained through a password-guessing attack on Apple’s
iCloud service [36]. Similarly, attackers have succesfully guessed many passwords from databases of
hashed passwords stolen from companies like LinkedIn [146], eHarmony [178], Ashley Madison [82],
Kickstarter [39], Gawker [21], and numerous others.

When asked to make a password, the average user has only a vague, and sometimes incorrect, idea of what
characteristics make a password hard to guess [184]. Often, the user does not know how password-guessing
attacks work [206], nor how to navigate the greater ecosystem around passwords [27, 70].

In this thesis, I work towards better supporting users’ password-security decisions by using data-driven
methods to quantify the impact of password-strength meters on security and usability, model password-
guessing attacks, unpack how users create and perceive passwords, and distill these combined insights into an
improved password-strength meter that provides data-driven feedback specific to a user’s candidate password.
The remainder of this thesis begins by summarizing closely related work on passwords, as well as data-driven
user feedback more broadly in security and privacy topic areas, in Chapter 2.

A necessary first step in endeavoring to help users make better passwords is to determine whether users
can be successfully encouraged to change their password-creation behavior. To this end, in Chapter 3,
I describe an experiment quantifying the impact of password-strength meters on password security and
usability. Many web sites have deployed password meters that provide visual feedback on password strength
in order to help users create stronger text passwords. Although these meters are in wide use, their effects on
password security and usability had not been well studied. In a 2,931-subject study of password creation in
the presence of 14 password meters, we found that meters with a variety of visual appearances led users to
create longer passwords. However, significant increases in resistance to a password-cracking algorithm were
only achieved using meters that scored passwords stringently. These stringent meters also led participants
to include more digits, symbols, and uppercase letters. Password meters also affected the act of password

1

2 CHAPTER 1. INTRODUCTION

creation. Participants who saw stringent meters spent longer creating their password and were more likely to
change their password while entering it, yet they were also more likely to find the password meter annoying.
However, the most stringent meter and those without visual bars caused participants to place less importance
on satisfying the meter. Participants who saw more lenient meters tried to fill the meter and were averse to
choosing passwords a meter deemed “bad” or “poor.”

Although this first study demonstrated that password-strength meters can lead users to create longer
and more complex passwords, as well as passwords that are more resistant to guessing by a particular
password-guessing algorithm, the study raised additional questions about the potential biases of measuring
password strength by simulating only a single password-guessing algorithm. In Chapter 4, I address these
questions about metrics by detailiing our extensive experiements on parameterized password guessability,
which is the notion of estimating password strength by measuring how many guesses a particular password-
cracking algorithm with particular training data would take to guess that password. Unlike statistical
metrics, guessability aims to model real-world attackers and to provide per-password strength estimates.
We investigated how cracking approaches often used by researchers compare to real-world cracking by
professionals, as well as how the choice of approach biases research conclusions. As a corollary to this work,
we created the CMU Password Guessability Service (PGS) [37], enabling the research community to use our
recommended configurations of password-cracking approaches for their own analyses of password security.

We found that semi-automated cracking by professionals outperforms popular fully automated approaches,
but can be approximated by combining multiple such approaches. These approaches are only effective,
however, with careful configuration and tuning; in commonly used default configurations, they underestimate
the real-world guessability of passwords. Furthermore, we found that analyses of large password sets are
often robust to the algorithm used for guessing as long as it is configured effectively. However, cracking
algorithms differ systematically in their effectiveness guessing passwords with certain common features (e.g.,
character substitutions). This result has important implications for analyzing the security of specific password
characteristics or of individual passwords (e.g., in a password meter or security audit). Our results highlight
the danger of relying only on a single cracking algorithm as a measure of password strength and constitute
the first scientific evidence that automated guessing can often approximate guessing by professionals.

Having found that more nuanced and better configured models of password-guessing attacks could
approximate guessing by professionals, the next step towards helping users make better passwords is
unpacking how and why users sometimes create predictable passwords. We did so in two parts. First, in
Chapter 5, I present a series of analyses of password structures, semantics, and password-creation strategies
that collectively provide new insight into password creation and identify ways to help users create better
passwords. Combining crowdsourcing with programmatic techniques, we reverse engineered over 45,000
passwords. We quantified character substitutions, which were both infrequent and predictable. We also used
natural-language corpora to unpack the semantics of words and phrases contained in passwords. Finally, we
delved into password-creation strategies. We found that forcing users to conform to a password-composition
policy can result in passwords that are easier to guess, whereas guiding users to make judicious edits may be
prudent. We also analyzed the degree to which users heeded suggestions during password creation.

While these results suggested directions for improving the passwords themselves that users create, the
second part of unpacking how and why users sometimes create predictable passwords focused on why users
do so. Building on a previous 49-participant laboratory study of participants’ strategies and misconceptions
during password creation [184], I describe in Chapter 6 our study of how users’ perceptions of password
security compare to reality. Although many users create predictable passwords, the extent to which users

3

realize these passwords are predictable had not been well understood prior to this work. We investigated
the relationship between users’ perceptions of the strength of specific passwords and their actual strength,
as measured by the aforementioned CMU Password Guessability Service [37]. In a 165-participant online
study, we asked participants to rate the comparative security of carefully juxtaposed pairs of passwords, as
well as the security and memorability of both existing passwords and common password-creation strategies.
Participants had serious misconceptions about the impact of basing passwords on common phrases and
including digits and keyboard patterns in passwords. However, in most other cases, participants’ perceptions
of what characteristics make a password secure were consistent with the performance of current password-
cracking tools. We found large variance in participants’ understanding of how passwords may be attacked,
potentially explaining why users nonetheless make predictable passwords.

Collectively, these previous studies provided extensive insight into precisely how and why users create
passwords that are predictable, how to use password-strength meters to encourage users to create stronger
passwords, and how to provide more accurate measurements of passwords’ resistance to a range of password-
guessing attacks. The final step of this thesis involved integrating these insights into a new password-strength
meter that gives users data-driven feedback about their password. In Chapter 7, I detail both the design and
validation of this meter. Whereas most previous password-strength meters gave highly inaccurate estimates of
password strength because they relied on very simple heuristics (e.g., the length of the password and inclusion
of different character classes) [51], a major design goal for our meter was to provide more accurate estimates
of password strength, inspired by the password-security metrics work described in Chapter 4. We do so by
integrating our recent work on using artificial neural networks to model human-chosen passwords [130], as
well as by using more advanced heuristics to identify the types of patterns we commonly observed in Chapter 5.
Whereas the neural networks provide a principled, statistical model of how humans choose passwords, neural
networks do not output human-intelligible explanations for why they have made a particular classification of
password strength. In this way, the advanced heuristics are complementary, providing human-intelligible
feedback. In our iterative design process, we crafted the meter’s visual design to reflect the most successful
techniques we studied in Chapter 3 and designed the meter’s text feedback to correct users’ misconceptions,
as identified in Chapter 6.

To evaluate the impact of our improved password-strength meter, we performed a formative ten-participant
laboratory study and a summative 4,509-participant online study. From the laboratory study, we found initial
evidence that our data-driven meter taught participants new strategies for improving their passwords. We also
identified numerous usability improvements and tweaks to correct instances where participants’ understanding
of meter aspects differed from our intention. In the subsequent online study, we evaluated the different scoring
and interaction aspects of our meter. Under the more common password-composition policy we tested, we
found that the data-driven meter with detailed feedback led users to create significantly more secure, and no
less memorable, passwords than a meter with only a bar as a strength indicator. I also describe the low-level
implementation of our meter, whose code I am releasing open-source. I close this thesis with concluding
thoughts and an outline of future work in Chapter 8.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

I outline related work in seven sections. The first five sections focus specifically on passwords. To explain the
greater context of password security, I first outline threats to password security (Section 2.1) with a focus
on threats where the strength of a user’s password matters. Then, I detail metrics for password security
(Section 2.2), outlining both statistical metrics and metrics focused on modeling adversarial password
guessing. Because I take the latter approach in this thesis for reasons I detail in that section, I subsequently
detail password-guessing approaches (Section 2.3), laying the groundwork for our analyses of the accuracies
and biases of modeling such approaches in Chapter 4.

The subsequent two sections discuss prior work related to how humans choose passwords. In Section 2.4,
I describe work examining characteristics of user-chosen passwords, including the way passwords are
strucured and the extent to which they include semantically meaningful content. I also discuss linguistic
analyses of passwords, as well as external decisions related to password choice, such as password reuse
and attempts to make passwords memorable. In Section 2.5, I focus on efforts to help users choose better
passwords. In particular, I discuss efforts to use password-composition policies, proactive password checking,
and password-strength meters to direct users towards stronger passwords.

In the final two sections, I discuss prior work from the broader security and privacy literature on concepts
I adopt in this thesis. First, I discuss the prior literature evaluating users’ perceptions of security (Section 2.6),
laying the foundation for Chapter 6 of this thesis. Finally, I discuss efforts to provide users with data-driven
feedback about their security and privacy outside of the context of passwords (Section 2.7).

2.1 Threats to Password Security

The authentication ecosystem is vulnerable to a number of attacks. For each type, the security of a password
has a different impact. In this section, I describe the most important threats.

Sometimes, the security of a password does not matter [25]. If a user is phished, the attacker gets the
password in plaintext. If a keylogger has been installed on a user’s machine or the attacker is able to observe
the user typing in his or her password (an attack known as “shoulder surfing”), password strength also does
not matter.

In some other cases, it is most important that a password not be trivially predictable. In what is known as
an online attack, the attacker attempts to authenticate to a running system using guesses of what the user’s
password might be. After a few incorrect guesses, often 3–10, best practices dictate the system rate-limit

5

6 CHAPTER 2. RELATED WORK

subsequent attempts or lock the account and require alternate authentication [69]. To be protected against
an online attack, a password should not be among the million most common passwords [69], nor should it
include the user’s personal information (e.g., family member’s name, birthdate) in case the attacker targets
the attack to the potential victim. This chain of reasoning assumes that rate-limiting is properly implemented.
As the recent Apple iCloud hack regrettably demonstrated [36, 122], this is not always the case. In other
words, even for online attacks, large-scale guessing may be possible if the system’s implementation is flawed.

Another threat, an offline attack, usually involves large-scale guessing. Best practices dictate that
systems store passwords hashed using a cryptographically secure one-way function. When a user attempts
to authenticate, the system hashes the submitted password and verifies that its hash matches the value in its
database. Sadly, numerous hashed password databases have been compromised in recent years [21,31,79,178],
enabling offline attacks.

While it is efficient to compute H(password) given a password, it is very inefficient to find the password
given H(password). Attackers thus proceed in an offline attack by guessing likely candidate passwords,
hashing those candidates, and seeing if the hash matches any user’s hashed password contained in the
database. A password’s resistance to an offline attack is highly situational. It depends on the way passwords
are stored, including the type of hash function used to store the password, as well as the attacker’s resources
and motivation. Precomputed mappings of hashes to the passwords that produce them (“rainbow tables”)
enable many passwords to be discovered trivially. However, combining each user’s password with a unique,
random string (“salting”) both prevents the use of rainbow tables and forces the attacker to try each guess on
a per-user basis, rather than for all users at once.

The hash function itself is also a major consideration. General-purpose hash functions like MD5 were
designed for efficiency, which makes them poor for storing passwords due to their speed. Modern hardware
can try billions of MD5 guesses per second [166, 171]. Unfortunately, numerous services [21, 31, 178]
have hashed passwords with MD5. Best practices dictate the use of intentionally slow hash functions like
bcrypt [143], scrypt [138], or Argon2 [19]. To be more expensive to compute, they require many sequential
rounds of computation or large amounts of memory during computations. Attackers can therefore only
try hundreds of guesses per second [82, 166]. The 2015 Ashley Madison breach [12] was the first major
compromise involving bcrypt. Unfortunately, they retained a legacy database that stored passwords using
MD5 [82], reiterating that best practices are not always followed.

The main security threat of an offline attack derives from password reuse [25]. Once attackers have
learned a particular user’s password in an offline attack, they will try the same username and same password,
or close variants [205], on other sites. Users often reuse passwords [49, 101, 184, 191], which can cause
serious harm. For instance, attackers recently infiltrated Mozilla’s Bugzilla database and learned of crucial
zero-day vulnerabilities because one Mozilla administrator had reused his password on another, compromised
site [75]. Similarly, recent estimates attribute the compromise of 20 million accounts on Taobao, a Chinese
online shopping website similar to eBay, to password reuse [58].

Although offline attacks against online accounts, as described above, are among the most widely discussed
types of large-scale guessing, there are a number of other common scenarios where large-scale guessing is
plausible. These cases occur when cryptographic key material is derived from, or protected by, a password.
For instance, for password managers that sync across devices [89] or privacy-preserving cloud backup tools
(e.g., SpiderOak [164]), the security of files stored in the cloud depends directly on password strength.
Furthermore, cryptographic keys used for asymmetric secure messaging (e.g., GPG private keys), encrypted
hard drives, and Windows Domain Kerberos Tickets [44] are protected by passwords. If an adversary obtains

2.2. PASSWORD-SECURITY METRICS 7

the relevant file containing key material, the strength of the password is critical for security because the
adversary can perform large-scale guessing, limited only by his or her resources. The importance of this final
type of attack is likely to grow with the wider adoption of password managers and encryption tools.

2.2 Password-Security Metrics

In light of the many potential attacks against passwords, being able to measure the strength of a particular
password becomes crucial. Gauging the strength of an individual password, however, is a complex and
nuanced problem [23,76,185]. Historically, Shannon entropy was used to rate the strength of a password [22].
At a high level, Shannon entropy measures the unpredictability of elements in a set. Unfortunately, as outlined
by recent work [22], Shannon entropy is inappropriate for measuring password strength for a handful of
reasons. First, it measures the entirety of a set. If a set of passwords contains some extremely predictable
passwords, this predictability will not necessarily be captured by the entropy estimate [22, 104, 196]. In
other words, entropy will not indicate what proportion of a set an attacker will guess, nor will it directly
indicate how strong a particular password in a set is. Furthermore, accurately calculating entropy requires
an extremely large set of passwords. If multiple passwords in a set are very closely related in structure,
yet not perfectly identical, entropy will not capture that an intelligent adversary might be able to leverage
these similarities in guessing passwords. As a result, for password sets of the size of even a large company’s
userbase, Shannon entropy is inappropriate as a measure of password strength [22]. Methods to estimate the
entropy of a password without requiring a huge corpus [35] often do not reflect a password’s actual resistance
to guessing [104, 199].

Two main classes of metrics have emerged in place of entropy: statistical metrics and parameterized
metrics. Both classes focus on guessability, the number of guesses needed by an adversary to guess a given
password or a fraction of a set.

Statistical metrics are particularly valuable for examining password sets as a whole. For example,
Bonneau introduced partial guessing metrics [22] for estimating the number of guesses required for an
idealized attacker, who can perfectly order guesses, to guess a given fraction of a set. Since password
distributions are heavy-tailed, very large samples are required to determine a set’s guessability accurately.
Furthermore, many statistical metrics do not calculate the strength of an individual password, though a handful
do [23]. Regardless, all of these statistical metrics require a very large corpus of training data (e.g., previously
released passwords) that is closely matched [104] to the passwords that are being modeled. Because very few
sets of passwords that one would encounter are sufficiently large to provide accurate training for statistical
models, even these more advanced statistical methods are often not appropriate for researchers or for use in
client-side password checking [185].

Parameterized metrics instead investigate guessability under a cracking algorithm and training data [23,
104, 196]. These metrics thus model an adversary using existing tools, rather than an idealized attack, though
the metric is only as good as the chosen algorithm and training data. Parameterized metrics can also be used
to compare password sets without fully running the algorithm [123]. Furthermore, because estimated guess
numbers (rather than precise guess numbers) are often sufficient for evaluating the security of a password in
the context of proactive password checking, Dell’Amico and Filippone recently proposed using Monte Carlo
methods to estimate guess numbers, enabling probabilistic password-guessing attacks to be modeled very
quickly to a large number of guesses [53].

In contrast to statistical metrics, parameterized metrics have two important properties. First, they estimate

8 CHAPTER 2. RELATED WORK

the guessability of each password individually. Estimating guessability per-password is important for security
audits and to provide feedback to a user about a password he or she has created. This latter promises to
become more widespread as proactive feedback tools move from length-and-character-class heuristics [51] to
data-driven feedback [38, 107]. Second, parameterized metrics aim to estimate security against real-world,
rather than idealized, attacks. Researchers previously assumed automated techniques approximate real-world
attackers [104, 196]. Chapter 4 of this thesis evaluates the accuracies and biases of this assumption, and it is
also the first to compare this assumption to attacks by human experts in password forensics.

Parameterized metrics have been used to measure password strength in a number of previous studies [38,
49, 54, 67, 71, 104, 108, 123, 126, 145, 157, 182, 188, 196, 205]. While there are many different methods for
cracking passwords, time and resource constraints lead many researchers to run only a single algorithm per
study. However, prior to the research described in Chapter 4 of this thesis [185], it was an open question
whether this strategy accurately models real-world attackers, or whether choosing a different algorithm would
change a study’s results.

Measuring guessability entails computing a guess number for each password indicating how many guesses
a particular password-cracking approach configured and trained in a particular way would take to guess that
password. Because guessability estimators can only run for finite time, there is necessarily a guess cutoff at
which remaining passwords are labeled “unguessed.”

2.3 Types of Guessing Attacks

The selection of a guessing attack to model is crucial to analyzing password guessability. Researchers and
security practitioners have long investigated how to guess passwords. A handful of studies [43, 54, 145] have
compared the aggregate results of running different cracking approaches. Other studies have compared results
of running different cracking approaches based on guess numbers [42, 60, 123]. In this section, I highlight
four major types of attacks.

2.3.1 Brute-Force and Mask Attacks

Brute-force attacks are conceptually the simplest. They are also inefficient and therefore used in practice only
when targeting very short or randomly generated, system-assigned passwords.

Mask attacks are directed brute-force attacks in which password character-class structures, such as “seven
lowercase letters followed by one digit,” are exhausted in an attacker-defined order [167]. While this strategy
may make many guesses without success, mask attacks can be effective for short passwords as many users
craft passwords matching popular structures [111, 177]. Real-world attackers also turn to mask attacks after
more efficient methods exhaust their guesses.

2.3.2 Probabilistic Context-Free Grammar

In 2009, Weir et al. proposed using a probabilistic context-free grammar (PCFG) with a large training set of
passwords from major password breaches [187] to model passwords and generate guesses [197]. The intuition
behind PCFGs is that passwords are built with template structures (e.g., 6 letters followed by 2 digits) and
terminals that fit into those structures. A password’s probability is the probability of its structure multiplied
by those of its terminals. In more detail, Weir et al. use training data to create a context-free grammar in

2.3. TYPES OF GUESSING ATTACKS 9

which non-terminals represent contiguous strings of a single character class. From the passwords observed
in its training data, PCFG assigns probabilities to both the structure of a password (e.g., monkey99 has the
structure {six letters}{two digits}) and the component strings (e.g., “99” will be added to the list of two-digit
strings it has seen) [197]. A number of research studies [42, 54, 61, 104, 123, 126, 157, 182, 196, 205] have
used PCFG or a close variant to compute guessability.

Kelley et al. proposed improvements to Weir et al.’s PCFG algorithm, like treating uppercase and
lowercase letters separately and training with structures and component strings from separate sources [104].
Because they found these modifications improved guessing effectiveness, we incorporate their improvements
in our tests. In addition, multiple groups of researchers have proposed using grammatical structures and
semantic tokens as PCFG non-terminals [145, 188]. Researchers have found that using separate training
sources for structures and terminals improves guessing [104]. It is also beneficial to assign probabilities to
unseen terminals by smoothing, as well as to augment guesses generated by the grammar with passwords
taken verbatim from the training data without abstracting them into the grammar [106].

2.3.3 Markov Models

Narayanan and Shmatikov first proposed using a Markov model of letters in natural language with finite
automata representing password structures [135]. Castelluccia et al. used a similar algorithm for password
meters [38]. John the Ripper and Hashcat offer simple Markov modes in their cracking toolkits as well.

Conceptually, Markov models predict the probability of the next character in a password based on the
previous characters, or context characters. Using more context characters can allow for better guesses, yet
risks overfitting. Smoothing and backoff methods compensate for overfitting.

Recently, Dürmuth et al. [60] and Ma et al. [123] independently evaluated many variations of Markov
models and types of smoothing in cracking passwords, using large sets of leaked passwords for training. Both
groups compared their model with other probabilistic attacks, including Weir et al.’s original PCFG code,
finding particular configurations (e.g., using 6-grams) of a Markov model to be more efficient at guessing
passwords for some datasets [60, 123].

2.3.4 Neural Networks

Recently, our group proposed and evaluated the use of artificial neural networks (henceforth termed “neural
networks”) for guessing passwords [130]. Building on neural networks’ documented success at classification
problems and generating novel text, we show how password guessing can be reenvisioned as a process that
starts with modeling subsequent characters of a password based on the previous (context) characters [130].
We tested a number of aspects of the potential design space for neural networks, including the application
of transference learning, augmenting sets of passwords with natural-language corpora as training data, and
varying the model size.

In our comparative tests, we found that neural networks can often guess passwords more effectively than
other password-guessing approaches, including as probabilistic context-free grammars and Markov models.
We also found that our neural networks can be compressed to as little as hundreds of kilobytes without
substantially worsening guessing effectiveness.

10 CHAPTER 2. RELATED WORK

2.3.5 Mangled Wordlist Attacks

Perhaps the most popular strategy in real-world password cracking is the dictionary attack and its variants [79].
First proposed by Morris and Thompson in 1979 [132], modern-day dictionary attacks often combine wordlists
with mangling rules, string transformations that modify wordlist entries to create additional guesses. Wordlists
usually contain both natural-language dictionaries and stolen password sets. Typical mangling rules perform
transformations like appending digits and substituting characters [139, 168]. Unlike probabilistic password-
guessing approaches (e.g., PCFG, Markov models, and neural networks), mangled wordlist attacks often do
not directly rely on statistical analysis of password sets, yet often guess both relatively accurately and very
efficiently in terms of wall-clock time and disk space [43, 185].

Many modern cracking tools, including Hashcat [166], John the Ripper [139], and PasswordsPro [96],
support these attacks, which we term mangled wordlist attacks. The popularity of this category of attack is
evident from these tools’ wide use and success in password-cracking competitions [109, 140]. Furthermore, a
number of research papers have used John the Ripper, often with the default mangling rules [42,49,51,67,71,
86, 108, 204] or additional mangling rules [54, 61, 205].

Expert password crackers, such as those offering forensic password-recovery services, frequently perform
a variant of the mangled wordlist attack in which humans manually write, prioritize, and dynamically update
rules [79]. We term these manual updates to mangling rules freestyle rules. We evaluated guessability
using off-the-shelf tools relying on publicly available wordlists and mangling rules. We also contracted a
password-recovery industry leader to do the same using their proprietary wordlists and freestyle rules.

2.4 How Users Choose Passwords

While the discussion of related work to this point has focused on attacks against passwords, understanding
tendencies in how humans choose passwords is essential to helping users avoid common patterns along the
way to creating better passwords. In this section, we discuss how humans structure passwords, how they
integrate natural-language content into passwords, and how they make decisions about reusing, storing, or
writing down passwords.

2.4.1 Structural Characteristics of Human-Chosen Passwords

Many users make passwords that are quite predictable [124, 191] even for relatively important accounts [67,
126]. Passwords are generally too short to provide much resistance to attacks [22, 118, 126, 187], and
users tend to put digits and symbols at the end of the password [22, 183, 184] and capital letters at the
beginning [183, 184].

Users tend to base passwords around predictable words and phrases, including names [94], dates [189],
song lyrics [115, 183], and other concepts or objects they like [184]. Furthermore, when a password contains
multiple words, those words tend to be semantically related [29, 188]. Keyboard patterns (e.g., “1qaz2wsx”)
are common [184, 188], and passwords sometimes contain character substitutions (e.g., replacing “a” with
“@”) [102]. These characteristics vary somewhat for passwords created on touchscreen devices [129].

A number of researchers have surveyed users about password creation. Unsurprisingly, most passwords
contain meaningful elements [207], such as the name of the user or a relative, geographic locations, and
names of sports teams [114, 127].

2.4. HOW USERS CHOOSE PASSWORDS 11

Users’ passwords appear to be becoming longer and more complex over time. In 1997, Zviran and Haga
found an average password length of six characters, with 14% including digits and less than 1% including
symbols [207]. By the mid-2000s, the average length had increased to eight characters, at least 40% used
digits, and 3-16% used symbols [32]. A more recent survey asking users to compare passwords they used at
various times similarly found that users now choose stronger passwords than in the past [191].

A number of researchers have analyzed passwords obtained from public leaks of password data, including
sets from RockYou (2009), Sony (2011), Gawker (2011), LinkedIn (2012), and Adobe (2013). Common
passwords in these sets include password, password1, and 123456 [56, 124, 146]. For Sony and Gawker, 14%
of passwords included people’s names, 25% included dictionary words, and 8% included place names, with
the most common modification being the addition of digits [93]. Names, dictionary words, keyboard patterns,
and numbers were similarly prevalent in RockYou [56, 189].

Several studies have considered factors affecting password selection. Users choose passwords more
carefully (and reuse them less frequently) for accounts they perceive to have higher value [68,136]. Others find
correlations with demographics [22,126] and with users’ annoyance with the password creation process [126].
Zhang et al. found that up to 17% of passwords created to replace an expiring prior password can be broken in
under five guesses if the old password is known. Common transformations included incrementing a number
and replacing one symbol with another [205].

2.4.2 Linguistic and Semantic Properties of Passwords

Some recent work has examined passwords explicitly from a linguistic perspective. Bonneau and Shutova
searched for predictable Amazon payphrases, which must contain two or more words, but no digits or
symbols [29]. They found that many expected phrases from the arts, sports, and geography had been chosen,
and that noun phrases were common. Rao et al. investigated grammatical structures within long passwords as
an aid to cracking [145]. However, their mostly manual analysis examined a sample of only 144 passwords
and did not consider substitutions or interstitial digits and symbols.

Jakobsson and Dhiman built an automated parser to study how dictionary words are modified as part of
passwords, with particular focus on concatenated words, “leet” substitutions, and misspellings [102]. Veras
et al. automatically separated passwords into linguistic chunks (words) based on large corpora of text, tagged
each word with its part of speech, and further classified nouns and verbs semantically using a lexical database
of English-language concepts [188]. They found nouns to be overwhelmingly popular among parts of speech,
while top semantic categories included names, cities, and words related to love.

In contrast to this past work, in Chapter 5, we instead use a combination of crowdsourcing and automated
techniques to reverse engineer passwords, providing greater accuracy in creating the abstract semantic
representation of a password. We then perform analyses on a number of different levels to provide a holistic
understanding of user behavior in constructing passwords.

2.4.3 Password Management and Reuse

The overall password ecosystem has also been a major area of investigation. Many users view passwords
as a burden [59] and exhibit potentially insecure behaviors when managing passwords [74, 86, 136, 169].
However, many of these behaviors are likely rational coping strategies for users who are asked to make far
more distinct, complex passwords than they could possibly remember [3, 70, 169].

12 CHAPTER 2. RELATED WORK

A number of studies have investigated password-management practices [3, 74, 84, 95, 160] and how
users respond to password-creation requirements [142, 193]. Researchers have studied how users recall
multiple passwords, including text passwords and graphical passwords [40]. Researchers have also explored
automatically increasing password strength by adding random characters, which study participants could
shuffle until arriving at a configuration they liked. The authors found that inserting two random characters
increased security, yet adding more characters hurt usability [71].

More recently, Stobert and Biddle interviewed 27 participants about their strategies for password manage-
ment and usage. Participants had an average of 27 accounts and five passwords. They often made tradeoffs
between following password advice and expending too much effort [169].

A key coping mechanism is password reuse. Users often reuse passwords across accounts [49, 68,
101, 191]. Even when they do not reuse a password verbatim, they frequently make only small, predictable
modifications [49,184,205]. Other studies have focused on economic analyses of the password ecosystem [27],
internationalization issues in password systems [30], and designing systems that make offline attacks more
easily detectable [103]. Finally, a handful of studies have examined the memorability of system-assigned
passwords, finding that humans can learn long, random secrets through spaced repetition [28] and that
system-assigned passphrases are not significantly more memorable than system-assigned passwords [154].

2.5 Helping Users Create Better Passwords

Three major efforts attempt to help users avoid the predictable password-creation tendencies described in
the previous section and therefore create stronger passwords. First, password-composition policies dictate
required characteristics a password must include, such as a minimum length and the mandatory inclusion
of certain character classes (e.g., digits or symbols). Second, proactive password checking aims to model a
password’s security and only permit users to select a password the model deems sufficiently strong. Proactive
password checking is a general approach that can either mandate that passwords pass particular strength
checks or simply encourage users towards creating stronger passwords by showing them the results of the
proactive strength checks. The latter encompasses the third approach, using password-strength meters to
provide visual displays of password strength. Below, we detail each of these three approaches.

2.5.1 Password-Composition Policies

Without intervention, users tend to create simple passwords [68, 116, 172, 202]. Many organizations use
password-composition policies that force users to select more complex passwords to increase password
strength. However, users may conform to these policies in predictable ways, reducing password strength [35].

Although prior work has shown that password-composition policies requiring more characters or more
character classes can improve resistance to automated guessing attacks, many passwords that meet common
policies remain vulnerable [104, 142, 193, 196]. Furthermore, strict policies can frustrate users, inhibit their
productivity, and lead users to write their passwords down [4, 90, 95, 108, 165]. Some password-composition
policies, particularly those that emphasize a balance of length and character-class complexity [157], lead
users to create stronger passwords than other password-composition policies.

2.5. HELPING USERS CREATE BETTER PASSWORDS 13

2.5.2 Proactive Password Checking

Rather than using a password-composition policy to mandate particular password characteristics in the (often
false) hope that users will fulfill those requirements in unpredictable ways, a second approach is to proactively
check passwords based on a given model of how humans choose passwords. Current real-time password
checkers can be categorized based on whether they run entirely client-side. Historically, checkers with a
server-side component were more accurate because they could directly leverage large amounts of data. For
instance, researchers proposed using server-side Markov models to gauge password strength [38]. Others
have studied using large-scale training data from leaked passwords and natural-language corpora to show
users predictions about what they will type next in their password [107], requiring that users make multiple
hard-to-predict choices within their password for it to be permitted.

Unfortunately, a server-side component introduces substantial disadvantages for security. In some
cases, sending a password to a server for password checking destroys all security guarantees. For instance,
passwords that protect an encrypted volume (e.g., TrueCrypt) or cryptographic keys (e.g., GPG), as well as the
master password for a password manager, should never leave the user’s device, even for proactive password
checking. As a result, accurate password checking is often missing from these security-critical applications.
In cases when a password is eventually sent to the server (e.g., for an online account), a real-time, server-side
component both adds latency and opens password meters to powerful side-channel attacks based on keyboard
timing, message size, and caching [162].

Prior client-side password checkers, such as those running entirely in a web browser, rely on heuristics
that can be easily encoded. Many common meters rate passwords based on their length or inclusion of
different character classes [51, 182]. Unfortunately, in comprehensive tests of both client- and server-side
password meters, the password scoring of all but one meter was highly inaccurate [51].

2.5.3 Password Meters

While the general category of proactive password checking simply means that a candidate password is
evaluated against some model of how passwords are chosen, users most frequently encounter these proactive
estimates of password strength as visualized by password meters [65,182]. Generally, password meters display
estimated password strength through some visual metaphor, such as a bar that fills up as a password increases
in strength. Many password meters guide users toward, but do not strictly require, complex passwords. This
approach reflects the behavioral economics concept of nudging, or soft paternalism [121, 175].

Most widely deployed meters are based on basic heuristics, such as estimating a password’s strength
based on its length and the number of character classes used [182]. Unfortunately, these basic heuristics
frequently do not reflect the actual strength of a password [2, 51]. Among prior password meters based
on heuristics, only zxcvbn [198, 199] uses more advanced heuristics, which is why it is the only accurate
password-strength meter that has been widely deployed [51, 130].

As we show in Chapter 3, password-strength meters can successfully encourage users to create stronger
passwords [182], though perhaps only for higher-value accounts [65]. Researchers have previously proposed
a number of password-strength visualizations other than the typical bar metaphor [51, 182]. For example,
Sotirakopoulos et al. investigated a password meter that compares the strength of a user’s password with those
of other users [163]. While visualizations can help users understand password-guessing attacks [206] and
some password-strength meters can give detailed feedback about predictability [107], alternative visualizations
have yet to be widely adopted.

14 CHAPTER 2. RELATED WORK

2.6 Users’ Perceptions of Security

In Chapter 6, I describe users’ perceptions of password security and how these perceptions compare to reality.
Hundreds of research studies have been conducted at the general intersection of usability and security [73], but
surprisingly few have specifically investigated users’ perceptions of security. One stream of qualitative work
has examined users’ mental models [8, 190] and “folk models” [144, 194] of security, finding that non-expert
users’ mental models often differ from those of experts. For instance, non-experts perceive losing a password
as similar to losing a key, whereas experts perceive the same event as more akin to losing a credit-card
number [8]. Likewise, a study that examined users’ perceptions of the most important computer-security
practices [98] again showed a disconnect between non-technical users and experts. Notably, users’ perceptions
of the efficacy of different security practices impact the adoption of security technologies [18, 52, 97, 173].

In the password domain, a recent interview study of password creation using a think-aloud protocol
implicitly rested on users’ perceptions of password security [184]. Security perceptions, however, were not
the focus of that qualitative study.

Most closely related to our work in Chapter 6, a 384-participant study examined users’ perceptions of the
security and usability of Android graphical unlock patterns [9]. Participants compared two unlock patterns
and assessed their relative security and memorability. Unlike our study, that study did not compare the actual
security of these patterns.

2.7 Data-Driven Feedback

The final part of this thesis, Chapter 7, builds the insights from the other chapters of this thesis into a
data-driven password-strength meter that uses personalized examples from the user’s candidate password
to teach the user about creating a secure password. More broadly within the security and privacy research
literature, a handful of other researchers have also evaluated the effectiveness of using personalized examples
derived from users’ own data in helping users make privacy and security decisions. These studies rely on
different techniques and focus on different application areas than our work. Furthermore, a number of these
techniques do not present this information to users “just in time” as they are about to make a security or
privacy decision, in contrast to the focus of my thesis.

Overall, providing users information about privacy or security can impact their decisions. For example,
Tsai et al. found that consumers will pay a premium price to make purchases from more privacy-protective
businesses when information about privacy is made accessible to consumers [180].

Much of the research on data-driven support for users in making security and privacy decisions has
centered on smartphones. For example, Almuhimedi et al. found that showing users how frequently different
smartphone apps access sensitive data can nudge users to restrict apps’ access to this information [6]. That
project builds on work by Harbach et al., who demonstrated that personal examples of the data accessible to
smartphone apps help users understand otherwise abstract smartphone permission requests [87]. Similarly,
Balebako et al. demonstrated that summary visualizations and just-in-time notices of smartphone privacy
leakages help correct users’ misconceptions about data sharing [11]. Their tool collects data about these
leaks using the Taintdroid platform [66]. In a slightly different focus area, Consolvo et al. proposed bringing
transparency to the information that is leaked unencrypted over wi-fi networks by showing this unencrypted
data to users [46].

2.7. DATA-DRIVEN FEEDBACK 15

Some researchers have investigated the use of data-driven methods and feedback during the password-
creation process, but using different types of data than I do, and often using this data in a less directed manner.
For decades, researchers have suggested providing users proactive feedback based on the password they
are typing [15, 20]. Two studies have investigated the underlying premise of whether meters impact user
behavior in creating passwords. Complementary to my own online study of password-strength meters [182]
(Chapter 3), Egelman et al. conducted a laboratory study of password-strength meters, also finding that the
presence of a meter resulted in stronger passwords, yet only for high-value accounts [65].

The amount of data that drives this feedback on passwords has varied, however. Most websites currently
rate passwords using length and character-class heuristics [51]. In the academic community, researchers
have suggested using peer pressure by ranking passwords comparatively to other users [163] or estimating
password strength using Markov models [38]. In this same vein, the Telepathwords project [107] uses large
corpora of leaked passwords and dictionaries to guess what the user might type next. In contrast to my work,
neither the scheme based on Markov models nor the Telepathwords scheme provides directed feedback based
on the semantic characteristics or explicit guessability of the passwords. Furthermore, neither scheme directly
takes into account users’ misperceptions of password security.

A few projects have also applied data-driven methods to privacy decision-making. Wills and Zeljkovic
examined data-driven decision support in privacy decisions related to online behavioral advertising. They pro-
totyped a tool that examines browser history to help a user understand when their data has been tracked [201].
Their prototype presents a table of websites a user has visited, along with a list of the third parties tracking
users on each site. Angulo et al. proposed using a plugin to visualize similar privacy leaks, such as the user’s
name and email address, in the browser [7]. Cranor et al. automatically parsed 6,191 standard-format privacy
notices from the U.S. financial industry, building a comparative Bank Privacy Website [47].

Other projects have used semi-automated methods or crowdsourcing to gather data about privacy and
then present this data to users. For instance, Liu et al.’s Privacy Grade project crowdsources analysis of
the permissions requested by different smartphone apps [119, 120]. They assign each app a “privacy grade”
based on the appropriateness of the permissions the app requests, as judged by crowdworkers. Researchers
aim to provide users with similarly succinct summaries of privacy information, but for full-length privacy
policies rather than smartphone app permissions [148]. They aim to do so by relying on both natural-language
processing and crowdsourcing. Projects like “Terms of Service; Didn’t Read” (TOS;DR) have already used
crowdsourcing on a small scale to put information about companies’ privacy policies and terms of service
into a standardized, usable format [174]. In the rare cases when machine-readable privacy information is
available, as was the case for some websites using the P3P standard, crowdsourcing is not necessary [63].

In a number of other application domains within privacy and security, collected data drives decision
making by software programs, rather than informing a user’s decision. For instance, data-driven techniques
are popular in the detection of phising messages [1, 16, 128], intrustion detection, and malware identification.

16 CHAPTER 2. RELATED WORK

Chapter 3

The Impact of Password-Strength Meters

3.1 Introduction

While the premature obituary of passwords has been written time and again [113,131], text passwords remain
ubiquitous [24]. Unfortunately, users often create passwords that are memorable but easy to guess [20, 131,
142]. To combat this behavior, system administrators employ a number of measures, including system-
assigned passwords and stringent password-composition policies. System-assigned passwords can easily
be made difficult to guess, but users often struggle to remember them [71] or write them down [154].
Password-composition policies, sets of requirements that every password on a system must meet, can also
make passwords more difficult to guess [35, 196]. However, strict policies can lead to user frustration [158],
and users may fulfill requirements in ways that are simple and predictable [35].

Another measure for encouraging users to create stronger passwords is the use of password meters. A
password meter is a visual representation of password strength, often presented as a colored bar on screen.
Password meters employ suggestions to assist users in creating stronger passwords. Many popular websites,
from Google to Twitter, employ password meters.

Despite their widespread use, password meters have not been well studied. This experiment contributes
what we believe to be the first large-scale study of what effect, if any, password meters with different scoring
algorithms and visual components, such as color and size, have on the security and usability of passwords
users create.

We begin by surveying password meters in use on popular websites. Drawing from our observations, we
create a control condition without a meter and 14 conditions with meters varying in visual features or scoring
algorithm. The only policy enforced is that passwords contain at least eight characters. However, the meter
nudges the user toward more complex or longer passwords.

We found that using any of the tested password meters led users to create passwords that were statistically
significantly longer than those created without a meter. Meters that scored passwords more stringently led to
even longer passwords than a baseline password meter. These stringent meters also led participants to include
a greater number of digits, symbols, and uppercase letters.

We also simulated a probabilistic context-free grammar password-cracking algorithm [196] and compared

Previously published as Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L. Mazurek, Timothy
Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor. How Does Your Password Measure Up?
The Effect of Strength Meters on Password Creation. In Proc. USENIX Security Symposium, 2012.

17

18 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

Figure 3.1: A categorized assortment of the 46 unique indicators we found across Alexa’s 100 most visited
global sites.

the percentage of passwords cracked in each condition by adversaries making 500 million, 50 billion, and 5
trillion guesses. Passwords created without a meter were cracked at a higher rate than passwords in any of
the 14 conditions with meters, although most differences were not statistically significant. Only passwords
created in the presence of the two stringent meters with visual bars were cracked at a significantly lower rate
than those created without a meter. None of the conditions approximating meters we observed in the wild
significantly increased cracking resistance, suggesting that currently deployed meters are not sufficiently
aggressive. However, we also found that users have expectations about good passwords and can only be
pushed so far before aggressive meters seem to annoy users rather than improve security.

We proceed by first surveying popular websites’ password meters in Section 3.2, enabling us to base our
meter experiments on widely used practices. We then present our methodology in Section 3.3. Section 3.4
contains results related to password composition, cracking, and creation, while Section 3.5 summarizes
participants’ attitudes. We discuss these findings in Section 3.6 and conclude in Section 3.7.

3.2 Password Meters “In the Wild”

To understand how password meters are currently used, we examined Alexa’s 100 most visited global sites in
January 2012. Among these 100 sites, 96 allowed users to register and create a password. Of these 96, 70
sites (73%) gave feedback on a user’s password based either on its length or using a set of heuristics. The
remaining 26 sites (27%) provided no feedback. In some cases, all sites owned by the same company used
the same meter; for example, Google used the same meter on all 27 of its affiliates that we examined. In other
cases, the meters varied; for example, ebay.de used a different mechanism than ebay.com. We observed 46
unique indicators, examples of which are shown in Figure 3.1.

3.3. METHODOLOGY 19

Indicators included bar-like meters that displayed strength (23, 50%); checkmark-or-x systems (19, 41.3%);
and text, often in red, indicating invalid characters and too-short passwords (10, 21.2%). Sites with bar-like
meters used either a progress-bar metaphor (13, 56.5%) or a segmented-box metaphor (8, 34.8%). Two sites
presented a bar that was always completely filled but changed color (from red to green or blue) as password
complexity increased. Three other sites used meters colored with a continuous gradient that was revealed as
users typed. Sites commonly warned about insecure passwords using the words “weak” and “bad.”

We examined scoring mechanisms both by reading the Javascript source of the page, when available, and
by testing sample passwords in each meter. Across all meters, general scoring categories included password
length, the use of numbers, uppercase letters, and special characters, and the use of blacklisted words. Most
meters updated dynamically as characters were typed.

Some meters had unique visual characteristics. Twitter’s bar was always green, while the warning text
changed from red to green. Twitter offered phrases such as “Password could be more secure” and “Password
is Perfect.” The site mail.ru had a three-segment bar with key-shaped segments, while rakuten.co.jp
had a meter with a spring-like animation.

We found some inconsistencies across domains. Both yahoo.com and yahoo.co.jp used a meter with
four segments; however, the scoring algorithm differed, as shown in Figure 3.1. Google used the same meter
across all affiliated sites, yet its meter on blogger.com scored passwords more stringently.

3.3 Methodology

We conducted a two-part online study of password-strength meters, recruiting participants through Amazon’s
Mechanical Turk crowdsourcing service (MTurk). Participants, who were paid 55 cents, needed to indicate
that they were at least 18 years old and use a web browser with JavaScript enabled. Participants were assigned
round-robin to one of 15 conditions, detailed in Section 3.3.2. We asked each participant to imagine that his
or her main email provider had changed its password requirements, and that he or she needed to create a new
password. We then asked the participant to create a password using the interface shown in Figure 3.2.

Passwords needed to contain at least eight characters, but there were no other requirements. The
participant was told he or she would be asked to return in a few days to log in with the password. He or
she then completed a survey about the password-creation experience and was asked to re-enter his or her
password at the end.

Two days later, participants received an email through MTurk inviting them to return for a bonus payment
of 70 cents. Participants were asked to log in again with their password and to take another survey about how
they handled their password.

3.3.1 Password-Scoring Algorithms

Password-strength meters utilize a scoring function to judge the strength of a password, displaying this score
through visual elements. We assigned passwords a score using heuristics including the password’s length and
the character classes it contained. While alternative approaches to scoring have been proposed, as discussed in
Chapter 2, judging a password only on heuristics obviates the need for a large, existing dataset of passwords
and can be implemented quickly in Javascript. These heuristics were based on those we observed in the wild.

In our scoring system, a score of 0 points represented a blank password field, while a score of 100 points
filled the meter and displayed the text “excellent.” We announced our only password-composition policy in

20 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

Figure 3.2: The password creation page. The password meter’s appearance and scoring varied by condition.

bold text to the participant as an “8-character minimum” requirement. However, we designed our scoring
algorithm to assign passwords containing eight lowercase letters a score of 32, displaying “bad.” To receive
a score of 100 in most conditions, participants needed to meet one of two policies identified as stronger in
the literature [35, 108], which we term Basic16 and Comprehensive8. Unless otherwise specified by the
condition, passwords were assigned the larger of their Basic16 and Comprehensive8 scores. Thus, a password
meeting either policy would fill the meter. Each keystroke resulted in a recalculation of the score and update
of the meter.

The Basic16 policy specifies that a password contain at least 16 characters, with no further restrictions.
In our scoring system, the first 8 characters entered each received 4 points, while all subsequent characters re-
ceived 8 points. Thus, passwords such as aaaaaaaaaaaaaaaa, WdH5$87T5c#hgfd&, and passwordpassword
would all fill the meter with scores of exactly 100 points.

The second policy, Comprehensive8, specifies that a password contain at least eight characters, including
an uppercase letter, a lowercase letter, a digit, and a symbol. Furthermore, this password must not be in the
OpenWall Mangled Wordlists, which is a cracking dictionary.1 In our scoring system, 4 points were awarded
for each character in the password, and an additional 17 points were awarded each for the inclusion of an
uppercase character, a digit, and a symbol; 17 points were deducted if the password contained no lowercase
letters. A second unique digit, symbol, or uppercase character would add an additional 8 points, while a third
would add an additional 4 points. Passing the dictionary check conferred 17 points. Therefore, passwords
such as P4$sword, gT7fas#g, and N!ck1ebk would fill the meter with a score of exactly 100. In addition,
passwords that were hybrids of the two policies, such as a 13-character password meeting Comprehensive8
except containing no symbols, could also fill the meter.

1http://www.openwall.com/wordlists/

http://www.openwall.com/wordlists/

3.3. METHODOLOGY 21

3.3.2 Conditions

Our 15 conditions fall into four main categories. The first category contains the two conditions to which we
compared the others: having no password meter and having a baseline password meter. Conditions in the
next category differ from the baseline meter in only one aspect of visual presentation, but the scoring remains
the same. In contrast, conditions in the third category have the same visual presentation as the baseline meter,
but are scored differently. Finally, we group together three conditions that differ in multiple dimensions from
the baseline meter. In addition, we collectively refer to half-score, one-third-score, text-only half-score, and
text-only half-score as the stringent conditions. Each participant was assigned round-robin to one condition.

Control Conditions

• No meter. This condition, our control, uses no visual feedback mechanism. 26 of the Alexa Top 100
websites provided no feedback on password strength, and this condition allows us to isolate the effect
of the visual feedback in our other conditions.

• Baseline meter. This condition represents our default password meter. The score is the higher of the
scores derived from comparing the password to the Basic16 and Comprehensive8 policies, where a
password meeting either policy fills the bar. The color changes from red to yellow to green as the score
increases. We also provide a suggestion, such as “Consider adding a digit or making your password
longer.” This condition is a synthesis of meters we observed in the wild.

Conditions Differing in Appearance

• Three-segment. This condition is similar to baseline meter, except the continuously increasing bar is
replaced with a bar with three distinct segments, similar to meters from Google and Mediafire.

• Green. This condition is similar to baseline meter, except instead of changing color as the password
score increases, the bar is always green, like Twitter’s meter.

• Tiny. This condition is similar to baseline meter, but with the meter’s size decreased by 50% horizon-
tally and 60% vertically, similar to the size of Google’s meter.

• Huge. This condition is similar to baseline meter, but with the size of the meter increased by 50%
horizontally and 120% vertically.

• No suggestions. This condition is similar to baseline meter, but does not offer suggestions for
improvement.

• Text-only. This condition contains all of the text of baseline meter, but has no visual bar graphic.

Conditions Differing in Scoring

• Half-score. This condition is similar to baseline meter, except that the password’s strength is displayed
as if it had received half the rating. A password that would fill the baseline meter meter only fills this
condition’s meter half way, allowing us to study nudging the participant toward a stronger password. A

22 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

password with 28 characters, or one with 21 characters that included five different uppercase letters,
five different digits, and five different symbols, would fill this meter.

• One-third-score. This condition is similar to half-score, except that the password’s strength is displayed
as if it had received one-third the rating. A password that would fill the baseline meter meter only fills
one-third of this condition’s meter. A password containing 40 characters would fill this meter.

• Nudge-16. This condition is similar to baseline meter, except that only the password score for the
Basic16 policy is calculated, allowing us to examine nudging the user toward a specific policy.

• Nudge-comp8. As with nudge-16, this condition is similar to baseline meter, except that only the
password score for Comprehensive8 is calculated.

Conditions Differing in Multiple Ways

• Text-only half-score. As with text-only, this condition contains all of the text of baseline meter, yet
has no bar. Furthermore, like half-score, the password’s strength is displayed as if it had received only
half the score.

• Bold text-only half-score. This condition mirrors text-only half-score, except the text is bold.

• Bunny. In place of a bar, the password score is reflected in the speed at which an animated Bugs Bunny
dances. When the score is 0, he stands still. His speed increases with the score; at a score of 100, he
dances at 20 frames per second; at a score of 200, he reaches his maximum of 50 frames per second.
This condition explores a visual feedback mechanism other than a traditional bar.

3.3.3 Mechanical Turk

Many researchers have examined using MTurk workers for human-subjects research and found it to be
a convenient source of high-quality data [33, 57, 105, 176]. MTurk enables us to have a high volume of
participants create passwords, on a web site we control, with better population diversity than would be
available in an on-campus laboratory environment [33]. MTurk workers are also more educated, more
technical, and younger than the general population [99].

3.3.4 Statistical Tests

All statistical tests use a significance level of α = .05. For each variable, we ran an omnibus test across all
conditions. We ran pairwise contrasts comparing each condition to our two control conditions, no meter and
baseline meter. In addition, to investigate hypotheses about the ways in which conditions varied, we ran
planned contrasts comparing tiny to huge, nudge-16 to nudge-comp8, half-score to one-third-score, text-only
to text-only half-score, half-score to text-only half-score, and text-only half-score to bold text-only half-score.
If a pairwise contrast is not noted as significant in the results section, it was not found to be statistically
significant. To control for Type I error, we ran contrasts only where the omnibus test was significant. Further,
we corrected contrasts for multiple testing, accounting for the previous contrasts. We applied multiple testing
correction to the p-values of the omnibus tests when multiple tests were run on similar variables, such as the
Likert response variables measuring user attitudes.

3.4. RESULTS 23

We analyzed quantitative data using Kruskal-Wallis for the omnibus cases and Mann-Whitney U for
the pairwise cases. These tests, identified in our results as K-W and MWU, respectively, are analogues of
the ANOVA and t-tests without the assumption of normality. We analyze categorical data for equality of
proportions with χ2 tests for both the omnibus and pairwise cases. All multiple testing correction used the
Holm-Bonferroni method, indicated as HC.

3.3.5 Calculating Guess Numbers

We evaluated the strength of passwords created in each condition by simulating a guessing attack using a
probabilistic context-free grammar [197], which had been considered to be the most accurate password-
guessing approach at the time of our experiment [54, 205]. This approach allowed us to approximate
passwords’ resistance to automated cracking. Using a password guess calculator similar to that used by Kelley
et al. [104], we calculate the guessability of passwords in three different attack scenarios. This calculator
simulates the password-cracking algorithm devised by Weir et al. [197], which makes guesses based on the
structures, digits, symbols, and alphabetic strings in its training data. The calculator was set to only consider
guesses with minimum length 8. For training, we used several “public” datasets, including leaked sets of
cracked passwords. In Section 3.6.2, we discuss ethical issues of using leaked data.

Training data included 40 million passwords from the OpenWall Mangled Wordlist [137], 32 million
leaked passwords from the website RockYou [187], and about 47,000 passwords leaked from MySpace [150].
We augmented the training data with all strings harvested from the Google Web Corpus [83], resulting in a
dictionary of 14 million alphabetic strings.

In the weak attacker scenario, we consider an attacker with limited computational resources who can
make 500 million (5×108) guesses. In the medium attacker scenario, we consider an attacker with greater
resources who can make 50 billion (5×1010) guesses. Finally, in the strong attacker scenario, we examine
what percentage of passwords would have been guessed within the first 5 trillion (5× 1012) guesses. As
discussed in Section 2.1, mapping a number of guesses to wall-clock time depends heavily on the hash
function used, as well as the attacker’s resources. For passwords hashed using bcrypt [143] with a large
number of iterations, even our model of the weak attacker might represent an infeasible attack. For passwords
hashed using MD5, however, our model of the strong attacker is likely possible on a single commodity
laptop [166, 171].

3.4 Results

From January to April 2012, 2,931 people completed the initial task, and 2,016 of these subjects returned for
the second part of the study. We begin our evaluation by comparing characteristics of passwords created in
each condition, including their length and the character classes used. Next, we simulate a cracking algorithm
to evaluate what proportion of passwords in each condition would be cracked by adversaries of varying
strength. We then examine the usability of these passwords, followed by data about the process of password
creation. Finally, we discuss participant demographics and potential interaction effects. In Section 3.5, we
provide additional results on participants’ attitudes and reactions.

24 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

Table 3.1: A comparison across conditions of the characteristics of passwords created: the length, number
of digits, number of uppercase letters, and number of symbols. For each metric, we present the mean, the
standard deviation (SD), and the median. Conditions that differ significantly from no meter are indicated
with an asterisk (*). Conditions that differ significantly from baseline meter are indicated with a dagger (†).

Metric no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Length * * * * * * † *,† * *,† * * * *
Mean 10.4 12.0 11.5 11.3 11.4 11.6 11.4 10.9 14.9 14.3 13.0 11.6 12.3 13.0 11.2
SD 2.9 3.7 3.8 3.6 3.2 3.3 3.5 3.2 7.3 8.1 3.7 3.5 6.1 5.5 3.1
Median 9 11 10 10 11 11 11 10 12.5 12 12 11 10.5 11 10

Digits * * * * *
Mean 2.4 2.7 2.8 2.6 2.7 2.5 3.0 2.5 3.3 3.4 3.2 3.3 3.1 3.2 3.3
SD 2.8 2.6 2.6 2.5 2.3 2.2 2.8 2.3 3.0 3.2 3.4 2.8 3.5 3.0 3.0
Median 2 2 2 2 3 2 2 2 3 3 3 3 2 3 3

Uppercase * * *,†
Mean 0.8 0.8 0.9 0.8 0.6 1.0 0.7 0.9 1.5 1.4 0.5 0.8 1.2 1.5 0.8
SD 2.0 1.8 1.7 2.0 1.4 2.3 1.5 1.7 3.4 3.2 1.3 1.5 2.2 2.5 1.5
Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5

Symbols * * * *
Mean 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 1.0 0.5 0.5 0.6 0.9 0.4
SD 0.7 1.0 0.8 1.1 0.7 0.8 0.8 0.7 1.6 2.7 1.3 1.0 1.2 1.7 0.7
Median 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.4.1 Password Characteristics

The presence of almost any password meter significantly increased password length. In conditions that scored
passwords stringently, the meter also increased the use of digits, uppercase letters, and symbols. The length
of the passwords varied significantly across conditions, as did the number of digits, uppercase characters, and
symbols contained in each password (HC K-W, p<.001). Table 3.1 details password characteristics.

Length The presence of any password meter except text-only resulted in significantly longer passwords.
Passwords created with no meter had a mean length of 10.4, and passwords created in the text-only condition
had a mean length of 10.9, which was not significantly different. Passwords created in the thirteen other
conditions with meters, with mean length ranging from 11.3 to 14.9 characters, were significantly longer than
in no meter (HC MWU, p≤.014).

Furthermore, passwords created in half-score, with mean length 14.9, and in nudge-16, with mean length
13.0, were significantly longer than those created in baseline meter, which had mean length 12.0 (HC MWU,
p≤.017). On the other hand, passwords created in , with mean length 10.9, were significantly shorter than in
baseline meter (HC MWU, p=.015). Although passwords created in one-third-score had mean length 14.3,
they had a high standard deviation (8.1) and did not differ significantly from baseline meter.

3.4. RESULTS 25

Digits, Uppercase Characters, and Symbols Compared to no meter, passwords in five conditions con-
tained significantly more digits: half-score, one-third-score, nudge-comp8, bold text-only half-score, and
bunny (HC MWU, p<.028). In each of these five conditions, passwords contained a mean of 3.2 to 3.4 digits,
compared to 2.4 digits in no meter. The mean number of digits in all other conditions ranged from 2.5 to 3.1.

In three of these conditions, half-score, one-third-score, and bold text-only half-score, passwords on
average contained both more uppercase letters and more symbols (HC MWU, p<.019) than in no meter. In
these three conditions, the mean number of uppercase characters ranged from 1.4 to 1.5 and the mean number
of symbols ranged from 0.8 to 1.0, whereas passwords created in no meter contained a mean of 0.8 uppercase
characters and 0.3 symbols. Furthermore, passwords created in text-only half-score had significantly more
symbols, 0.6 on average, than no meter, although the mean number of digits did not differ significantly.

While most participants used digits in their passwords, uppercase characters and symbols were not as
common. In nearly all conditions, the majority of participants did not use any uppercase characters in their
password despite the meter’s prompts to do so. Less than half of participants in any condition used symbols.

3.4.2 Password Guessability

We evaluated the strength of passwords based on their “guessability,” which is the number of guesses an
adversary would need to guess that password. As described in Section 3.3.5, We considered three adversaries:
a weak attacker with limited resources who makes 500 million (5×108) guesses, a medium attacker who
makes 50 billion (5×1010) guesses, and a strong attacker who makes 5 trillion (5×1012) guesses. Table 3.2
and Figure 3.3 present the proportion of passwords cracked by condition.

We found that all conditions with password meters appeared to provide a small advantage against attackers
of all three strengths. In all fourteen conditions with meters, the percentage of passwords cracked by all three
adversaries was always smaller than in no meter, although most of these differences were not statistically
significant. The only substantial increases in resistance to cracking were provided by the two stringent meters
with visual bars, half-score and one-third-score.

A weak adversary cracked 21.0% of passwords in the no meter condition, which was significantly
larger than the 5.8% of passwords cracked in the half-score condition and the 4.7% of passwords cracked
in one-third-score (HC χ2, p<0.001). Only 7.8% of passwords were cracked in bunny, which was also
significantly less than in no meter (HC χ2, p=0.008). Between 9.5% and 15.3% of passwords were cracked
in all other conditions with meters, none of which were statistically significantly different than no meter.

In the medium adversary scenario, significantly more passwords were cracked in the no meter condition
than in the half-score and one-third-score conditions (HC χ2, p≤0.017). 35.4% of the passwords in the no
meter condition were cracked, compared with 19.5% of passwords in half-score and 16.8% of passwords
in one-third-score. None of the other conditions differed significantly from no meter; between 23.7% and
34.4% of passwords were cracked in these conditions.

The half-score and one-third-score meters were significantly better than no meter against a strong
adversary. In no meter, 46.7% of passwords were cracked, compared with 26.3% in half-score and 27.9% in
one-third-score (HC χ2, p≤0.005). Between 33.7% and 46.2% of passwords in all other sets were cracked.

After the completion of the experiment, we ran additional conditions to explore how meters consisting
of only a visual bar, without accompanying text, would compare to text-only conditions and conditions
containing both text and visual features. Since this data was collected two months after the rest of our data, we
do not include it in our main analyses. However, passwords created in these conditions performed similarly

26 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

Table 3.2: A comparison of the percentage of passwords in each condition cracked by weak (5×108 guesses),
medium (5×1010 guesses), and strong adversaries (5×1012 guesses). Each cell contains the percentage of
passwords cracked in that threat model. Conditions that differ significantly from no meter are indicated with
an asterisk (*).

Adversary no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Weak * * *
% Cracked 21.0 11.1 10.3 12.0 10.7 9.6 11.0 15.1 5.8 4.7 15.3 10.3 9.5 11.4 7.8

Medium * *
% Cracked 35.4 27.2 26.6 30.0 30.0 31.0 25.9 34.4 19.5 16.8 25.0 23.7 24.2 25.7 28.1

Strong * *
% Cracked 46.7 39.4 39.4 45.5 42.1 41.6 39.3 46.2 26.3 27.9 33.7 39.2 34.7 35.6 40.1

to equivalent text-only conditions and strictly worse than equivalent conditions containing both a bar and text.
For instance, a strong adversary cracked 48.3% of passwords created with the baseline meter bar without its
accompanying text and 33.0% of passwords created with the half-score bar without its accompanying text.

3.4.3 Password Memorability and Storage

To gauge the memorability of the passwords subjects created, we considered the proportion of subjects who
returned for the second day of our study, the ability of participants to enter their password both minutes after
creation and a few days after creation, and the number of participants who either reported or were observed
storing or writing down their password.

Of our participants, 2,016 (68.8%) returned and completed the second part of the study. The proportion
of participants who returned did not differ significantly across conditions (χ2, p=0.241).

Between the 68.8% of participants who returned for the second part of the study and the 31.2% of
participants who did not, there were no significant differences in the length of the passwords created, the
number of digits their password contained, or the percentage of passwords cracked by a medium or strong
attacker. However, the weak attacker cracked a significantly higher percentage of passwords created by
subjects who did not return for the second part of the study than passwords created by participants who did
return (HC χ2, p<.001). 14.5% of passwords created by subjects who did not return and 9.5% of passwords
created by subjects who did return were cracked. Participants who returned for the second part of the study
also had more uppercase letters and more symbols in their passwords (K-W, p<.001). Participants who
returned had a mean of 1.0 uppercase letters and 0.6 symbols in their passwords, while those who did not had
a mean of 0.8 uppercase letters and 0.5 symbols.

Participants’ ability to recall their password also did not differ significantly between conditions, either
minutes after creating their password (χ2, p=0.236) or at least two days later (χ2, p=0.250). In each condition,
93% or more of participants were able to enter their password correctly within three attempts minutes after

3.4. RESULTS 27

0%

10%

20%

30%

40%

50%

1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 1E+10 1E+11 1E+12 1E+13

Pe
rc

en
ta

ge
 o

f P
as

sw
or

ds
 C

ra
ck

ed

Number of Guesses

no meter – 46.7%
text-only – 46.2%
green – 45.5%
tiny – 42.1%
huge – 41.6%
bunny – 40.1%
baseline meter – 39.4%
three-segment – 39.4%
no suggestions – 39.3%
nudge-comp8 – 39.2%
bold text-only half – 35.6%
text-only half – 34.7%
nudge-16 – 33.7%
one-third-score – 27.9%
half-score – 26.3%

Weak Medium Strong
5E+8 5E+10 5E+12

Figure 3.3: The percentage of passwords that were cracked in each condition. The x-axis, which is logarith-
mically scaled, indicates the number of guesses made by an adversary. The y-axis indicates the percentage of
passwords in that condition cracked by that particular guess number.

creating the password. When they received an email two days later to return and log in with their password,
between 77% and 89% of subjects in each condition were able to log in successfully within three attempts.

As an additional test of password memorability, we asked participants if they had written their password
down, either electronically or on paper, or if they had stored their password in their browser. Furthermore, we
captured keystroke data as they entered their password, which we examined for evidence of pasting in the
password. If a participant answered affirmatively to either question or pasted the password into the password
field, he or she was considered as having stored the password. Overall, 767 participants (38.0% of those who
returned) reported that they had stored or written down their password. 78 of these 767 participants were also
observed to have pasted in their password. An additional 32 participants (1.6%) were observed pasting in
their password even thought they had said they had not stored it.

The proportion of participants storing their passwords did not differ across conditions (χ2, p=0.364).
In each condition, between 33% and 44% of participants were observed pasting in a password or reported
writing down or storing their password.

3.4.4 Password Creation Process

Based on analysis of participants’ keystrokes during password creation, we found that participants behaved
differently in the presence of different password meters. Password meters seemed to encourage participants
to reach milestones, such as filling the meter or no longer having a “bad” or “poor” password. The majority

28 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

Table 3.3: A comparison across conditions of password creation: the percentage of participants who
completely filled the password meter or equivalently scored “excellent” in text-only conditions, the percentage
of participants whose password received a score of “bad” or “poor”, the time of password creation (first
to last keystroke), the number of deletions (characters deleted after being entered) in the password creation
process, the percentage of participants who changed their password (initially entering a valid password
containing at least 8 characters before completely deleting it and entering a different password), and the edit
distance between the initial password entered and the final password saved, normalized by the length of the
final password. Conditions differing significantly from no meter are indicated with an asterisk (*), while
those differing significantly from baseline meter are marked with a dagger (†).

Metric no
m

et
er

(*
)

ba
se

lin
e

m
et

er
(†

)

th
re

e-
se

gm
en

t

gr
ee

n

tin
y

hu
ge

no
su

gg
es

tio
n

te
xt

-o
nl

y

ha
lf

-s
co

re

on
e-

th
ir

d-
sc

or
e

nu
dg

e-
16

nu
dg

e-
co

m
p8

te
xt

-o
nl

y
ha

lf

bo
ld

te
xt

-o
nl

y
ha

lf

bu
nn

y

Filled Meter * * * * * * *,† *,† † * *,† *,† *
% participants (25.1) 48.5 53.2 42.5 48.2 52.8 37.3 46.2 9.0 1.6 24.5 46.9 3.2 5.0 48.4

“Bad” / “Poor” * * * * * * *,† *,† † * *,† *,† *
% participants (24.1) 9.1 10.3 12.0 9.6 8.1 7.5 13.4 58.4 93.7 37.2 9.8 76.3 67.8 8.3

Time (seconds) *,† *,† * * *,† *
Mean 19.9 23.5 22.7 21.0 21.5 25.8 24.7 24.8 60.8 59.8 33.1 26.6 38.5 57.1 30.4
SD 28.4 22.7 23.6 22.2 23.2 28.9 36.6 29.4 75.7 84.9 33.2 30.2 49.8 150.0 36.9
Median 10.6 15.6 14.0 13.7 13.1 14.7 13.0 14.0 39.1 34.2 23.2 13.8 23.5 32.8 19.8

Deletions *,† *,† *,† *,† *,† *
Mean 5.3 6.2 7.5 5.8 6.2 7.8 5.5 7.8 23.8 22.9 12.1 8.1 14.6 23.1 10.7
SD 10.7 10.2 13.7 12.4 10.8 11.3 8.4 11.9 29.0 26.6 16.2 13.3 19.3 26.9 17.2
Median 0 0 0 0 1 2 0 0 13.5 13 8 1 8 13.5 5

Changed PW *,† *,† *,† *,† *,† *,†
% participants 14.4 18.7 25.6 16.5 23.9 23.4 25.9 25.8 52.6 52.6 40.3 24.7 35.8 51.0 34.9

Edit Dist. *,† *,† *,† *,† *,† *,†
Mean 0.10 0.09 0.47 0.09 0.14 0.12 0.15 0.17 0.37 0.45 0.27 0.15 0.27 0.35 0.28
SD 0.29 0.23 4.84 0.28 0.30 0.31 0.37 0.36 0.42 1.22 0.38 0.36 0.43 0.47 0.70
Median 0 0 0 0 0 0 0 0 0.15 0.11 0 0 0 0.08 0

of participants who saw the most stringent meters changed their mind partway into password creation, erasing
what they had typed and creating a different password. Table 3.3 details this data.

Most participants created a new password for this study, although some participants reused or modified
an existing password. Between 57% and 71% of subjects in each condition (63% overall) reported creating
an entirely new password, between 15% and 26% (21% overall) reported modifying an existing password,
between 9% and 19% (14% overall) reported reusing an existing password, and fewer than 4% (2% overall)
used some other strategy. The proportion of participants reporting each behavior did not vary significantly
across conditions (χ2, p=.876).

Participants in nudge-16, bunny, and all four stringent conditions took longer to create their password
than those in no meter (HC χ2, p<.001). The mean password creation time, measured from the first to the
last keystroke in the password box, was 19.9 seconds in the no meter condition. It was 60.8 seconds for
half-score, 59.8 seconds for one-third-score, 57.1 seconds for bold text-only half-score, 38.5 seconds for

3.4. RESULTS 29

text-only half-score, 33.1 seconds for nudge-16, and 30.4 seconds for bunny. Compared also to the baseline
meter meter, where mean password creation time was 23.5 seconds, participants took significantly longer in
the half-score, one-third-score, and bold text-only half-score conditions (HC χ2, p<.008). The mean time of
password creation ranged from 21.0 to 26.6 seconds in all other conditions.

Password meters encouraged participants both to avoid passwords that the meter rated “bad” or “poor”
and to create passwords that filled the meter. Had there been a password meter, 24.1% of passwords created
in no meter would have scored “bad” or “poor,” which was significantly higher than the 12.0% or fewer of
passwords in all non-stringent conditions other than no suggestions and nudge-16 rated “bad” or “poor” (HC
χ2, p≤0.035). Had no meter contained a password meter, 25.1% of passwords created would have filled
the meter. A larger proportion of passwords in all non-stringent conditions other than no suggestions and
nudge-16 filled the meter (HC χ2, p≤0.006). In each of these conditions, 42.5% or more of the passwords
filled the meter. While the proportion of passwords in nudge-16 and the four stringent conditions reaching
these thresholds was significantly lower than baseline meter, the proportions would have been higher than
baseline meter were the baseline meter scoring algorithm used in those conditions.

During the password creation process, participants in all four stringent conditions, as well as in nudge-16,
made more changes to their password than in no meter or baseline meter. We considered the number of
deletions a participant made, which we defined as the number of characters that were inserted into the
password and then later deleted. In the four stringent conditions and in nudge-16, the mean number of
deletions by each participant ranged from 12.1 to 23.8 characters. In contrast, significantly fewer deletions
were made in no meter, with a mean of 5.3 deletions, and baseline meter, with a mean of 6.2 deletions (HC
MWU, p<0.001). The bunny condition, with a mean of 10.7, also had significantly more deletions than no
meter (HC MWU, p=0.004).

We further analyzed the proportion of participants who changed their password, finding significantly
more changes occurring in the stringent conditions, as well as in nudge-16 and bunny. Some participants
entered a password containing eight or more characters, meeting the stated requirements, and then completely
erased the password creation box to start over. We define the initial password to be the longest such password
containing eight or more characters that a participant created before starting over. Similarly, we define the
final password to be the password the participant eventually saved. We considered participants to have
changed their password if they created an initial password, completely erased the password field, and saved a
final password that differed by one edit or more from their initial password.

More than half of the participants in half-score, one-third-score, and bold text-only half-score changed
their password during creation. Similarly, between 34.9% and 40.3% of nudge-16, text-only half-score,
and bunny participants changed their password. The proportion of participants in these six conditions who
changed their password was greater than the 14.4% of no meter participants and 18.7% of baseline meter
participants who did so (HC χ2, p≤.010). Across all conditions, only 7.7% of final passwords consisted of
the initial password with additional characters added to the end; in a particular condition, this percentage
never exceeded 16%.

These changes in the password participants were creating resulted in final passwords that differed
considerably from the initial password. We assigned an edit distance of 0 to all participants who did not
change their password. For all other participants, we computed the Levenshtein distance between the initial
and final password, normalized by the length of the final password. The mean normalized edit distance
between initial and final passwords ranged from 0.27 to 0.45 in the six aforementioned conditions, significantly
greater than no meter, with a mean of 0.10, and baseline meter, with a mean of 0.09 (HC MWU, p<.003).

30 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

We also compared the guessability of the initial and final passwords for participants whose initial
password, final password, or both were guessed by the strong adversary. 86.1% of the 43 such changes in
half-score resulted in a password that was harder to guess, as did 83.8% of 37 such changes in text-only
half-score. In contrast, 50% of 18 such changes in baseline meter and between 56.7% and 76.7% such
changes in all other conditions resulted in passwords that were harder to guess. However, these differences
were not statistically significant.

3.4.5 Participant Demographics

Participants ranged in age from 18 to 74 years old, and 63% percent reported being male and 37% female.2

40% percent reported majoring in or having a degree or job in computer science, computer engineering,
information technology, or a related field; 55% said they did not. Participants lived in 96 different countries,
with most from India (42%) and the United States (32%). Because many of our password meters used a
color scheme that includes red and green, we asked about color-blindness; 3% of participants reported being
red-green color-blind, while 92% said they were not, consistent with the general population [159].

The number of subjects in each condition ranged from 184 to 202, since conditions were not reassigned if
a participant did not complete the study. There were no statistically significant differences in the distribution
of participants’ gender, age, technology background, or country of residence across experimental conditions.

However, participants who lived in different countries created different types of passwords. We separated
participants into three groups based on location: United States, India, and “the rest of the world.” Indian
subjects’ passwords had mean length 12.2, U.S. subjects’ passwords had mean length 11.9, and all other
subjects’ passwords had mean length 12.1 (HC K-W, p=0.002). Furthermore, Indian subjects’ passwords had
a mean of 0.9 uppercase letters, and both U.S. subjects’ and all other subjects’ passwords had a mean of 1.0
uppercase letters (HC K-W, p<0.001). While the percentage of passwords cracked by a weak or medium
attacker did not differ significantly between the three groups, a lower percentage of the passwords created by
Indian participants than those created by American participants was cracked by a strong adversary (HC χ2,
p=.032). 42.3% of passwords created by subjects from the U.S., 35.5% of passwords created by subjects from
India, and 38.8% of passwords created by subjects from neither country were cracked by a strong adversary.
However, the guessing algorithm was trained on sets of leaked passwords from sites based in the U.S., which
may have biased its guesses.

3.5 Participants’ Attitudes and Perceptions

We asked participants to rate their agreement on a Likert scale with fourteen statements about the password
creation process, such as whether it was fun or annoying, as well as their beliefs about the password meter
they saw. We also asked participants to respond to an open-ended prompt about how the password meter
did or did not help. We begin by reporting participants’ survey responses, which reveal annoyance among
participants in the stringent conditions. The one-third-score condition and text-only stringent conditions also
led participants to believe the meter gave an incorrect score and to place less importance on the meter’s rating.
The distribution of responses to select survey questions is shown in Figure 3.4. We then present participants’
open-ended responses, which illuminate strategies for receiving high scores from the meter.

2We offered the option not to answer demographic questions, so percentages may sum to less than 100.

3.5. PARTICIPANTS’ ATTITUDES AND PERCEPTIONS 31

3.5.1 Attitudes Toward Password Meters

In a survey immediately following password creation, a higher percentage of participants in the stringent
conditions found password creation to be annoying or difficult than those in baseline meter. A larger
proportion of subjects in the four stringent conditions than in either the no meter or baseline meter conditions
agreed that creating a password in this study was annoying (HC χ2, p≤.022). Similarly, a higher percentage
of subjects in the half-score and bold text-only half-score found creating a password difficult than in either the
no meter or baseline meter conditions (HC χ2, p≤.012). Creating a password was also considered difficult
by a higher percentage of subjects in one-third-score and text-only half-score than in baseline meter (HC χ2,
p≤.003), although these conditions did not differ significantly from no meter.

Participants in the stringent conditions also found the password meter itself to be annoying at a higher
rate. A higher percentage of subjects in all four stringent conditions than in baseline meter agreed that the
password-strength meter was annoying (HC χ2, p≤.007). Between 27% and 40% of participants in the four
stringent conditions, compared with 13% of baseline meter participants, found the meter annoying.

Participants in the two stringent conditions without a visual bar felt that they did not understand how the
meter rated their password. 38% of text-only half-score and 39% of bold text-only half-score participants
agreed with the statement, “I do not understand how the password strength meter rates my password,” which
was significantly greater than the 22% of participants in baseline meter who felt similarly (HC χ2, p≤.015).
32% of half-score participants and 34% of one-third-score participants also agreed, although these conditions
were not statistically significantly different than baseline meter.

The one-third-score condition and both text-only stringent conditions led participants to place less
importance on the meter. A smaller proportion of one-third-score, text-only half-score, and bold text-only
half-score participants than baseline meter subjects agreed, “It’s important to me that the password-strength
meter gives my password a high score” (HC χ2, p≤.021). 72% of baseline meter participants, yet only
between 49% and 56% of participants in those three conditions, agreed. In all other conditions, between 64%
and 78% of participants agreed. Among these conditions was half-score, in which 68% of participants agreed,
significantly more than in one-third-score (HC χ2, p=.005).

More participants in those same three conditions felt the meter’s score was incorrect. 42-47% of one-
third-score, text-only half-score, and bold text-only half-score participants felt the meter gave their password
an incorrect score, significantly more than the 21% of baseline meter participants who felt similarly (HC χ2,
p≤.001). Between 12% and 33% of participants in all other conditions, including half-score, agreed; these
conditions did not differ significantly from baseline meter.

3.5.2 Participant Motivations

Participants’ open-ended responses to the prompt, “Please explain how the password strength meter helped
you create a better password, or explain why it was not helpful,” allowed participants to explain their thought
process in reaction to the meter and their impressions of what makes a good password.

Reactions to the Password Meter

Some participants noted that they changed their behavior in response to the meter, most commonly adding
a different character class to the end of the password. One participant said the meter “motivated [him] to
use symbols,” while another “just started adding numbers and letters to the end of it until the high score

32 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

(*) no meter
(†) baseline meter

three-segment
green

tiny
huge

no suggestions
text-only

half-score
one-third-score

nudge-16
nudge-comp8

text-only half
bold text-only half

bunny

It's important to me that the
password strength meter gives
my password a high score.

I think the password strength
meter gave an incorrect score
of my password's strength.

The password strength
meter was annoying.

Creating a password that meets
the requirements given in this
study was difficult.

0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

* †
†

†

* †

†

†
†

†

†
†

†
†

†
†

Figure 3.4: Participants’ agreement or disagreement with the statement above each chart. Each color
represents the proportion of participants in that condition who expressed a particular level of agreement of
disagreement with the statement. Conditions in which the proportion of participants agreeing with a statement
differed significantly from no meter are indicated with an asterisk (*), while those that differed significantly
from baseline meter are marked with a dagger (†). Participants in no meter did not respond to questions
about password meters.

was reached.” Participants also said that the meter encouraged or reminded them to use a more secure
password. One representative participant explained, “It kept me from being lazy when creating my password.
[I] probably would not have capitalized any letters if not for the meter.”

Other participants chose a password before seeing the meter, yet expressed comfort in receiving validation.
For instance, one representative participant noted, “The password I ultimately used was decided on before
hand. However, whilst I was typing and I saw the strength of my password increase and in turn felt reassured.”

However, a substantial minority of participants explained that they ignore password meters, often because
they believe these meters discourage passwords they can remember. One representative participant said, “No
matter what the meter says, I will just use the password I chose because it’s the password I can remember.
I do not want to get a high score for the meter and in the end have to lose or change my password.” Some
participants expressed frustration with meters for not understanding this behavior. For instance, one participant
explained, “I have certain passwords that I use because I can remember them easily. I hate when the meter
says my password is not good enough– it’s good enough for me!”

Participants also reported embarrassment at poor scores, fear of the consequences of having a weak
password, or simply a desire to succeed at all tasks. One participant who exemplifies the final approach
said, “I wanted to make my password better than just ‘fair,’ so I began to add more numbers until the
password-strength meter displayed that my password was ‘good.’ I wanted to create a strong password
because I’m a highly competitive perfectionist who enjoys positive feedback.” In contrast, another participant
stated, “Seeing a password strength meter telling me my password is weak is scary.”

3.5. PARTICIPANTS’ ATTITUDES AND PERCEPTIONS 33

Impressions of Password Strength

Participants noted impressions of password strength that were often based on past experiences. However, the
stringent conditions seemed to violate their expectations.

Most commonly, subjects identified a password containing different character classes as strong. One
representative participant said, “I am pretty familiar with password strength meters, so I knew that creating a
password with at least 1 number/symbol and a mixture of upper and lower case letters would be considered
strong.” Participants also had expectations for the detailed algorithm with which passwords were scored, as
exemplified by a participant who thought the meter “includes only English words as predictable; I could have
used the Croatian for ‘password123’ if I wanted.”

The stringent conditions elicited complaints from participants who disagreed with the meter. For example,
one participant was unsure how to receive a good score, saying, “No matter what I typed, i.e. how long or
what characters, it still told me it was poor or fair.” Another participant lamented, “Nothing was good enough
for it!” Some participants questioned the veracity of the stringent meters. For instance, a one-third-score
participant said, “I have numbers, upper/lower case, and several symbols. It’s 13 characters long. It still said
it was poor. No way that it’s poor.” Other participants reused passwords that had received high scores from
meters in the wild, noting surprise at the stringent meters’ low scores. Some participants became frustrated,
including one who said one-third-score “was extremely annoying and made me want to punch my computer.”

The bunny received mixed feedback from participants. Some respondents thought that it sufficed as a
feedback mechanism for passwords. For instance, one subject said, “I think it was just as helpful as any
other method I have seen for judging a password’s strength...I do think the dancing bunny is much more
light-hearted and fun.” However, other participants found the more traditional bar to be more appropriate,
including one who said bunny “was annoying, I am not five [years old].”

Goals for the Password Meter

Participants stated two primary goals they adopted while using the password meter. Some participants
aimed to fill the bar, while others hoped simply to reach a point the meter considered not to be poor. Those
participants who aimed to fill the bar noted that they continued to modify their password until the bar was
full, citing as motivation the validation of having completed their goal or their belief that a full bar indicated
high security.

Participants employing the latter strategy increased the complexity of their password until the text “poor”
disappeared. One participant noted, “It gave me a fair score, so I went ahead with the password, but if it
would have given me a low score I would not have used this password.” A number of participants noted that
they didn’t want to receive a poor rating. One representative participant said, “I didn’t want to have poor
strength, while I didn’t feel I needed something crazy.”

Some participants also identified the bar’s color as a factor in determining when a password was good
enough. Some participants hoped to reach a green color, while others simply wanted the display not to be red.
One participant aiming towards a green color said, “I already chose a fairly long password, but I changed a
letter in it to an uppercase one to make it turn green.” Another participant expressed, “I knew that I didn’t
want to be in the red, but being in the yellow I thought was ok.”

34 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

3.6 Discussion

We discuss our major findings relating to the design of effective password meters. We also address our study’s
ethical considerations, limitations, and future work.

3.6.1 Effective Password Meters

At a high level, we found that users do change their behavior in the presence of a password-strength meter.
Seeing a password meter, even one consisting of a dancing bunny, led users to create passwords that were
longer. Although the differences were generally not statistically significant, passwords created in all 14
conditions with password meters were cracked at a lower rate by adversarial models of different strengths.

However, the most substantial changes in user behavior were elicited by stringent meters. These meters
led users to add additional character classes and make their password longer, leading to significantly increased
resistance to a guessing attack. Furthermore, more users who saw stringent meters changed the password
they were creating, erasing a valid password they had typed and replacing it with one that was usually harder
to crack.

Unfortunately, the scoring systems of meters we observed in the wild were most similar to our non-
stringent meters. This result suggests that meters currently in use on popular websites are not aggressive
enough in encouraging users to create strong passwords. However, if all meters a user encountered were
stringent, he or she might habituate to receiving low scores and ignore the meter, negating any potential
security benefits.

There seems to be a limit to the stringency that a user will tolerate. In particular, the one-third-score
meter seemed to push users too hard; one-third-score participants found the meter important at a lower rate
and thought the meter to be incorrect at a higher rate, yet their passwords were comparable in complexity and
cracking-resistance to those made by half-score participants. If meters are too stringent, users just give up.

Tweaks to the password meter’s visual display did not lead to significant differences in password
composition or user sentiment. Whether the meter was tiny, monochromatic, or a dancing bunny did not
seem to matter. However, an important factor seemed to be the combination of text and a visual indicator,
rather than only having text or only having a visual bar. Conditions containing text without visual indicators,
run as part of our experiment, and conditions containing a visual bar without text, run subsequently to the
experiment we focus on here, were cracked at a higher rate and led to less favorable user sentiment than
conditions containing a combination of text and a visual indicator.

In the presence of password-strength meters, participants changed the way they created a password. For
instance, the majority of participants in the stringent conditions changed their password during creation.
Meters seemed to encourage participants to create a password that filled the meter. If that goal seemed
impossible, participants seemed content to avoid passwords that were rated “bad” or “poor.” In essence, the
password meter functions as a progress meter, and participants’ behavior echoed prior results on the effects
progress meters had on survey completion [45]. Meters whose estimates of password strength mirrored
participants’ expectations seemed to encourage the creation of secure passwords, whereas very stringent
meters whose scores diverged from expectations led to less favorable user sentiment and an increased
likelihood that a participant would abandon the task of creating a strong password.

We also found many users to have beliefs regarding how to compose a strong password, such as including
different character classes. Because users’ understanding of password strength appears at least partially based

3.6. DISCUSSION 35

on experience with real-world password-strength meters and password-composition policies, our results
suggest that wide-scale deployment of stringent meters may train users to create stronger passwords.

3.6.2 Ethical Considerations

We calculated our guessability results by training a guess-number calculator on sets of passwords that are
publicly and widely available, but that were originally gathered through illegal cracking and phishing attacks.
It can be argued that data acquired illegally should not be used at all by researchers, and so we want to address
the ethical implications of our work. We use the passwords alone, excluding usernames and email addresses.
We neither further propagate the data, nor does our work call significantly greater attention to the data sets,
which have been used in several scientific studies [26, 54, 104, 196, 197]. As a result, we believe our work
causes no additional harm to the victims, while offering potential benefits.

3.6.3 Limitations

One potential limitation of our study is its ecological validity. Subjects created passwords for an online
study, and they were not actually protecting anything valuable with those passwords. Furthermore, one of
the primary motivations for part of the MTurk population is financial compensation [99], which differs from
real-world motivations for password creation. Outside of a study, users would create passwords on web
pages with the logos and insignia of companies they might trust, perhaps making them more likely to heed a
password meter’s suggestions. On the other hand, subjects who realize they are participating in a password
study may be more likely to think carefully about their passwords and pay closer attention to the password
meter than they otherwise would. We did ask participants to imagine that they were creating passwords for
their real email accounts, which prior work has shown to result in stronger passwords [108]. Because our
results are based on comparing passwords between conditions, we believe our findings about how meters
compare to one another can be applied outside our study.

Our study used a password-cracking algorithm developed by Weir et al. [197] in a guess-number calculator
implemented by Kelley et al. [104] to determine a password’s guessability. We did not experiment with a wide
variety of cracking algorithms since prior work [104, 196, 205] has found that this algorithm outperformed
alternatives including John the Ripper. Nevertheless, the relative resistance to cracking of the passwords we
collected may differ depending on the choice of cracking algorithm. We investigated this question further in
Chapter 4, finding that heterogeneous password sets’ relative resistance to cracking is fairly robust to the
password-cracking algorithm chosen.

Furthermore, the data we used to train our cracking algorithm was not optimized to crack passwords of
particular provenance. For instance, passwords created by participants from India were the most difficult to
crack. The data with which we trained our guessing algorithm was not optimized for participants creating
passwords in languages other than English, which may have led to fewer of these passwords being cracked;
prior work by Kelley et al. [104] found that the training set has a substantial effect on the success of the
guessing algorithm we used.

36 CHAPTER 3. THE IMPACT OF PASSWORD-STRENGTH METERS

3.7 Conclusion

We conducted the first large-scale study of password-strength meters, finding that meters did affect user
behavior and security. Meters led users to create longer passwords. However, unless the meter scored
stringently, the resulting passwords were only marginally more resistant to password cracking attacks.

Meters that rated passwords stringently led users to make significantly longer passwords that included
more digits, symbols, and uppercase letters. These passwords were not observed to be less memorable or
usable, yet they were cracked at a lower rate by simulated adversaries making 500 million, 50 billion, and 5
trillion guesses. The most stringent meter annoyed users, yet did not provide security benefits beyond those
provided by slightly less stringent meters. The combination of a visual indicator and text outperformed either
in isolation. However, the visual indicator’s appearance did not appear to have a substantial impact.

Despite the added strength that these more stringent meters convey, we observed many more lenient
meters deployed in practice. Our findings suggest that, so long as they are not overly onerous, employing
more rigorous meters would increase security. Improving password meters, such as through the data-driven
password meter presented in Chapter 7, therefore has the potential to help users create better passwords on a
large scale.

Chapter 4

Understanding Biases in Modeling
Password Cracking

4.1 Introduction

While I demonstrated in the previous chapter that password-strength meters using even very basic heuristics
to score passwords can lead users to create passwords that better resist one particular password-guessing
attack, there are many such password-guessing attacks. In this chapter, I report on our investigation of the
accuracies and biases of modeling different conceptual approaches to guessing passwords, each in multiple
configurations, to better understand how researchers can model a password’s resistance to adversarial guessing.
In addition, we compare the types of models a researcher can create to password guessing by a human expert
in password forensics, finding that the more nuanced and better-configured models we propose can serve as a
conservative proxy for a guessing attack by a professional.

A key aspect of improving password security is making passwords more computationally expensive to
guess during offline attacks. Cracking tools like the GPU-based oclHashcat [166] and distributed cracking bot-
nets [48,55] enable attackers to make 1014 guesses in hours if passwords are hashed using fast hash functions
like MD5 or NTLM. These advances are offset by the development of hash functions like bcrypt [143] and
scrypt [138], which make attacks more difficult by requiring many iterations or consuming lots of memory.

Unfortunately, users often create predictable passwords [31, 94], which attackers can guess quickly even
if the passwords are protected by a computationally expensive hash function. In some cases, predictable
passwords are a rational coping strategy [150,169]; in other cases, users are simply unsure whether a password
is secure [184]. System administrators encourage strong passwords through password-composition policies
and password-strength meters. The design and effectiveness of such mechanisms hinges on robust metrics to
measure how difficult passwords are to guess.

In recent years, traditional entropy metrics have fallen out of favor because they do not reflect how
easily a password can be cracked in practice [22, 104, 196]. It has instead become common to measure
password strength by running or simulating a particular cracking algorithm, parameterized by a set of training
data [23, 104, 196]. This approach has two main advantages. First, it calculates the guessability of each

Previously published as Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya
Kurilova, Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In Proc. USENIX Security Symposium, 2015.

37

38 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

password individually, enabling data-driven strength estimates during password creation [38, 107]. Second, it
estimates real-world security against existing, rather than idealized, adversarial techniques. A disadvantage
of this approach is that the (simulated) cracking algorithm may not be configured or trained as effectively as
by a real attacker, leading to inaccurate estimates of password strength.

We report on the first study of how various cracking approaches used by researchers compare to real-world
cracking by professionals, as well as how the choice of approach biases research conclusions. We contracted
a computer security firm specializing in password recovery to crack a set of passwords chosen for their
diversity in password-composition policies. We then computed the guessability of these passwords using four
popular approaches. We tested many configurations of two well-known password-cracking toolkits: John
the Ripper [139] and oclHashcat [166]. We also tested two approaches popular in academia: Weir et al.’s
probabilistic context-free grammar (PCFG) [197] and Ma et al.’s Markov models [123].

Unsurprisingly, a professional attacker updating his strategy dynamically during cracking outperformed
fully automated, “fire-and-forget” approaches (henceforth simply referred to as automated), yet often only
once billions or trillions of guesses had been made. We found that relying on a single automated approach
to calculate guessability underestimates a password’s vulnerability to an experienced attacker, but using
the earliest each password is guessed by any automated approach provides a realistic and conservative
approximation.

We found that each approach was highly sensitive to its configuration. Using more sophisticated
configurations than those traditionally used in academic research, our comparative analysis produced far more
nuanced results than prior work. These prior studies found that Markov models substantially outperform the
PCFG approach [60, 123], which in turn substantially outperforms tools like John the Ripper [54, 196, 205].
We found that while Markov was marginally more successful at first, it was eventually surpassed by PCFG
for passwords created under typical requirements. Furthermore, the most effective configurations of John the
Ripper and Hashcat were frequently comparable to, and sometimes even more effective than, the probabilistic
approaches we tested.

Both the differences across algorithms and the sensitivity to configuration choices are particularly notable
because most researchers use only a single approach as a security metric [38, 43, 61, 126, 157, 182, 196]. In
addition, many researchers use adversarial cracking tools in their default configuration [42, 49, 51, 67, 71, 86,
108, 204]. Such a decision is understandable since each algorithm is very resource- and time-intensive to
configure and run. This raises the question of whether considering only a single approach biases research
studies and security analyses. For instance, would substituting a different cracking algorithm change the
conclusions of a study?

We investigate these concerns and find that for comparative analyses of large password sets (e.g., the
effect of password-composition policies on guessability), choosing one cracking algorithm can reasonably be
expected to yield similar results as choosing another.

However, more fine-grained analyses—e.g., examining what characteristics make a password easy to
guess—prove very sensitive to the algorithm used. We find that per-password guessability results often vary
by orders of magnitude, even when two approaches are similarly effective against large password sets as
a whole. This has particular significance for efforts to help system administrators ban weak passwords or
provide customized guidance during password creation [38, 107]. To facilitate the analysis of password
guessability across many password-cracking approaches and to further systematize passwords research, we
introduce a Password Guessability Service [37] for researchers.

In summary, we make the following main contributions: We show that while running a single cracking

4.2. METHODOLOGY 39

algorithm or tool relatively out-of-the-box produces only a poor estimate of password guessability, using
multiple well-configured algorithms or tools in parallel can approximate passwords’ vulnerability to an expert,
real-world attacker. Furthermore, while comparative analyses of large password sets may be able to rely on a
single cracking approach, any analysis of the strength of individual passwords (e.g., a tool to reject weak
ones) or the security impact of particular characteristics (e.g., the use of digits, multiple character classes, or
character substitutions) must consider many approaches in parallel.

4.2 Methodology

We analyze four automated guessing algorithms and one manual cracking approach (together, our five cracking
approaches). We first describe the password sets for which we calculated guessability, then explain the
training data we used. Afterwards, we discuss our five cracking approaches. Finally, we discuss computational
limitations of our analyses.

4.2.1 Datasets

We examine 13,345 passwords from four sets created under composition policies ranging from the typical to
the currently less common to understand the success of password-guessing approaches against passwords
of different characteristics. Since no major password leaks contain passwords created under strict compo-
sition policies, we leverage passwords that our group collected for prior studies of password-composition
policies [104, 126, 157]. This choice of data also enables us to contract with a professional computer security
firm to crack these unfamiliar passwords. Had we used any major password leak, their analysts would have
already been familiar with most or all of the passwords contained in the leak, biasing results.

The passwords in these sets were collected using Amazon’s Mechanical Turk crowdsourcing service.
Two recent studies have demonstrated that passwords collected for research studies, while not perfect proxies
for real data, are in many ways very representative of real passwords from high-value accounts [67, 126].

Despite these claims, we were also curious how real passwords would differ in our analyses from those
collected on Mechanical Turk. Therefore, we repeated our analyses of Basic passwords (see below) with
15,000 plaintext passwords sampled from the RockYou gaming site leak [187] and another 15,000 sampled
from a Yahoo! Voices leak [77]. As we detail in our supplementary results (Section 4.4.4), our Basic
passwords and comparable passwords from these two real leaks yielded approximately the same results.

Next, we detail our datasets, summarized in Table 4.1. The Basic set comprises 3,062 passwords collected
for a research study requiring a minimum length of 8 characters [104]. As we discuss in Section 4.3, the
vast majority of 8-character passwords can be guessed using off-the-shelf, automated approaches. We give
particular attention to longer and more complex passwords, which will likely represent future best practices.

System administrators commonly require passwords to contain multiple character classes (lowercase
letters, uppercase letters, digits, and symbols). The Complex set comprises passwords required to contain 8+
characters, include all 4 character classes, and not be in a cracking wordlist [137] after removing digits and
symbols. They were also collected for research [126].

Recent increases in hashing speeds have made passwords of length 8 or less increasingly susceptible to
offline guessing [80, 104]. We therefore examine 2,054 LongBasic passwords collected for research [104]
that required a a minimum length of 16 characters. Finally, we examine 990 LongComplex passwords, also

40 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

Table 4.1: Characteristics of passwords per set, including the percentage of characters that were lowercase
(LC) or uppercase (UC) letters, digits, or symbols (Sym).

Length % of Characters
Set # Mean (σ) LC UC Digit Sym

Basic 3,062 9.6 (2.2) 68 4 26 1
Complex 3,000 10.7 (3.2) 51 14 25 11
LongBasic 2,054 18.1 (3.1) 73 4 20 2
LongComplex 990 13.8 (2.6) 57 12 22 8

collected for research [157], that needed to contain 12+ characters, including characters from 3 or more
character classes.

4.2.2 Training Data

To compare cracking approaches as directly as possible, we used the same training data for each. That said,
each algorithm uses training data differently, making perfectly equivalent comparisons impossible.

Our training data comprised leaked passwords and dictionaries. The passwords were from breaches of
MySpace, RockYou, and Yahoo! (excluding the aforementioned 30,000 passwords analyzed in Section 4.4.4).
Using leaked passwords raises ethical concerns. We believe our use of such sets in this research is justifiable
because the password sets are already available publicly and we exclude personally identifiable information,
such as usernames. Furthermore, malicious agents use these sets in attacks [79]; failure to consider them in
our analyses may give attackers an advantage over those who work in defensive security.

Prior research has found including natural-language dictionaries to work better than using just pass-
words [104, 196]. We used the dictionaries previously found most effective: all single words in the Google
Web corpus [83], the UNIX dictionary [13], and a 250,000-word inflection dictionary [153]. The combined set
of passwords and dictionaries contained 19.4 million unique entries. For cracking approaches that take only
a wordlist, without frequency information, we ordered the wordlist by descending frequency and removed
duplicates. We included frequency information for the other approaches.

4.2.3 Simulating Password Cracking

To investigate the degree to which research results can be biased by the choice of cracking algorithm, as
well as how automated approaches compare to real attacks, we investigated two cracking tools and two
probabilistic algorithms. We selected approaches based on their popularity in the academic literature or
the password-cracking community, as well as their conceptual distinctness. We also contracted a computer
security firm specializing in password cracking for the real-world attack.

Most cracking approaches do not natively provide guess numbers, and instrumenting them to calculate
guessability was typically far from trivial. Because this instrumentation enabled our comparisons and
can similarly support future research, we include many details in this section about this instrumentation.
Furthermore, in Section 4.5, we introduce a Password Guessability Service so that other researchers can
leverage our instrumentation and computational resources.

For each approach, we analyze as many guesses as computationally feasible, making 100 trillion (1014)

4.2. METHODOLOGY 41

guesses for some approaches and ten billion (1010) guesses for the most resource-intensive approach. With
the exception of Hashcat, as explained below, we filter out guesses that do not comply with a password set’s
composition policy. For example, a LongComplex password’s guess number excludes guesses with under 12
characters or fewer than 3 character classes.

We define Minauto as the minimum guess number (and therefore the most conservative security result) for
a given password across our automated cracking approaches. This number approximates the best researchers
can expect with well-configured automation.

In the following subsections, we detail the configuration (and terminology) of the five approaches we
tested. We ran CPU-based approaches (JTR, PCFG, Markov) on a 64-core server. Each processor on this
server was an AMD Opteron 6274 running at 1.4Ghz. The machine had 256 GB of RAM and 15 TB of disk.
Its market value is over $10,000, yet we still faced steep resource limitations generating Markov guesses. We
ran Hashcat (more precisely, oclHashcat) on a machine with six AMD R9 270 GPUs, 2 GB of RAM, and a
dual-core processor.

Probabilistic context-free grammar Weir et al.’s probabilistic context-free grammar (termed PCFG) [197]
has been widely discussed in recent years. We use Komanduri’s implementation of PCFG [106], which
improves upon the guessing efficiency of Weir et al.’s work [197] by assigning letter strings probabilities
based on their frequency in the training data and assigning unseen strings a non-zero probability. This
implementation is a newer version of Kelley et al.’s implementation of PCFG as a lookup table for quickly
computing guess numbers, rather than enumerating guesses [104].

Based on our initial testing, discussed further in Section 4.3.1, we prepend our training data, ordered by
frequency, before PCFG’s first guess to improve performance. As a result, we do not use Komanduri’s hybrid
structures [106], which serve a similar purpose. We weight passwords 10× as heavily as dictionary entries.
We were able to simulate 1012 guesses for Complex passwords and 1014 guesses for the other three sets.

Markov model Second, we evaluated the Markov-model password guesser presented by Ma et al. [123],
which implemented a number of variants differing by order and approaches to smoothing. We use the order-5
Markov-chain model, which they found most effective for English-language test sets. We tried using both
our combined training data (dictionaries and paswords) using the same weighting as with PCFG, as well as
only the passwords from our training data. The combined training data and passwords-only training data
performed nearly identically. We report only on the combined training data, which was slightly more effective
for Basic passwords and is most consistent with the other approaches.

We used Ma et al.’s code [123], which they shared with us, to enumerate a list of guesses in descending
probability. We used a separate program to remove guesses that did not conform to the given password-
composition policy. Because this approach is extremely resource-intensive, both conceptually (traversing
a very large tree) and in its current implementation, we were not able to analyze as many guesses as for
other approaches. As with PCFG, we found prepending the training data improved performance, albeit only
marginally for Markov. Therefore, we used this tweak. We simulated over 1010 guesses for Basic passwords,
similar to Ma et al. [123].

John the Ripper We also tested variants of a mangled wordlist attack implemented in two popular software
tools. The first tool, John the Ripper (termed JTR), has been used in a number of prior studies as a security
metric, as described in Section 2.3. In most cases, these prior studies used JTR with its stock mangling

42 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

rules. However, pairing the stock rules with our 19.4-million-word wordlist produced only 108 guesses for
Basic passwords. To generate more guesses, we augment the stock rules with 5,146 rules released for DEF
CON’s “Crack Me If You Can” (CMIYC) password-cracking contest in 2010 [110]. Specifically, we use
Trustwave SpiderLabs’ reordering of these rules for guessing efficiency [179]. Our JTR tests therefore use
the stock mangling rules followed by the Spiderlabs rules. For completeness, Section 4.4.2 presents these
rules separately.

Instrumenting JTR to calculate precise guess numbers was complex. We used john-1.7.9-jumbo with
the --stdout flag to output guesses to standard out. We piped these guesses into a program we wrote to
perform a regular expression check filtering out guesses that do not conform to the given password policy.
This program then does a fast hash table lookup with GNU gperf [85] to quickly evaluate whether a guess
matches a password in our dataset. Using this method, we achieved a throughput speed of 3 million guesses
per second and made more than 1013 guesses for Basic passwords.

Hashcat While Hashcat is conceptually similar to JTR, we chose to also include it in our tests for two
reasons. First, we discovered in our testing that JTR and Hashcat iterate through guesses in a very different
order, leading to significant differences in the efficacy of guessing specific passwords. JTR iterates through
the entire wordlist using one mangling rule before proceeding to the subsequent mangling rule. Hashcat,
in contrast, iterates over all mangling rules for the first wordlist entry before continuing to the subsequent
wordlist entry.

Second, the GPU-based oclHashcat, which is often used in practice [79, 80, 109, 140], does not permit
users to filter guesses that do not meet password-composition requirements except for computationally
expensive hash functions. We accept this limitation both because it represents the actual behavior of a
popular closed-source tool and because, for fast hashes like MD5 or NTLM, guessing without filtering cracks
passwords faster in practice than applying filtering.

Unlike JTR, Hashcat does not have a default set of mangling rules, so we evaluated several. We generally
report on only the most effective set, but detail our tests of four different rule sets in Section 4.4.3. This most
effective rule set, which we term Hashcat throughout, resulted from our collaboration with a Hashcat user
and password researcher from MWR InfoSecurity [81, 134], who shared his mangling rules for the purpose
of this analysis. We believe such a configuration represents a typical expert configuration of Hashcat.

We used oclHashcat-1.21. While, like JTR, Hashcat provides a debugging feature that streams
guesses to standard output, we found it extremely slow in practice relative to Hashcat’s very efficient GPU
implementation. In support of this study, Hashcat’s developers generously added a feature to oclHashcat to
count how many guesses it took to arrive at each password it cracked. This feature is activated using the
flag --outfile-format=11 in oclHashcat-1.20 and above. We therefore hashed the passwords in our
datasets using the NTLM hash function, which was the fastest for Hashcat to guess in our benchmarks. We
then used Hashcat to actually crack these passwords while counting guesses, with throughput of roughly
10 billion guesses per second on our system. We made more than 1013 guesses for Basic passwords, along
with nearly 1015 guesses for some alternate configurations reported in Section 4.4.3.

Professional cracker An open question in measuring password guessability using off-the-shelf, automated
tools is how these attacks compare to an experienced, real-world attacker. Such attackers manually customize
and dynamically update their attacks based on a target set’s characteristics and initial successful cracks.

4.2. METHODOLOGY 43

To this end, we contracted an industry leader in professional password recovery services, KoreLogic
(termed Pros), to attack the password sets we study. We believe KoreLogic is representative of expert
password crackers because they have organized the DEF CON “Crack Me If You Can” password-cracking
contest since 2010 [109] and perform password-recovery services for many Fortune-500 companies [112].
For this study, they instrumented their distributed cracking infrastructure to count guesses.

Like most experienced crackers, the KoreLogic analysts used tools including JTR and Hashcat with
proprietary wordlists, mangling rules, mask lists, and Markov models optimized over 10 years of password
auditing. Similarly, they dynamically update their mangling rules (termed freestyle rules) as additional
passwords are cracked. To unpack which aspects of a professional attack (e.g., proprietary wordlists and
mangling rules, freestyle rules, etc.) give experienced crackers an advantage, we first had KoreLogic attack
a set of 4,239 Complex passwords (distinct from those reported in our other tests) in artificially limited
configurations.

We then had the professionals attack the Complex, LongBasic, and LongComplex passwords with no
artificial limitations. An experienced password analyst wrote freestyle rules for each set before cracking
began, and again after 1013 guesses based on the passwords guessed to that point. They made more than 1014

guesses per set.
LongBasic and LongComplex approaches are rare in corporate environments and thus relatively unfamiliar

to real-world attackers. To mitigate this unfamiliarity, we randomly split each set in two and designated half
for training and half for testing. We provided analysts with the training half (in plaintext) to familiarize them
with common patterns in these sets. Because we found that automated approaches can already crack most
Basic passwords, rendering them insecure, we chose not to have the professionals attack Basic passwords.

4.2.4 Computational Limitations

As expected, the computational cost of generating guesses in each approach proved a crucial limiting factor
in our tests. In three days, oclHashcat, the fastest of our approaches, produced 1015 guesses using a single
AMD R9 290X GPU (roughly a $500 value). In contrast, the Markov approach (our slowest) required three
days on a roughly $10,000 server (64 AMD Opteron 6274 CPU cores and 256 GB of RAM) to generate 1010

guesses without computing a single hash. In three days on the same machine as Markov, PCFG simulated
1013 guesses.

The inefficiency of the Markov approach stems partially from our use of a research implementation. Even
the most efficient implementation, however, would still face substantial conceptual barriers. Whereas Hashcat
and JTR incur the same performance cost generating the quadrillionth guess as the first guess, Markov must
maintain a tree of substring probabilities. As more guesses are desired, the tree must grow, increasing the
cost of both storing and traversing it. While the Markov approach produced a high rate of successful guesses
per guess made (see Section 4.3.2), the cost of generating guesses makes it a poor choice for computing
guessability beyond billions of guesses.

Further, our automated approaches differ significantly in how well they handle complex password-
composition policies. For PCFG, non-terminal structures can be pruned before guessing starts, so only
compliant passwords are ever generated. As a result, it takes about equal time for PCFG to generate Basic
passwords as LongComplex passwords. In contrast, Markov must first generate all passwords in a probability
range and then filter out non-compliant passwords, adding additional overhead per guess. JTR has a similar
generate-then-filter mechanism, while Hashcat (as discussed above) does not allow this post-hoc filtering

44 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

at all for fast hashes. This means that Markov and JTR take much longer to generate valid LongComplex
guesses than Basic guesses, and Hashcat wastes guesses against the LongComplex set.

As a result of these factors, the largest guess is necessarily unequal among approaches we test, and even
among test sets within each approach. To account for this, we only compare approaches directly at equivalent
guess numbers. In addition, we argue that these computational limitations are important in practice, so our
findings can help researchers understand these approaches and choose among them appropriately.

4.3 Results

We first show, in Section 4.3.1, that for each automated guessing approach we evaluated, different seemingly
reasonable configurations produce very different cracking results, and that out-of-the-box configurations
commonly used by researchers substantially underestimate password vulnerability.

Next, in Section 4.3.2, we examine the relative performance of the four automated approaches. We find
they are similarly effective against Basic passwords. They have far less success against the other password
sets, and their relative effectiveness also diverges.

For the three non-Basic sets, we also compare the automated approaches to the professional attack. Pros
outperform the automated approaches, but only after a large number of guesses. As Pros crack more passwords,
their manual adjustments prove quite effective; automated approaches lack this feedback mechanism. We
also find that, at least through 1014 guesses, automated approaches can conservatively approximate human
password-cracking experts, but only if a password is counted as guessed when any of the four automated
approaches guesses it. A single approach is not enough.

In Section 4.3.3, we explore the degree to which different cracking approaches overlap in which particular
passwords they guess. While multiple approaches successfully guess most Basic passwords, many passwords
in the other classes are guessed only by a single approach. We also find that different cracking approaches
provide systematically different results based on characteristics like the number of character classes contained
in a particular password.

In Section 4.3.4, we revisit how the choice of guessing approach impacts research questions at a high
level (e.g., how composition policies impact security) and lower level (e.g., if a particular password is hard
to guess). While we find analyses on large, heterogeneous sets of passwords to be fairly robust, security
estimates for a given password are very sensitive to the approach used.

4.3.1 The Importance of Configuration

We found that using any guessing approach naively performed far more poorly, sometimes by more than an
order of magnitude, than more expert configurations.

Stock versus advanced configurations We experimented with several configurations each for Hashcat
and JTR, including the default configurations they ship with, and observed stark differences in performance.
We detail a few here; others are described in Section 4.4.2 and Section 4.4.3.

For example, Hashcat configured with the (default) Best64 mangling rules guessed only about 2% of
the Complex passwords before running out of guesses. Using the mangling rules described in Section 5.3, it
made far more guesses, eventually cracking 30% (Figure 4.1).

4.3. RESULTS 45

HC−Best64

HC−Generated2

HC−MWR

HC−SpiderLabs

0%

10%

20%

30%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 4.1: Results of Hashcat configured using the same wordlist, but different sets of mangling rules
(described in Section 4.4.3), to guess Complex passwords.

Similarly, JTR guessed less than 3% of Complex passwords before exhausting its stock rules. The larger
set of rules described in Section 5.3 enabled it to guess 29% (see Section 4.4.2 for details). We found
similar configuration effects for LongComplex passwords, and analogous but milder effects for the Basic and
LongBasic sets.

We also compared the PCFG implementation we use throughout Section 4.3 [106] with our approximation
of the originally published algorithm [197], which differs in how probabilities are assigned (see Section 5.3).
As we detail in Section 4.4.1, the newer PCFG consistently outperforms the original algorithm; the details of
the same conceptual approach greatly impact guessability analyses.

Choices of training data The performance of PCFG and Markov depends heavily on the quality of training
data. Our group previously found that training with closely related passwords improves performance [104].
For our non-basic password sets, however, closely matched data is not available in publicly leaked sets.

In tests reported in Section 4.4.1, we thus incorporated closely matched data via cross-validation, in which
we iteratively split the test set into training and testing portions. Using cross-validation improved guessing
efficiency for three of the four password sets, most dramatically for LongBasic. This result demonstrates that
an algorithm trained with generic training data will miss passwords that are vulnerable to an attacker who has
training data that closely matches a target set. To minimize differences across approaches, however, PCFG
results in Section 4.3 use generic training data only.

Actionable takeaways Together, these results suggest that a researcher must carefully manage guessing
configuration before calculating password guessability. In particular, tools like JTR and Hashcat will “out of
the box” systematically underestimate password guessability. Unfortunately, many existing research studies
rely on unoptimized configurations [42, 49, 51, 67, 71, 86, 108, 204].

While we report on the configurations we found most effective in extensive testing, we argue that the
research community should establish configuration best practices, which may depend on the password sets
being targeted.

46 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

4.3.2 Comparison of Guessing Approaches

We first show that automated approaches differ in effectiveness based on the nature of the password sets
being cracked and the number of guesses at which they are compared. We then compare these automated
approaches to cracking by an expert attacker making dynamic updates, finding that the expert lags in initial
guessing efficiency, yet becomes stronger over time. We find the minimum guess number across automated
approaches can serve as a conservative proxy for guessability by an expert attacker.

Guessing by Automated Approaches

On some password sets and for specific numbers of guesses, the performance of all four approaches was
similar (e.g., at 1012 guesses all but Markov had guessed 60-70% of Basic passwords). In contrast, on other
sets, their performance was inconsistent at many points that would be relevant for real-world cracking (e.g.,
PCFG cracked 20% of Complex passwords by 1010 guesses, while Hashcat and JTR had cracked under 3%).

As shown in Figure 4.2, all four automated approaches were quite successful at guessing Basic passwords,
the most widely used of the four classes. Whereas past work has found that, for password sets resembling our
Basic passwords, PCFG often guesses more passwords than JTR [54] or that Markov performs significantly
better than PCFG [123], good configurations of JTR, Markov, and PCFG performed somewhat similarly in
our tests. Hashcat was less efficient at generating successful guesses in the millions and billions of guesses,
yet it surpassed JTR by 1012 guesses and continued to generate successful guesses beyond 1013 guesses.

The four automated approaches had far less success guessing the other password sets. Figure 4.2b shows
the guessability of the Complex passwords under each approach. Within the first ten million guesses, very
few passwords were cracked by any approach. From that point until its guess cutoff, PCFG performed best,
at points having guessed nearly ten times as many passwords as JTR. Although its initial guesses were often
successful, the conceptual and implementation-specific performance issues we detailed in Section 4.2.4
prevented Markov from making over 100 million valid Complex guesses, orders of magnitude less than the
other approaches we examined. A real attack using this algorithm would be similarly constrained.

Both Hashcat and JTR performed poorly compared to PCFG in early Complex guessing. By 109 guesses,
each had each guessed under 3% of Complex passwords, compared to 20% for PCFG. Both Hashcat and JTR
improve rapidly after 1010 guesses, however, eventually guessing around 30% of Complex passwords.

JTR required almost 1012 guesses and Hashcat required over 1013 guesses to crack 30% of Complex
passwords. As we discuss in Section 4.3.3, there was less overlap in which passwords were guessed by
multiple automated approaches for Complex passwords than for Basic passwords. As a result, the Minauto
curve in Figure 4.2b, representing the smallest guess number per password across the automated approaches,
shows that just under 1011 guesses are necessary for 30% of Complex passwords to have been guessed by at
least one automated approach. Over 40% of Complex passwords were guessed by at least one automated
approach in 1013 guesses.

LongBasic passwords were also challenging for all approaches to guess, though relative differences across
approaches are not as stark as for Complex passwords. Markov was marginally more successful than other
approaches at its cutoff just before 109 guesses. JTR and PCFG both continued to generate successful guesses
through when JTR exhausted its guesses after guessing 10% of the passwords. Hashcat lagged slightly behind
JTR at 109 guesses (7% cracked vs∼9%), but was able to make more guesses than either, eventually guessing
over 20% of the passwords, compared to 16% for PCFG and 10% for JTR at those approaches’ guess cutoffs.

As with LongBasic passwords, all approaches had difficulty guessing LongComplex passwords. As

4.3. RESULTS 47

Hashcat

JTR

Markov

Min_auto
PCFG

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Basic

Hashcat
JTR

Markov

Min_auto

PCFG

Pros

0%

10%

20%

30%

40%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) Complex

Hashcat

JTR

Markov

Min_auto

PCFG

Pros

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) LongBasic

Hashcat

JTR

Markov

Min_auto

PCFG

Pros

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(d) LongComplex

Figure 4.2: Automated approaches’ success guessing the different password sets. Minauto represents the
smallest guess number for a password by any automated approach. Pros are experts updating their guessing
strategy dynamically.

shown in Figure 4.2d, nearly 70% of LongComplex passwords were not guessed by any of the approaches
we examined even after trillions of guesses. The relative performance of the four automated guessing
approaches for LongComplex passwords again differed noticeably. Markov and PCFG again outperformed
other approaches early. Markov guessed 5% of the passwords after 108 guesses, yet reached its guess cutoff
soon thereafter. At 109 guesses PCFG and JTR had both also guessed at least 5% of the passwords, compared
to almost no passwords guessed by Hashcat. PCFG’s and JTR’s performance diverged and then converged at
higher guess numbers. Hashcat caught up at around 1013 guesses, cracking 20% of LongComplex passwords.

Guessing by Pros

As we expected, Pros guessed more passwords overall than any of the automated approaches. As we discussed
in Section 5.3, we chose not to have Pros attack Basic passwords because those passwords could be guessed
with automated approaches alone. As shown in Figures 4.2b–4.2d, within 1014 guesses Pros cracked 44% of

48 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

0% 20% 40% 60% 80% 100%

LongComplex

Complex

LongBasic

Both Min_auto only Pros only Neither

Figure 4.3: The proportion of passwords guessed by Minauto, Pros, both, or neither within 1014 guesses.

Complex passwords, 33% of LongBasic passwords, and 33% of LongComplex passwords, improving on the
guessing of the best automated approach.

Three aspects of guessing by Pros were particularly notable. First, even though Pros manually examined
half of each password set and adjusted their mangling rules and wordlists before making the first guess
against each set, automated approaches were often more successful at early guessing. For example, Markov
surpassed Pros at guessing Complex passwords in the first 102 guesses and again from around 106 till
Markov’s guess cutoff at 5×107. Similarly, all four automated approaches guessed LongComplex passwords
more successfully than Pros from the start of guessing until past 1013 guesses. All approaches guessed
LongBasic passwords better than Pros for the first 106 guesses.

Second, while Pros lagged in early guessing, the freestyle rules an experienced analyst wrote at 1013

guesses proved rather effective and caused a large spike in successful guesses for all three password sets.
Hashcat, the only automated approach that surpassed 1013 guesses for all sets, remained effective past 1013

guesses, yet did not experience nearly the same spike.
Third, while Pros were more successful across password sets once a sufficiently high number of guesses

had been reached, the automated approaches we tested had guessing success that was, to a very rough
approximation, surprisingly similar to Pros. As we discussed in Section 4.3.1 and discuss further in Section 4.4,
this success required substantial configuration beyond each approach’s performance out of the box.

We found that our Minauto metric (the minimum guess number for each password across Hashcat, JTR,
Markov, and PCFG) served as a conservative approximation of the success of Pros, at least through our
automated guess cutoffs around 1013 guesses. As seen in Figures 4.2b–4.3, Pros never substantially exceeded
Minauto, yet often performed worse than Minauto.

Professional cracking with limitations To unpack why professional crackers have an advantage over
novice attackers, we also had KoreLogic attack a different set of Complex passwords in artificially limited
configurations. These limitations covered the wordlists they used, the mangling rules they used, and whether
they were permitted to write freestyle rules. To avoid biasing subsequent tests, we provided them a comparable
set of 4,239 Complex passwords [104] distinct from those examined in Section 4.3. We call this alternate set
Complexpilot .

As shown in Table 4.2, we limited Pros in Trial 1 to use the same wordlist we used elsewhere and did not
allow freestyle rules. In Trial 2, we did not limit the wordlist, but did limit mangling rules to those used in
the 2010 Crack Me If You Can contest [110]. In Trial 3 and Trial 4, we did not limit the starting wordlist or
mangling rules. In Trial 4, however, KoreLogic analysts dynamically adjusted their attacks through freestyle
rules and wordlist tweaks after 1014 guesses.

4.3. RESULTS 49

Table 4.2: The four trials of Pros guessing Complexpilot . We artificially limited the first three trials to uncover
why Pros have an advantage over more novice attackers.

Trial Wordlist Rules Freestyle Rules

1 CMU wordlist Anything None
2 Anything 2010 CMIYC rules None
3 Anything Anything None
4 Anything Anything Unlimited

Trial1

Trial2

Trial3

Trial4

0%

20%

40%

101 103 105 107 109 1011 1013 1015

Guesses

Pe
rc

en
t g

ue
ss

ed

Figure 4.4: Complexpilot guessability by trial.

We found that KoreLogic’s set of proprietary mangling rules had a far greater impact on guessing
efficiency than their proprietary wordlist (Figure 4.4). Furthermore, as evidenced by the difference between
Trial 3 and Trial 4, freestyle rules also had a major impact at the point the analyst wrote them.

Actionable takeaways One conceptual advantage of parameterized metrics is that they model an attack us-
ing existing cracking approaches. However, it has long been unclear whether automated cracking approaches
used by researchers effectively model the dynamically updated techniques used by expert real-world attackers.
Our results demonstrate that only by considering multiple automated approaches in concert can researchers
approximate professional password cracking.

One of our primary observations, both from comparing Pros to the automated approaches and from
our trials artificially limiting Pros (Section 4.3.2), is that dynamically updated freestyle rules can be highly
effective. This result raises the question of to what extent automated approaches can model dynamic updates.
Although the adversarial cracking community has discussed techniques for automatically generating mangling
rules from previous cracks [125], researchers have yet to leverage such techniques.

Contrary to prior research (e.g., [54,123]), we found that Hashcat, JTR, Markov, and PCFG all performed
relatively effectively when configured and trained according to currently accepted best practices in the
cracking and research communities. That said, our tests also highlighted a limitation of the guessability
metric in not considering the performance cost of generating a guess. Despite its real-world popularity,
Hashcat performed comparatively poorly until making trillions of guesses, yet generated guesses very quickly.

50 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

0% 20% 40% 60% 80% 100%

LongComplex

LongBasic

Complex

Basic

3 approaches 2 approaches 1 approach

Figure 4.5: Number of automated approaches, excluding Markov, that cracked a particular password. We
ignore passwords not guessed by any approach and use the same guess cutoff for all guessing approaches
within a set.

If hashing a guess is the dominant time factor, as is the case for intentionally slow hash functions like
bcrypt, PBKDF2, and scrypt, probabilistic approaches like Markov and PCFG are advantageous for an
attacker. For fast hash functions like MD5 or NTLM, Hashcat’s speed at generating and hashing guesses
results in more passwords being guessed in the same wall-clock time. As discussed in Section 4.2.4, Markov
proved comparatively very resource-intensive to run to a large guess number, especially for password sets
with complex requirements. These practical considerations must play a role in how researchers select the best
approaches for their needs.

4.3.3 Differences Across Approaches

Next, we focus on differences between approaches. We first examine if multiple approaches guess the
same passwords. We then examine the guessability of passwords with particular characteristics, such as
those containing multiple character classes or character substitutions. To examine differences across how
approaches model passwords, for analyses in this section we do not prepend the training data to the guesses
generated by the approach.

Overlap in Successful Guesses

While one would expect any two cracking approaches to guess slightly different subsets of passwords, we
found larger-than-expected differences for three of the four password sets. Figure 4.5 shows the proportion of
passwords in each class guessed by all four approaches, or only some subset of them. We exclude passwords
guessed by none of the automated approaches. Within a password set, we examine all approaches only up to
the minimum guess cutoff among Hashcat, JTR, and PCFG; we exclude Markov due to its low guess cutoffs.

The three approaches guessed many of the same Basic passwords: Three-fourths of Basic passwords
guessed by any approach were guessed by all of them. Only 11% of Basic passwords were guessed only by a
single approach. In contrast, only 6% of LongBasic passwords were guessed by all approaches, while 28% of
Complex, LongBasic, and LongComplex passwords were guessed only by a single approach.

Guessing Success by Password Characteristics

While it is unsurprising that different approaches do better at guessing distinct types of passwords, we found
differences that were large and difficult to predict.

4.3. RESULTS 51

1 class 2 classes 3 classes 4 classes
0

10

20

30

40

50

60

70

80

90
Hashcat
PCFG
JTR
Markov

P
er

ce
nt

ag
e

of
 P

as
sw

or
ds

 G
ue

ss
ed

Figure 4.6: Percentage of Basic passwords each approach guessed, by character-class count.

Hashcat

JTR
Markov

PCFG

0%

20%

40%

60%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 4.7: Approaches’ effectiveness guessing passwords composed entirely of lowercase letters across sets.

Character classes and length We first considered how efficiently automated approaches guessed pass-
words relative to their length and character-class count. These two characteristics are of particular interest
because they are frequently used in password-composition policies.

As shown in Figure 4.6, the impact of adding character classes is not as straightforward as one might
expect. While the general trend is for passwords with more character classes to be stronger, the details vary.
Markov experiences a large drop in effectiveness with each increase in character classes (63% to 52% to
23% to 8%). JTR, by contrast, finds only a minor difference between one and two classes (72% to 70%).
PCFG actually increases in effectiveness between one and two classes (78% to 86%). Since changes in
security and usability as a result of different policies are often incremental (e.g., [35]), the magnitude of these
disagreements can easily affect research conclusions about the relative strength of passwords.

In contrast, we did not find surprising idiosyncrasies based on the length of the password. For all
approaches, cracking efficiency decreased as length increased.

Character-level password characteristics As the research community seeks to understand the character-
istics of good passwords, a researcher might investigate how easy it is to guess all-digit passwords, which are

52 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

Hashcat
JTR

Markov

PCFG

PCFG−2009

0%

25%

50%

75%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 4.8: Guessing efficiency for the 350 Basic and LongBasic passwords composed entirely of digits.

common [30], or examine the effect of character substitutions (e.g., $Hplovecraft!$→ $Hpl0v3cr@ft!$) on
guessability. Despite their sometimes similar effectiveness overall, approaches often diverged when guessing
passwords that had these characteristics. As a result, researchers using different approaches could draw
different conclusions about the guessability of these properties.

The guessability of the 1,490 passwords (across sets) composed entirely of lowercase letters varied starkly
by guessing approach. This variation is particularly notable because such passwords made up 29% of Basic
and LongBasic passwords, and were impermissible under the other two composition policies. As shown in
Figure 4.7, Hashcat guessed few such passwords until well into the billions of guesses, whereas Markov
successfully guessed passwords composed entirely of lowercase letters throughout its attack. In contrast,
PCFG had a large spike in successful guesses between 1 million and 10 million guesses, but then plateaued.
JTR had early success, but similarly plateaued from 10 million guesses until into the trillions of guesses.

Figure 4.8 shows the guessability of the 350 passwords comprised only of digits across the Basic
and LongBasic sets. Similar to the results for passwords of other common characteristics (Section 4.3.3),
approaches differed. Of particular note is PCFG−2009, which is our approximation of the original 2009 Weir
et al. algorithm [197] in which alphabetic strings are assigned uniform probability and unseen terminals are a
probability of zero. It plateaued at around 50% of such passwords guessed in fewer than 10 million guesses.
Idiosyncratically, through 1014 guesses, it would never guess another password of this type because of the
way it assigns probabilities.

Similarly, approaches differed in their efficiency guessing passwords containing character substitutions,
which we identified using crowdsourcing on Amazon’s Mechanical Turk. Passwords identified by crowd-
workers as containing character substitutions included 4Everblessed, B1cycle Race, and Ca$hmoneybr0.
PCFG performed poorly relative to JTR and Markov at guessing passwords with character substitutions. A
researcher using only PCFG could mistakenly believe these passwords are much stronger than they are. We
found similar differences with many other characteristics, potentially skewing research conclusions.

Actionable takeaways Given the many passwords guessed by only a single cracking approach and the
systematic differences in when passwords with certain characteristics are guessed, we argue that researchers
must consider major cracking approaches in parallel.

4.3. RESULTS 53

Our results also show how comparative analyses uncover relative weaknesses of each approach. Upon
close examination, many of these behaviors make sense. For example, PCFG abstracts passwords into
structures of non-terminal characters based on character class, ignoring contextual information across these
boundaries. As a result, P@ssw0rd would be split into “P,” “@,” “ssw,” “0,” and “rd,” explaining PCFG’s
poor performance guessing passwords with character substitutions.

4.3.4 Robustness of Analyses to Approach

In this section, we examine whether differences among automated cracking approaches are likely to affect
conclusions to two main types of research questions. We first consider analyses of password sets, such as
passwords created under particular password-composition policies. We find such analyses to be somewhat,
but not completely, robust to the approach used.

In contrast, per-password analyses are very sensitive to the guessing approach. Currently, such analyses
are mainly used in security audits [171] to detect weak passwords. In the future, however, per-password
strength metrics may be used to provide detailed feedback to users during password creation, mirroring the
recent trend of data-driven password meters [38, 107]. The ability to calculate a guess number per-password
is a major advantage of parameterized metrics over statistical metrics, yet this advantage is lost if guess
numbers change dramatically when a different approach is used. Unfortunately, we sometimes found huge
differences across approaches.

Per Password Set

As an example of an analysis of large password sets, we consider the relative guessability of passwords
created under different composition policies, as has been studied by Shay et al. [157] and Kelley et al. [104].

Figure 4.9 shows the relative guessability of the three password sets examined by the Pros. LongBasic
passwords were most vulnerable, and LongComplex passwords least vulnerable, to early guessing (under 109

guesses). Between roughly 109 and 1012 guesses, LongBasic and Complex passwords followed similar curves,
though Complex passwords were cracked with higher success past 1012 guesses. Very few LongComplex
passwords were guessed before 1013 guesses, yet Pros quickly guessed about one-third of the LongComplex
set between 1013 and 1014 guesses.

Performing the same analysis using Minauto guess numbers instead (Figure 4.10) would lead to similar
conclusions. LongBasic passwords were again more vulnerable than Complex or LongComplex under 108

guesses. After 1012 guesses, Complex passwords were easier to guess than LongBasic or LongComplex
passwords. Basic passwords were easy to guess at all points. The main difference between Minauto and Pros
was that LongComplex passwords appear more vulnerable to the first 1012 guesses under Minauto than Pros.

Based on this data, a researcher comparing composition policies would likely reach similar conclusions
using either professionals or a combination of automated approaches. As shown in Figure 4.11, we repeated
this analysis using each of the four automated approaches in isolation. Against every approach, Basic
passwords are easily guessable, and LongBasic passwords are comparatively vulnerable during early guessing.
After trillions of guesses, Hashcat, PCFG, and JTR find Long Complex passwords more secure than Complex
passwords. In each case, a researcher would come to similar conclusions about the relative strength of these
password sets.

54 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

Basic (Min_auto)

Complex

LongBasic
LongComplex

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 4.9: Pros’ comparative success guessing each password set. For reference, the dotted line represents
the Minauto guess across automated approaches for Basic passwords, which the Pros did not try to guess.

Basic

Complex

LongBasic

LongComplex

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 4.10: The guessability of all four password sets under Minauto, representing the smallest guess number
for each password across all four automated approaches.

Per Individual Password

Analyses of the strength of individual passwords, in contrast, proved very sensitive to the guessing approach.
Although one would expect different approaches to guess passwords at somewhat different times, many
passwords’ guess numbers varied by orders of magnitude across approaches. This state of affairs could cause
a very weak password to be misclassified as very strong.

We examined per-password differences pairwise among JTR, Markov, and PCFG, using the same guess
cutoff for each approach in a pair. Because Hashcat’s early guesses were often unsuccessful, we exclude
it from this analysis. Passwords not guessed by the guess cutoff were assigned a guess number one past
the cutoff, lower-bounding differences between passwords guessed by one approach but not the other. Per
password, we calculated log10 of the ratio between the two guess numbers. For example, iceman1232 was

4.3. RESULTS 55

Basic

Complex

LongBasic
LongComplex

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Hashcat guessability.

Basic

Complex

LongBasic

LongComplex

0%

20%

40%

60%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) JTR guessability.
Basic

Complex

LongBasic

LongComplex

0%

10%

20%

30%

40%

50%

101 103 105 107 109

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) Markov guessability.

Basic

Complex

LongBasic

LongComplex

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(d) PCFG guessability.

Figure 4.11: The relative guessability of the four different password sets under each of the four automated
cracking approaches considered in isolation. The research conclusions would be fairly similar in each case.

guess 595,300,840 for JTR and 61,554,045 for Markov, a 0.985 order of magnitude difference.
Among passwords guessed by JTR, PCFG, or both, 51% of passwords had guess numbers differing by

more than an order of magnitude between approaches, indicating large variations in the resulting security
conclusions. Alarmingly, some passwords had guess numbers differing by over 12 orders of magnitude
(Figure 4.12). For example, P@ssw0rd! took JTR only 801 Complex guesses, yet PCFG never guessed it in
our tests. Similarly, 1q2w3e4r5t6y7u8i was the 29th LongBasic JTR guess, yet it was not among the 1014 such
guesses PCFG made. In contrast, PCFG guessed Abc@1993 after 48,670 guesses and 12345678password
after 130,555 guesses. JTR never guessed either password.

We found similar results in the two other pairwise comparisons. Among passwords guessed by Markov,
PCFG, or both, 41% of guess numbers differed by at least one order of magnitude. In an extreme example,
the passwords 1qaz!QAZ and 1q2w3e4r5t6y7u8i were among the first few hundred Markov guesses, yet not
guessed by PCFG’s guess cutoff. Conversely, unitedstatesofamerica was among PCFG’s first few dozen
LongBasic guesses, yet never guessed by Markov. For 37% of passwords, JTR and Markov guess numbers
differed by at least one order of magnitude. Markov was particularly strong at guessing long passwords with

56 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

Figure 4.12: The % (log scale) of passwords guessed by JTR or PCFG whose guess numbers differed by a
given order of magnitude. e.g., the blue > 6 bar represents passwords guessed by JTR more than 6, but no
more than 7, orders of magnitude more quickly than by PCFG.

predictable patterns. For instance, password123456789, 1234567890123456, and qwertyuiopasdfgh were
among Markov’s first thirty guesses, yet JTR did not guess any of them by its cutoff.

Actionable takeaways As researchers and system administrators ask questions about password strength,
they must consider whether their choice of cracking approach biases the results. When evaluating the
strength of a large, heterogeneous password set, any of Hashcat, JTR, Markov, or PCFG—if configured
effectively—provide fairly similar answers to research questions. Nonetheless, we recommend the more
conservative strategy of calculating guessability using Minauto.

In contrast, guessability results per-password can differ by many orders of magnitude between approaches
even using the same training data. To mitigate these differences, we again recommend Minauto for the
increasingly important task of providing precise feedback on password strength to users.

4.4 Supplementary Experimental Results

We provide additional measurements of how guessing approaches perform in different configurations. To
support the ecological validity of our study, we also repeat analyses from Section 4.3 on password sets
leaked from RockYou and Yahoo. We provide these details in hopes of encouraging greater accuracy and
reproducibility across measurements of password guessability.

4.4. SUPPLEMENTARY EXPERIMENTAL RESULTS 57

PCFG

PCFG−2009

PCFG−CV

PCFG−noCV

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Basic

PCFG

PCFG−2009

PCFG−CV

PCFG−noCV

0%

10%

20%

30%

101 103 105 107 109 1011

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) Complex

PCFG

PCFG−2009

PCFG−CV

PCFG−noCV

0%

5%

10%

15%

20%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) LongBasic

PCFG

PCFG−2009

PCFG−CV

PCFG−noCV

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(d) LongComplex

Figure 4.13: The guessing accuracy of the different PCFG configurations we tested.

4.4.1 Alternate PCFG Configurations

We tested four different PCFG configurations. As in Section 4.3, PCFG represents Komanduri’s imple-
mentation of PCFG [106], which assigns letter strings probabilities based on their frequency in the training
data and assigns unseen strings a non-zero probability. For consistency across approaches, we prepend all
policy-compliant elements of the training data in lieu of enabling Komanduri’s similar hybrid structures [106].

PCFG−noCV is the same as PCFG, but without the training data prepended. PCFG−CV is equivalent
to PCFG−noCV except for using two-fold cross-validation. In each fold, we used half of the test passwords
as additional training data, with a total weighting equal to the generic training data, as recommended by
Kelley et al. [104]. PCFG−2009 is our approximation of the original 2009 Weir et al. algorithm [197] in
which alphabetic strings are assigned uniform probability and unseen terminals are a probability of zero.

As shown in Figure 4.13, prepending the training data and performing cross-validation both usually result
in more efficient guessing, particularly for Long and LongBasic passwords. All three other configurations
outperform the original PCFG−2009 implementation.

58 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

4.4.2 Alternate JTR Configurations

We next separately analyze the sets of JTR mangling rules we combined in Section 4.3. JTR stock represents
the 23 default rules that come with JTR. JTR SpiderLabs represents 5,146 rules published by KoreLogic
during the 2010 DEF CON “Crack Me If You Can” password-cracking contest [110], later reordered for
guessing accuracy by Trustwave Spiderlabs [179].

As detailed in Section 4.2.3, our standard JTR configuration used JTR stock followed by JTR SpiderLabs.
In isolation (Figure 4.14), JTR stock rules were far more efficient guess-by-guess than JTR SpiderLabs.
Unfortunately, however, they quickly ran out of guesses. We exhausted JTR stock in making fewer than
109 guesses for Basic passwords. More crucially, we made fewer than 105 guesses that were valid Complex
passwords before exhausting these rules. Thus, any analysis of passwords that uses only the stock rules
will vastly underestimate the guessability of passwords that contain (or are required to have) many different
character classes.

The sharp jumps in the proportion of Complex and LongComplex passwords guessed by JTR SpiderLabs
result from one group of 13 rules. These rules capitalize the first letter, append digits, append special
characters, and append both digits and special characters.

JTR−SpiderLabs

JTR−Stock

0%

10%

20%

30%

40%

101 103 105 107 109 1011

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Basic

JTR−SpiderLabs

JTR−Stock
0%

10%

20%

30%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) Complex

JTR−SpiderLabs

JTR−Stock

0%

2%

4%

6%

8%

101 103 105 107 109

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) LongBasic

JTR−SpiderLabs

JTR−Stock

0%

5%

10%

15%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(d) LongComplex

Figure 4.14: The guessing accuracy of JTR rules.

4.4. SUPPLEMENTARY EXPERIMENTAL RESULTS 59

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big
HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

25%

50%

75%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Basic

HC−Best64
HC−Best64−big

HC−Generated2

HC−Generated2−big
HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

30%

40%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) Complex

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big

HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) LongBasic

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big

HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

(d) LongComplex

Figure 4.15: The guessing accuracy of Hashcat using four different sets of mangling rules. We tested each set
with the wordlist used elsewhere in our analyses, as well as a larger (-big) wordlist.

4.4.3 Alternate Hashcat Configurations

We tested eight Hashcat configurations and chose the one that best combined efficient early guessing with
successfully continuing to guess passwords into the trillions of guesses. These configurations consist of four
different sets of mangling rules, each with two different wordlists. The smaller wordlist was the same one we
used in all other tests (Section 4.2.2). The larger wordlist augmented the same wordlist with all InsidePro
wordlists1 in descending frequency order and with duplicates removed.

Our four sets of mangling rules are the following:
Hashcat best64: Although Hashcat does not have a default set of mangling rules, the Best64 mangling rules
are often used analogously to JTR’s stock rules.
Hashcat generated2: Hashcat comes with a second set of mangling rules, “generated2.” This set comprises
65,536 rules. Dustin Heywood of ATB Financial created them by randomly generating and then testing
hundreds of millions of mangling rules over 6 months (2013-2014) on a 42-GPU cluster. The rules were
optimized by Hashcat developers by removing semantic equivalents.
Hashcat SpiderLabs: We performed a manual translation to Hashcat of the SpiderLabs JTR rules (Sec-

1http://www.insidepro.com/dictionaries.php

http://www.insidepro.com/dictionaries.php

60 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

tion 5.3), which entailed removing clauses mandating minimum criteria; such rules are not permitted in
oclHashcat.
Hashcat MWR: We collaborated with with Matt Marx of MWR InfoSecurity to obtain the set of 1.4 million
mangling rules he uses for password auditing [81, 134]. Following his suggestion, we augmented these rules
with the aforementioned SpiderLabs rules.

Using the smaller wordlist, we exhausted all four sets of mangling rules. With the larger wordlist, we did
not exhaust any set of rules. The curves in Figure 4.15 that use this larger dictionary have -big appended to
the name and are graphed with dotted, rather than solid, lines.

We present the results of these eight configurations in Figure 4.15. True to their name, the Hashcat best64
rules were the most efficient at guessing passwords. Unfortunately, they ran out of guesses using the smaller
wordlist after only 109 guesses. For Complex and LongComplex passwords, Hashcat best64 therefore
guesses only a fraction of the number possible using the other sets of mangling rules, albeit in far fewer
guesses. While not the most efficient guess-by-guess, the Hashcat MWR rules eventually guessed the largest
proportion of the different sets, most notably the Complex and LongComplex sets.

4.4.4 Ecological Validity

To better understand how well our password sets, collected for research studies, compare to real plaintext
passwords from major password leaks, we compared the accuracy of the four automated cracking approaches
in guessing Basic passwords and the following two comparable sets of leaked passwords:
Basicrockyou: 15,000 passwords randomly sampled from those containing 8+ characters in the RockYou
gaming website leak of more than 32 million passwords [187]
Basicyahoo: 15,000 passwords randomly sampled from those containing 8+ characters in the Yahoo! Voices
leak of more than 450,000 passwords [77]

We found a high degree of similarity in the guessability of the Basic passwords collected for research and
the leaked passwords. As shown in Figure 4.16, the four automated cracking approaches followed similar
curves across the research passwords and the leaked passwords.

This similar guessability is notable because our analyses depend on using passwords collected by
researchers for two reasons. First, no major password leak has contained passwords contained under strict
composition requirements. Furthermore, in contracting experienced humans to attack the passwords, it was
important to have them attack passwords they had not previously examined or tried to guess. Presumably,
these experienced analysts would already have examined all major password leaks.

In Section 4.3, we reported how different approaches were impacted differently by the number of
character classes contained in Basic passwords. When we repeated this analysis for Basicrockyou and Basicyahoo
passwords, we found similar behavior (Figure 4.17). PCFG was more successful at guessing passwords
containing two character classes, as opposed to only a single character class. PCFG only guesses strings that
were found verbatim in its training data, which we hypothesize might be the cause of comparatively poor
behavior for passwords of a single character class.

4.5 Conclusion

We report on the first broad, scientific investigation of the vulnerability of different types of passwords to
guessing by an expert attacker and numerous configurations of off-the-shelf, automated approaches frequently

4.5. CONCLUSION 61

Hashcat

JTR

Markov

Min_auto
PCFG

0%

20%

40%

60%

80%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) Basic

Hashcat

JTR

Markov

Min_auto
PCFG

0%

25%

50%

75%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) Basicrockyou

Hashcat

JTR

Markov

Min_auto
PCFG

0%

25%

50%

75%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(c) Basicyahoo

Figure 4.16: The four automated cracking approaches targeting the Basic password set, 15,000 passwords
sampled from the RockYou leak, and 15,000 passwords sampled from the Yahoo leak.

1 class 2 classes 3 classes 4 classes
0

10
20
30
40
50
60
70
80
90

100
Hashcat
PCFG
JTR
Markov

P
er

ce
nt

ag
e

of
 P

as
sw

or
ds

 G
ue

ss
ed

Figure 4.17: Combined percentage of Basicrockyou and Basicyahoo passwords each approach guessed by the
number of character classes in the password.

62 CHAPTER 4. UNDERSTANDING BIASES IN MODELING PASSWORD CRACKING

used by researchers. We instrument these approaches, including both adversarial tools and academic research
prototypes, to enable precise, guess-by-guess comparisons among automated approaches and between them
and the expert.

We find that running a single guessing algorithm, particularly in its out-of-the-box configuration, often
yields a very poor estimate of password strength. However, using several such algorithms, well-configured
and in parallel, can be a good proxy for passwords’ vulnerability to an expert attacker. We also find that
while coarse-grained research results targeting heterogeneous sets of passwords are somewhat robust to the
choice of (well-configured) guessing algorithm, many other analyses are not. For example, investigations of
the effect on password strength of password characteristics, such as the number of character classes and the
use of character substitutions, can reach different conclusions depending on the algorithm underlying the
strength metric.

We hope our investigation of the effectiveness of many configurations of popular guessing approaches
will help facilitate more accurate and easily reproducible research in the passwords research community.
To that end, we have created a Password Guessability Service (PGS) [37] that enables researchers to
submit plaintext passwords and receive guessability analyses like those we have presented. At the time of
writing, other researchers have already used PGS to validate a scale for security behavior intentions [64]
and evaluate a password-strength meter using advanced heuristics [199], among others. We particularly
encourage researchers investigating password-cracking algorithms to contribute to this service to improve the
comparability of experiments.

The more accurate techniques for modeling passwords we developed in this chapter enabled our subse-
quent experiments, most directly those comparing users’ perceptions of password security to the reality of
password-guessing attacks [181] (Chapter 6) and comparing password-composition policies [156]. They have
also enabled our experiments developing better client-side estimations of password strength using neural
networks [130] and our evaluation of our improved password-strength meter with data-driven feedback,
which we detail in Chapter 7.

Chapter 5

The Art of Password Creation: Semantics
and Strategies

5.1 Introduction

To improve proactive password checking and the advice given to users about password creation, such as in the
data-driven password-strength meter I present in Chapter 7, an important precursor is a deep understanding
of how precisely users structure passwords. By understanding what patterns, structures, and strategies are
common, researchers can guide users away from common, predictable approaches and towards more secure
choices. In this chapter, I therefore delve into users’ password-creation strategies, as well as the structure and
semantics of passwords.

Many characteristics of user-chosen passwords are widely known. For instance, it is common knowledge
that passwords often contain dictionary words or names [56, 93], and that digits often appear at the end [108,
189]. Lists of common passwords circulate after every breach. However, far less is known about passwords’
deeper structural and semantic properties that can make the difference between a password that is easy to
guess and one that is not. These properties include how users combine and transform words while creating
passwords, what semantic sources provide inspiration, and how users behave during password creation.

Our investigation is enabled by a novel combination of crowdsourcing and programmatic techniques to
reverse engineer more than 45,000 passwords into a representation illuminating their structure and semantics.
To reveal otherwise obscured password elements, crowdworkers reverse engineered each password into
semantic “chunks” and undid character substitutions. For example, the password ˜Cowscomehom3 became
till the cows come home; the crowdworkers realized the tilde stood for “till the.” To understand how patterns
we discovered corresponded to attackers’ ability to guess passwords, we also modeled each password’s
vulnerability to two major password-guessing approaches.

Building on this preprocessing phase, we offer three main contributions that collectively provide new
insights into users’ habits and reveale subtle, yet common, patterns that should be discouraged.

Blase Ur, Saranga Komanduri, Lujo Bauer, Lorrie Faith Cranor, Nicolas Christin, Adam L. Durity, Phillip (Seyoung) Huh, Stephanos
Matsumoto, Michelle L. Mazurek, Sean M. Segreti, Richard Shay, Timothy Vidas. The Art of Password Creation: Semantics,
Strategies, and Strategies. Unpublished. Excerpts from this work were previously published as Blase Ur, Saranga Komanduri,
Richard Shay, Stephanos Matsumoto, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Patrick Gage Kelley, Michelle L. Mazurek,
Timothy Vidas. Poster: The Art of Password Creation. In Proc. IEEE Symposium on Security and Privacy Poster Session, 2013.

63

64 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

First, we provide a large-scale quantification of the use of character substitutions in passwords. Between
5% and 18% of passwords, depending on the source, contain substitutions, and the top twenty mappings
account for more than 77% of all substitutions. This ground-truth data can enable proactive password
checking to account for substitutions.

Second, we report on password semantics, identifying choices that users should avoid. We compare
frequencies of words across different password sets and natural language. For example, we find that up to
5% of words used in passwords are contained in a 247-word list of pet names and many others appear in
small dictionaries. In addition, roughly half of the passwords we examined that contained any content from
a dictionary contained a common multi-word phrase. We use Wikipedia’s categorization system to further
analyze semantics, discovering previously unreported patterns.

Finally, we delve into the individual steps of password creation. We analyze sequences of attempts to
comply with a password-composition policy to understand how users modify passwords across attempts.
Unexpectedly, forcing users to comply with strict policies sometimes reduces security; over 20% of users who
generated a completely new password after their original attempt was rejected made a less secure password.
In contrast, certain types of small modifications nearly always made a password harder to guess. We also
examine the impact of suggestions (e.g., “Add a digit”) during password creation, finding that users do follow
these suggestions.

Drawing on these analyses, we discuss directions for improved guidance during password creation and
improvements for proactive password-checking mechanisms.

5.2 Datasets

We first introduce the datasets we analyzed. To obtain the benefits of both real-world and (richer) experimental
data, we examined in parallel data leaked from real websites and data collected by researchers for experiments.

We used two publicly available sets of leaked passwords: more than 32 million passwords from the
RockYou gaming website [187] and more than 450,000 passwords from Yahoo! Voices [77]. These passwords
appear to have been created under minimal or no password-composition requirements. To analyze some of
these passwords while using the bulk of these passwords as training data, we created two subsets:

• RockYou8: 15,000 passwords randomly selected from those containing 8+ characters in the RockYou
leak [187]

• Yahoo8: 15,000 passwords randomly selected from those containing 8+ characters in the Yahoo!
Voices leak [77]

Compared to passwords created for studies, these sets are much larger and protected real accounts. These
sets do not, however, include data about the password-creation process.

Using leaked passwords for research raises important ethical concerns. We consider our use justifiable
for several reasons. The datasets are publicly available, so that our analysis causes no additional harm.
Further, because attackers are likely to use leaked passwords maliciously, it is important to use this data when
considering how to strengthen passwords.

We also analyze passwords we collected on Amazon’s Mechnical Turk (MTurk) for previous studies of
password-composition policies [104], password-strength meters [182], and long passwords [157]. Those
previously published papers detail the methodology and participant demographics of each study; we do not

5.3. METHODOLOGY 65

duplicate that information. While these datasets are not as large as leaked sets, their varied composition
policies and detailed data on the password-creation process enable many analyses. Although passwords
collected for research studies are not perfect proxies for real data, two recent studies [67, 126] have found
they are an effective facsimile when real passwords under those policies cannot be obtained.

We used experimental data collected in nine conditions varying either in composition policy or use of a
meter. Passwords in all sets were required to be at least eight characters long.

Three conditions specified only a minimum length:

• basic8: Passwords contain 8 or more characters
• basic16: Passwords contain 16 or more characters
• basic20: Passwords contain 20 or more characters

Three additional conditions had special characteristics:

• blacklist: Passwords cannot be in a set of 5×109 passwords generated using the PCFG algorithm [197]
• meterStandard: A visual password meter encouraged longer passwords or additional character classes.

Participants were given suggestions like “Consider adding a digit...”
• meterStringent: Similar to meterStandard, except the password meter fills only one-half or one-third

as quickly in order to encourage longer, more complex passwords

The final three conditions required that passwords contain some number of different character classes.
Uppercase letters, lowercase letters, digits, and symbols each form a class.

• 3class12: Passwords contain 12 or more characters, including characters from 3+ character classes
• 3class16: Passwords contain 16 or more characters, including characters from 3+ character classes
• comp8: Passwords contain 8 or more characters, include all 4 character classes, and are not in the free

Openwall dictionary1 after removing non-alphabetic characters

5.3 Methodology

We first describe our novel method for transforming passwords into a representation that illuminates structures
and semantics. We then highlight natural-language data we used to analyze password semantics. Finally, we
discuss how we studied password creation and measured password security.

5.3.1 Reverse Engineering Passwords

Humans derive passwords from semantically significant content [56, 93, 124, 188]. These semantics are easy
to study when they appear directly and in isolation in a password (e.g., monkey23). In other cases, this content
is transformed and spaces are removed, burying the semantics inside a password (e.g., d0llf1n4911 is likely
derived from dolphin, while Charlie&the1 might refer to “Charlie and the Chocolate Factory”).

To investigate password structures and semantics, one must reverse these transformations and separate
semantically significant chunks of a password. It is tempting to perform this analysis algorithmically. For
example, Jakobsson and Dhiman used heuristics to automatically search for leetspeak, misspellings, and

1http://download.openwall.net/pub/wordlists/

http://download.openwall.net/pub/wordlists/

66 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

concatenation of dictionary words in passwords [102], while Veras et al. crafted specialized dictionaries to
guess passwords with semantic structures [188].

We found that automated approaches run into many subtle, yet significant, barriers. User-created
passwords draw from variegated sources encapsulating large amounts of context, and the many possible
substitutions introduce ambiguity. For example, @ takes on different meaning in L@xicondevil1 (“e”),
cashCow@3137 (“@”), Sex@thebeach69 (“at” or “on”), and Rect1fy$S@nct1ty) (“a”). Similarly, “4” has
very different functions in 4screamingpancakes (“four”), 4Everblessed (“for”), and 4qrdg@G9Q (itself).
Any heuristic, dictionary, or mapping of substitutions broad enough to capture human behavior introduces
many false positives that human intuition would reject, such as incorrectly discovering “Glest” (the name of a
game) in the seemingly random Gl34TG$̂.

To enable the analyses we report, as well as to gather ground-truth data for future improvements to
automated password analysis, we crowdsourced the reverse engineering of passwords. Maintaining the
advantage of human intuition in a scalable way, we had MTurk crowdworkers undo any substitutions and
manually separate each password into its semantic parts. Reverse engineering passwords is a tricky task, even
for humans, so we adopted best practices from Ipeirotis et al. [100] to bolster quality. This approach uses a
“gold standard” subset of answers and an expectation-minimization (EM) algorithm for worker scoring that
weights answers based on how well they match either the gold standard or other workers.

Each password in our dataset that contained any letters was first reverse engineered by three MTurk
workers, who were given extensive instructions with examples. We asked workers to convert digits and
symbols to letters where applicable, correct misspellings, combine word pieces that might be split (e.g.,
“sch46ool”→ “school”), and separate distinct words or patterns with spaces. We asked workers not to modify
any string that appeared random (e.g., “lonkiey”). We required workers to pass a qualification test in which
they reverse engineered four passwords with known answers. Independently, an “expert” team of a security
researcher and a researcher with a linguistics background reverse engineered 5% of the passwords to produce
the gold standard. Workers were scored using the EM algorithm and the gold-standard answers [100]. We
repeated this process until every answer was agreed on by either the experts or at least two workers with
90%+ scores.

Our crowdworkers successfully reversed many subtle transformations that would have been difficult to
detect automatically. As mentioned earlier, they realized the semantic equivalence of tilde and “till the” in
recording ˜Cowscomehom3 as “till the cows come home.” Similarly, they identified primo4sho as “primo for
sure” and 2sweet2b4gotten86 “too sweet to be forgotten 86.” Workers frequently noticed semantic meaning
in non-letters. For example, they used knowledge of drug slang to turn bernie44weed4420 into “bernie 44
weed for 420” and knowledge of movies to delimit jamesbond0071986 as “james bond 007 1986.”

5.3.2 Semantic Analyses

We used three sources of natural-language data to analyze the semantics of the reverse-engineered passwords,
illuminating semantic properties of passwords far more comprehensively than previous semantic analyses [56,
124, 145, 146, 188, 207].

Dictionaries and wordlists were our first source of semantic data. Based on prior work [56, 124, 188]
and our own observations, we constructed the following wordlists: pet names,2 the most populous cities and

2http://www.babynames.com/Names/Pets/

http://www.babynames.com/Names/Pets/

5.3. METHODOLOGY 67

countries according to Wikipedia, US surnames,3 and popular US first names (1960-2000).4 We also used
dictionaries from the Corpus of Contemporary English,5 the Unix dictionary, and the Urban Dictionary.6

To systematically investigate the degree to which common phrases appear in passwords, we collected
and constructed frequency-orderd tables of n-grams as our second source of semantic data. In this context,
an n-gram is a phrase containing n words. For example, the 3-gram “rock on Chicago” appeared in one
password we analyzed.

We used one large, publicly available n-gram corpus:
Google: 1-grams through 5-grams from over 1 trillion words of English text indexed by Google in 2006 [83].

Given the age and breadth of the Google corpus, we also built 1-gram through 7-gram tables from the
following five sources that appeared commonly in the results of automated Google queries for phrases in
reverse-engineered passwords:
Books: The text of the over 30,000 English-language books available on Project Gutenberg.
IMDB: All movie and TV quotes on IMDB.com.
Lyrics: Lyrics to all 469,000 songs on SongLyrics.com.
Twitter: 50,000,000 tweets collected in May 2011 [117].
Wikipedia: All English-language text on Wikipedia.

We chose our third source of semantic data, the categorization system on Wikipedia, to gain further
insight into the semantic sources that users commonly integrate into passwords. Wikipedia articles can
optionally be tagged with categories; for example, “captain planet” is tagged with “Environmental television”
and “Superheroes by animated series,” among others. We made automated Wikipedia queries for the longest
phrase from each reverse-engineered password for which we could find a Wikipedia entry and recorded the
categories returned. Because categories are non-hierarchical and often redundant, we manually examined the
14,000 categories most frequently contained in passwords and iteratively merged similar categories.

5.3.3 The Process of Password Creation

The nine sets of passwords collected for research included detailed data about password creation, illuminating
the process of password creation. No leaked password set contains this sort of metadata, forcing us to restrict
these analyses to passwords collected for research. The first creation analysis we report examines how users
modify a password to comply with a password-composition policy. We considered only participants who at
least once submitted a password that did not meet the requirements of the specified policy before eventually
submitting a compliant password. We counted consecutive attempts to submit the same password as a single
attempt. This analysis focused on the six sets in which an 8+ character password might not comply: blacklist,
comp8, 3class12, basic16, 3class16, and basic20.

Our second creation analysis used keystroke data during password creation to gauge the impact of specific
suggestions. Such suggestions were provided only in the meterStandard and meterStringent sets. Based
on our hypothesis that participants might only be receptive to suggestions when they were unsure how to
proceed, we divided keystrokes into those that followed a pause in creation and those that did not. To identify
pauses, we calculated the inter-keystroke time for sequential keystrokes and used k-means clustering to split

3http://names.mongabay.com/
4http://www.ssa.gov/oact/babynames/
5http://corpus.byu.edu/coca/
6http://www.urbandictionary.com

IMDB.com
SongLyrics.com
http://names.mongabay.com/
http://www.ssa.gov/oact/babynames/
http://corpus.byu.edu/coca/
http://www.urbandictionary.com

68 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

the times into two groups. If those two groups were separated by at least the median inter-keystroke time, we
labeled keystrokes in the latter group as those following pauses.

5.3.4 Security Analysis

To quantify password security, we simulated two popular approaches to password cracking. We calculated
each password’s guess number, or the number of guesses that algorithm trained in that specific way would
require to guess that password. This approach quantifies the strength of individual passwords under conditions
modeling adversarial cracking, rather than theoretical attacks [104]. For each approach, we simulate trillions
of guesses. We only count guesses compliant with a set’s composition policy.

The first of the two approaches we simulated, John the Ripper (“JtR”),7 is representative of tools widely
used by adversarial crackers [78]. We simulate JtR using the john-1.7.9-jumbo-7 “wordlist” mode, which
generates guesses based on a user-provided dictionary and mangling rules, or transformations to apply
to dictionary entries. We used mangling rules released for the 2010 DEFCON Crack Me If You Can
password-cracking contest and reordered by SpiderLabs for efficiency.8

The second approach, a probabilistic context-free grammar (PCFG) developed by Weir et al. [197], has
been commonly used in academic studies [104, 126]. This approach uses existing passwords to model the
structure and contents of passwords. We calculate PCFG guessability using Kelley et al.’s modification of
Weir et al.’s approach [104]. We conduct two-fold cross validation to match a target password’s policy more
closely than using only leaked passwords.

We used identical training data for both approaches. These data included large sets of real passwords
leaked from MySpace, RockYou, and Yahoo! (excluding those removed for testing), as well as all words
contained in the Google web corpus [83] and a 250,000 word inflection9 dictionary.

5.4 Results

We analyzed many aspects of how users choose, structure, transform, and modify passwords. We focus on
analyses that provide insight into predictable behaviors that should be discouraged, with the goal of both
informing the advice given to users and improving proactive password checking.

After briefly describing general charactersitics about the passwords we studied, we detail how users
substitute characters in passwords. We then analyze how users structure passwords and the semantic sources
from which users draw inspiration in crafting passwords. Finally, we delve into the steps of password creation
to understand how users modify passwords to comply with password-composition policies and whether they
take suggestions during password creation.

5.4.1 General Password Characteristics

To provide a baseline understanding of our data, Table 5.1 shows traditional analyses on password length
and character class usage. Echoing prior work [32, 56, 191, 207], passwords often started with capital
letters and ended with digits. For example, in comp8, which required all four character classes (uppercase

7http://www.openwall.com/john/
8https://github.com/SpiderLabs/KoreLogic-Rules
9http://wordlist.sourceforge.net

http://www.openwall.com/john/
https://github.com/SpiderLabs/KoreLogic-Rules
http://wordlist.sourceforge.net

5.4. RESULTS 69

Table 5.1: Password length and character class usage by set. Passwords frequently began with an uppercase
letter (“UC First”) and ended with a digit (“Digit Last”).

Length % of Passwords

Set # Mean σ Med
UC
First

Digit
Last

All
Digit

basic8 3,063 9.6 2.2 9 14 54 8
RockYou8 15,000 9.8 2.2 9 8 58 15

Yahoo8 15,000 9.4 1.5 9 9 59 3
blacklist 1,158 9.9 2.2 9 11 45 6

meterStandard 1,398 11.5 3.5 11 28 56 4
meterStringent 569 14.6 7.2 12 34 51 4

comp8 4,246 10.6 2.5 10 76 36 –
3class12 993 13.8 2.6 13 74 39 –
basic16 2,058 18.1 3.3 17 16 44 4

3class16 983 18.3 4.0 17 72 36 –
basic20 988 22.9 4.7 21 21 41 4

letter, lowercase letter, digit, symbol), 76% of passwords began with a capital letter. The last character
in comp8 passwords was most commonly a symbol, whereas the penultimate character was usually a
digit. Also matching prior work [108], users often exceeded minimum composition requirements. Between
8% (RockYou8) and 34% (meterStringent) of passwords that did not require multiple character classes
nevertheless began with a capital letter, while 18%–32% of characters per set were digits.

5.4.2 Character Substitutions in Passwords

Password crackers have long hypothesized [102] that humans mangle words and phrases in passwords by
substituting strings of characters in place of others. Many such substitutions are possible (e.g., a→@, at
→@, o→@), which makes automatically identifying them tricky and prone to false positives and false
negatives. We rely on the crowdsourced human intuition that underlies our reverse-engineered passwords to
provide the first quantification of these substitutions, finding that they are both very predictable and perhaps
less common than one might expect given the prevalence of these sorts of mangling in password crackers’
rulesets. Furthermore, this ground-truth data can be leveraged to proactively identify and discourage common
substitutions, which we do in our data-driven meter (Chapter 7).

As shown in Table 5.2, the incidence of substitutions was relatively low. More commonly, passwords
contained digits or symbols alongside words, rather than as a result of applying substitutions. However, the
use of substitutions varied significantly across sets (χ2

10=1132, p<.001), from 4.1% to 18.0%. The three sets
that required multiple character classes (comp8, 3class12, 3class16) most frequently contained substitutions,
suggesting that some users cope with requirements by employing substitutions. Substitutions were correlated
with modest decreases in guessability. PCFG cracked 46% of passwords with substitutions and 62% of
passwords without them, while JTR cracked 41% of passwords with substitutions and 61% of passwords
without them. Substitutions are not a silver bullet for making passwords secure.

70 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

Table 5.2: The percentage of passwords with substitutions and, among those with substitutions, the mean
number of substitutions and distinct mappings from one string to another.

Substitutions Distinct
Set % with Mean # σ Mean # σ

RockYou8 4.1 1.3 0.6 1.2 0.5
Yahoo8 4.9 1.5 0.9 1.3 0.6

basic8 5.1 1.8 1.3 1.4 0.7
meterStandard 8.5 1.8 1.1 1.5 0.8
meterStringent 9.8 2.0 1.3 1.6 1.0

blacklist 7.7 1.8 1.1 1.5 0.8
comp8 15.3 1.7 1.0 1.5 0.8

basic16 5.3 2.4 1.8 1.8 1.2
basic20 6.2 2.8 2.2 1.8 1.2

3class12 14.8 1.9 1.3 1.6 0.8
3class16 18.0 1.8 1.4 1.4 0.8

Table 5.3: The 20 most frequent substitution mappings. These 20 most frequent mappings account for 77%
of all character substitutions we observed.

Mapping % of total Mapping % of total

o→ 0 16.2 to→ 2 1.7
e→ 3 12.4 l→ 1 1.7

a→@ 7.8 i→ ! 1.5
i→ 1 7.6 too→ 2 1.4

for→ 4 6.8 one→ 1 1.2
s→ $ 3.9 c→ k 1.2
a→ 4 3.1 er→ a 1.0
o→ u 2.8 and→ & 0.9
s→ z 2.5 i→ y 0.8
s→ 5 2.0 for you→ 4u 0.7

We also quantified each mapping of one string of characters to another. For example, we define pa$$word
to contain two substitutions, both using the single mapping “s → $.” While we observed 534 distinct
mappings across sets, the top five account for over half of all substitutions used. Furthermore, the 20 most
common mappings (Table 5.3) capture 77% of all substitutions. Table 5.2 includes the mean number of
substitutions and distinct mappings per password.

Absent this sort of ground-truth data on substitutions in passwords, a major difficulty in proactively
identifying substitutions when users create passwords is the very large number of potential transformations,
as well as uncertainty about what substitutions real users actually make. Armed with our data, proactive
password checkers can try just the twenty most common substitution mappings to identify and discourage
this predictable behavior.

5.4. RESULTS 71

5.4.3 Passwords Semantics

Users base passwords on semantically significant content to make them memorable [108, 136, 191], yet this
semantic significance makes passwords more predictable [188, 197]. We report on four types of semantic
analyses, and discuss directions for discouraging the use of common semantic categories.

Word Usage Across Sets

We first examined the degree to which the lexicon of words that were used in each password sets resembles
other password sets, as well as English. The knowledge gained from this analysis is important because many
password analyses use information from one source to model passwords from another source for both helping
users avoid passwords and for cracking passwords. We found the lexicon to be relatively similar across
password sets, yet always far from English.

We used the square root of the Jensen–Shannon Divergence (JSD) pairwise across sets for all alphabetic
chunks (those containing only letters). JSD measurements range from 0 to 1; smaller values indicate greater
similarity. Password sets were relatively similar to each other, with pairwise JSD values from 0.24 to 0.48.
Password sets collected for research were particularly similar to each other and to our baseline, which was
the pairwise JSD for random samples of 3,000 RockYou8 passwords. Although RockYou8 and Yahoo8, the
two leaked datasets, were relatively similar to each other (JSD of 0.33), we found the alphabetic chunks from
Yahoo8 to more closely resemble the experimental sets than the chunks from RockYou8 did. None of the
password conditions had distributions particularly similar to the Corpus of Contemporary American English,
with JSD ranging from 0.70 to 0.75.

We also examined which words contributed most to the divergence between sets. Words that appeared
disproportionately in a set tended to be related to the source of passwords. For example, Yahoo8 passwords,
leaked from Yahoo! Voices (originally named Associated Content), disproportionately contained the chunks
“associated,” “content,” and “writer.” Experimental passwords made by MTurk users who made a simulated
email password disproportionately contained “amazon,” “mechanical,” and “mail.”

Dictionary Words in Passwords

Next, we investigated the degree to which different wordlists, collectively termed dictionaries, captured
the words contained in our reverse-engineered passwords. Based on our own manual analyses and prior
work [29, 32, 114, 127, 188, 191], we collected and constructed specialized dictionaries that we hypothesized
would represent common words. For each set, we analyzed alphabetic chunks of three or more characters,
excluding keyboard patterns for dictionary membership.

Overall, we found that users’ choice of the words in passwords was quite poor. Across all sets, less
than 0.5% of chunks did not appear in any dictionary, and even small dictionaries of pet names and places
(countries, cities, and states) contained many of the words used in passwords. As shown in Table 5.4, up
to 5% of alphabetic chunks per set were contained in a 247-entry list of common pet names. As in prior
work [114, 127, 188], locations and first names were common. More general dictionaries of English words
(the Unix dictionary), slang (the Urban dictionary), and all words written on the English Wikipedia contained
up to 95% of the chunks.

72 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

Table 5.4: The percentage of alphabetic chunks in dictionaries of pet names, places and locations, first names,
the Unix dictionary, the Urban dictionary (slang), and Wikipedia.

Pets Places Names Unix Slang Wikipedia
Size 247 12,691 42,103 72,843 816,186 8,576,716

basic8 3.5 16.6 31.1 51.5 78.3 89.3
RockYou8 1.9 12.1 27.6 37.3 66.4 79.5

Yahoo8 2.0 13.0 26.1 45.6 71.2 81.1
blacklist 3.3 14.3 29.2 41.6 67.4 76.6

meterStandard 3.4 16.6 30.8 53.8 79.4 90.8
meterStringent 2.8 19.3 29.1 55.5 79.4 90.7

comprehensive8 2.6 11.7 23.3 38.4 65.2 78.8
3class12 5.1 23.8 31.8 72.1 88.7 92.9
basic16 3.3 20.8 32.6 60.4 80.8 88.9

3class16 4.6 23.1 32.7 73.1 90.7 95.1
basic20 4.8 25.7 31.5 77.1 90.8 95.0

Conceptual Categorization

To delve further into the semantic concepts used in passwords, we leveraged Wikipedia’s categorization
system, which tags articles with categories like “food/beverage,” “history,” and “religion.” We searched for
the Wikipedia article containing the longest sequence of alphabetic chunks from each password. As a result,
we categorized both multi-word phrases and individual words. As described in the methodology, we counted
distinct tags from each article separately, yet manually merged redundant categories.

A handful of concepts predominated. Echoing prior work [56, 114, 127, 188], locations and names were
the top categories (Table 5.5). Our list, however, identified many concepts that have not been reported widely,
including food/beverage, band names, companies/products, and nature. We hypothesize that the thread
that binds many of these categories is that they are things users like or things that are near the user during
password creation. These concepts should be discouraged. We performed this analysis both with and without
removing duplicate words and phrases, finding similar results.

Multi-Word Phrases

While the inclusion of multiple words in a password can make them harder to guess, the security benefit is
mostly lost if the sequence of words forms a common phrase. Using tables of n-grams (n-word phrases) that
we built, as described in the methodology, we found that many multi-word sequences in passwords do indeed
form common phrases. This practice should be more actively discouraged to improve security.

Of the 45,054 unique reverse-engineered passwords across our 11 sets, 39,211 passwords contained at
least one alphabetic chunk, while 19,662 of these contained two or more alphabetic chunks. Of these 19,662
passwords that contain multiple words, 13,115 passwords (66.7%) matched a phrase in our corpora. These
common phrases can be modeled far more easily than sequences of unrelated words.

Some particularly long passwords contained many words, yet the relationship between these words
was often easily modeled. A total of 36 passwords contained a 7-gram from one of the corpora, including
michaeljacksonisthekingofpop and thisisthesongthatneverends. An additional 64 passwords contained a
6-gram (e.g., Theriseandfallofziggy1@), 161 (0.8%) contained a 5-gram, 595 (3.0%) contained a 4-gram,

5.4. RESULTS 73

Table 5.5: The 15 most common Wikipedia categories after removing duplicate words and phrases.

Category # Randomly selected example

locations 323 deutschland
names 299 madeline
food/beverage 291 root beer
celebrities/bands 288 wes anderson
movies/TV 244 arm slave
fictional characters 190 beavis and butthead
animals/insects 189 dolphins
music 131 freebird
companies/products 129 twinkies
religion 107 deuteronomy
flowers/plants 95 sunflower
sports 86 all-star
pop culture, idioms 85 yo momma
literature 85 frankenstein
historical events/figures 85 rasputin

Table 5.6: Among the 13,115 n-gram matches, the number contained in each corpus and the number contained
only in that corpus. We also show the number of matches each corpus would guess most efficiently, ordering
by frequency.

Corpus Contained (%) Only Match Most Efficient

Google 3,111 (24%) 231 738
IMDB 5,234 (40%) 16 1,581
Lyrics 7,012 (53%) 117 2,888
Books 7,463 (57%) 209 1,059
Twitter 10,300 (79%) 747 3,813
Wikipedia 11,125 (85%) 1,242 3,036

1,949 (9.9%) contained a 3-gram, and 10,381 (52.8%) contained a 2-gram. Most phrases were common;
three-quarters were among the 10% most frequent in their corpus.

Each of the six corpora we investigated contributed insight into the use of phrases in passwords. As
shown in Table 5.6, each corpus reached some n-grams from passwords more quickly than any other corpus
and contained some n-grams that were not in any other corpus. That said, the Twitter, Wikipedia, and Lyrics
corpora were most efficient at finding n-grams, while the 7-year-old corpus was least efficient.

Using the reverse-engineered passwords, we next analyzed how users integrate semantic content, both
individual words and phrases, into the actual passwords. Most users insert the semantic content directly,
without modification. As shown in Table 5.7, two-thirds of passwords with semantic content began with the
semantic content. Furthermore, 3,934 passwords (13.3%) were simply the word or phrase itself, ignoring
capitalization. While neither PCFG nor JTR cracked most of these passwords in our tests, we trained these
algorithms on released passwords, rather than on natural-language corpora.

While most passwords contained the semantic content as a contiguous substring, 4963 passwords (14.3%)

74 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

Table 5.7: How words and phrases appeared in passwords. An “x” indicates unrelated content.

% Cracked

Pattern Instances PCFG JTR

{Word/Phrase}{x} 19,161 23.2% 14.1%
{Word/Phrase} 3,934 16.1% 16.8%
Mangled 3,834 14.7% 6.2%
{x}{Word/Phrase} 3,683 17.8% 7.2%
{x}{Word/Phrase}{x} 2,846 10.5% 3.8%
Phrase with insertions at wordbreaks 1,308 16.1% 1.9%

Table 5.8: The security impact of complying with a password-composition policy, comparing the original
candidate password with the final, compliant password. If neither password was guessed by our cutoff, the
security impact is unknown. We show the mean Levenshtein distance between the original and final password,
as well as the mean of the cumulative distance across all retries.

Retries PCFG Guessability Impact JTR Guessability Impact Edit Distance

Mean Harder Unknown Easier Harder Unknown Easier
Set % # to guess impact to guess to guess impact to guess Final Total

blacklist 43.7 1.9 77.5 2.0 20.5 70.0 21.7 8.3 8.3 14.0
comp8 71.1 2.5 64.7 28.9 6.4 27.6 71.8 0.6 6.6 13.5

3class12 39.3 1.3 52.2 39.8 8.0 15.9 80.3 3.8 6.4 7.5
basic16 43.8 1.3 49.9 43.3 6.8 33.1 59.5 7.3 10.8 12.3

3class16 47.2 1.5 43.4 53.6 3.0 17.5 81.7 0.9 9.8 12.9
basic20 53.9 1.4 48.4 46.2 5.4 27.0 68.3 4.7 14.7 17.5

did not. Of those that did not, 1,308 (26%) inserted content at the breaks between words. For instance,
“josh72quincy” contained digits inserted between “josh” and “quincy.” We coded a random selection of 251
of the 3,834 passwords that contained the n-grams in mangled form. Of the 251, 54% had used the types
of transformation rules discussed earlier. An additional 38% used alternate spellings (e.g., “luv” instead of
“love”), and 4.8% inserted characters into the middle of words.

5.4.4 The Process of Password Creation

To gain insight into the individual choices users make when creating a password, our final analyses delve into
the steps of password creation. We use the knowledge gained from these analyses to pinpoint interventions
that guide users towards more secure decisions. First, we examine how users modify passwords that do not
comply with a password-composition policy, sometimes making a password easier to guess in the process.
Second, we investigate the impact of providing suggestions about what character class to include, finding that
users do take these suggestions during pauses in creation.

5.4. RESULTS 75

Table 5.9: The impact of modifying a non-compliant password to comply with a composition policy.

% of retries
employing strategy PCFG JTR

Strategy # bl
ac

kl
is

t
co

m
p8

3c
la

ss
12

ba
si

c1
6

3c
la

ss
16

ba
si

c2
0 %

Harder
to

guess

%
Easier

to
guess

%
Harder

to
guess

%
Easier

to
guess

Add to end 1,226 18 18 23 21 7 2 47 0 27 1
Change capitalization 1,021 6 5 2 1 12 1 47 9 12 6

Add to middle (inserted) 651 12 10 8 7 5 1 54 5 22 1
One substitution (non-l33t) 573 5 2 2 2 7 3 37 15 9 4

Replace 2nd half of password 412 5 7 6 8 2 2 46 15 22 6
Replace 2nd half & change capitalization 318 2 2 2 2 3 2 53 20 10 5

Capitalize & add to end 309 2 2 1 1 4 0 59 1 45 0
Two substitutions (non-l33t) 193 0 1 1 0 2 1 42 15 11 1

Add to front 183 1 3 5 3 1 1 55 2 30 1
Capitalize & add to middle 145 2 1 1 0 2 – 59 3 30 1

One substitution & change capitalization 138 1 1 0 – 2 – 52 16 21 6
Replace 1st half of password 126 1 1 0 1 1 0 44 21 21 0

Delete from middle 119 1 1 1 1 1 1 17 39 3 13
One substitution & add to end 84 3 2 1 1 1 – 46 8 26 4

Leet substitutions (any amount) 72 0 – – 0 1 1 60 3 19 0
Repeated password 70 1 1 3 3 – – 7 0 49 0

Transposed two adjacent characters 55 – 1 1 0 1 0 22 35 0 9
Capitalize & add to front 48 1 1 0 1 0 0 78 2 25 2

Two substitutions & change capitalization 40 – 0 – 0 1 – 55 18 28 3

Other, dissimilar password 5,538 33 33 40 44 45 73 52 23 20 9
Other, similar password 528 2 3 3 3 4 11 50 22 39 8

Policy-Compliance Strategies

To understand users’ approaches for coping with password-composition policies, we next examined how they
modified their candidate password after failing to comply with a policy. We focused on ease of compliance,
the strategies participants employed, and the security impact of these strategies. We find some strategies lead
to passwords that are often easier to guess, whereas others appear prudent, suggesting new guidance for users
who initially fail to comply with a policy.

Password-composition policies differed in the difficulty users had complying (Table 5.8). While 3class12
proved easiest to comply with, comp8 proved most difficult in both the rate of non-compliance and number
of retries required.

Counter to the goal of password-composition policies, complying with a policy sometimes resulted in
passwords that were easier to guess. We compared the guessability for the first (non-compliant) attempt
and the final (compliant) password. In all sets, more passwords became harder to guess than easier to guess
after complying with the given composition policy, yet 20.5% of blacklist passwords became easier to guess.
Some users whose candidate password did not comply switched to easily guessable passwords containing
only digits to avoid the blacklist’s dictionary check. Some users’ initial and final passwords were both past

76 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

Table 5.10: The percentage of times each character class was added (rows) when a specific action was
suggested (columns) during pauses and non-pauses during password creation.

Suggestion to add:
Character Total Length Symbol Digit Letter

Pause
Symbol 11.6 2.9 22.2 10.4 10.0

Digit 35.7 20.9 40.0 54.8 35.4
Letter 52.7 76.2 37.4 34.7 54.6

Non-pause
Symbol 4.0 2.7 4.3 3.8 4.6

Digit 22.7 12.1 29.7 10.0 30.9
Letter 73.3 85.2 66.0 86.1 64.5

the guessing cutoff. The exact security impact for these users is unknown, although both the initial and final
passwords are hard to guess.

We next focused on users’ modification strategies from attempt to attempt. We measure the prevalence of
several simple strategies we hypothesized would be common: adding characters to the password, deleting
characters, changing the capitalization of one or more letters, or making character substitutions. We also
measured combinations of two strategies. If none of these strategies was observed, we classified the change
as either a small alteration (similar) or a completely new password (dissimilar) using an edit distance at least
two-thirds the length of the former password as the dividing line.

As shown in Table 5.9, participants employed a panoply of strategies, though some strategies were more
secure than others. The two most frequent strategies were appending to the end of the prior candidate and
changing capitalization. Both strategies usually increased security. In contrast, deleting characters from the
middle of a password or transposing adjacent characters more often made passwords easier to guess than
harder to guess. These strategies should be discouraged.

Creating a dissimilar password was among the most common strategies, yet frequently led to weaker
passwords. The rate at which participants created dissimilar passwords varied sharply between sets. Users in
comp8 and blacklist tended toward smaller modifications, while those in basic20 tended toward entirely new
passwords. Unfortunately, 23% of dissimilar modifications made the password easier to guess, suggesting
that helping users improve a password without starting over may be beneficial for security.

Receptiveness to Specific Suggestions

Rather than waiting until the submission of a non-compliant password to give users guidance, one can make
suggestions while a user is creating a password. Our final analysis examines the impact of providing specific
suggestions about character-class usage (e.g., “Consider adding a symbol”) during password creation. We
find that users often follow these suggestions during pauses in password creation.

Users in the meterStandard and meterStringent sets saw such suggestions, but we did not see a correlation
between the suggestion and the user’s action for most keystrokes. However, when the user paused during
password creation, he or she often followed the specific suggestion (Table 5.10). As described in the
methodology, we identified pauses based on the interkeystroke timing; 38% of users in these sets paused at

5.5. DESIGN RECOMMENDATIONS AND CONCLUSIONS 77

least once. Directly following pauses, participants added a symbol or digit to their password at a far higher
rate when given that particular suggestion. This result demonstrates the effectiveness of suggestions during
pauses in password creation.

5.5 Design Recommendations and Conclusions

We have used novel methods to delve into the semantics, structures, and strategies from which users craft
passwords. Leveraging reverse-engineered passwords and rich metadata, we uncovered how users substitute
characters and integrate semantically significant content into passwords, from what semantic sources users
commonly draw inspiration, and the strategies users adopt step-by-step in creating passwords.

Users are asked to create passwords that are both memorable and hard to guess without much information
or context on how to perform this job. Our findings suggest improvements to both the advice given to users
and the algorithmic mechanisms for proactively preventing bad passwords.

Our first design recommendations center on improving the advice given to users. We found that users tend
to make passwords about things they like (e.g., food, celebrities, friends and family, animals) or things that are
on their mind while creating a password, such as words related to the website or objects near them—echoing
an observation made with graphical passwords [88]. These predictable choices should be discouraged.
Furthermore, we uncovered many common phrases in passwords. While users should be lauded for including
more than a single word, they should be guided to choose multiple, unrelated concepts as password building
blocks. In addition, our analysis of user modifications to comply with composition policies suggests that
encouraging small, judicious modifications would be prudent. Absent this advice, many users start from
scratch and frequently end up making the password easier to guess.

We direct our remaining recommendations toward researchers and engineers who design password-
creation infrastructure. Based on our finding that users are receptive to specific suggestions during password
creation, password-creation pages should include suggestions that guide users towards choices that are hard
for an attacker to predict. Komanduri et al. recently introduced a system that displays its guess of what a user
will type next during password creation to discourage the user from continuing along that path [107]. Rather
than highlighting insecure behavior and hoping the user knows how to proceed, we propose directly guiding
users towards a randomly chosen secure behavior. We encourage future investigation of what suggestions
most help users to make secure choices.

Our results also suggest improvements to proactive password-checking mechanisms, which often reject
potentially insecure passwords based on heuristics and lists of banned passwords [182]. We suggest that these
mechanisms use our ground-truth data on character substitutions to attempt to reverse the most common
substitutions to also identify weak passwords in disguise. Further, based on our finding that the individual
words used in passwords and their frequencies are similar across password sets yet quite different than
English, it would be prudent for researchers to establish a “password lexicon,” or frequency-ordered list of
words that commonly appear in passwords. While lists of common passwords are available [77,124,146,187],
a lexicon could aid in identifying component parts of insecure passwords. We imagine this lexicon would be
used alongside lists of common words and phrases to proactively identify predictable components.

The insights from the analyses described in this chapter form the foundation for the advanced heuristic
scoring of the password-strength meter I describe in Chapter 7. In particular, the insights based on how
users perform character substitutions, the source of linguistic content (single words and phrases), and the
predictability of certain password structures are all deeply embedded in our improved meter’s scoring.

78 CHAPTER 5. THE ART OF PASSWORD CREATION: SEMANTICS AND STRATEGIES

Chapter 6

Do Users’ Perceptions of Password Security
Match Reality?

6.1 Introduction

While the predictability of user-chosen passwords has been widely documented [22,94,126,187,188,191,196],
very little research has investigated users’ perceptions of password security. That is, do users realize they are
selecting terrible passwords and choose to do so intentionally, or are they unwittingly creating weak passwords
when they believe they are making secure ones? Understanding the extent to which users’ perceptions of
security differ from actual security enables researchers to focus on correcting security misconceptions, steps
we take in the data-driven password-strength meter I present in Chapter 7.

We conducted a 165-participant study of users’ perceptions of password security. Participants provided
their perceptions about the security and memorability of passwords chosen to exhibit particular characteristics,
as well as common strategies for password creation and management. We compare participants’ perceptions
to the passwords’ actual resilience to a variety of large-scale password-guessing attacks.

In the first of four tasks, we showed participants 25 pairs of passwords differing in specific characteristics
(e.g., appending a digit, as opposed to a letter, to the end of the password). We asked participants to rate which
password was more secure, if any, and to justify their rating in free text. In the second and third tasks, we
showed participants a selection of passwords from the well-studied breach of the website RockYou [187], as
well as descriptions of common password-creation strategies. We asked participants to rate both the security
and the memorability of each password or strategy. In the fourth task, we had participants articulate their
model of password attackers and their expectations for how attackers try to guess passwords.

We observed some serious misconceptions about password security. Many participants overestimated
the benefits of including digits, as opposed to other characters, in a password. Many participants also
underestimated the poor security properties of building a password around common keyboard patterns and
common phrases. In most other cases, however, participants’ perceptions of what characteristics make a
password more secure matched the performance of today’s password-cracking tools. This result calls into
question why users often fail to follow their (correct) understanding when crafting passwords. However,

Previously published as Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor. Do Users’
Perceptions of Password Security Match Reality? In Proc. CHI, 2016.

79

80 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

Figure 6.1: Example password pair comparison testing the hypothesis that substituting a digit for multiple
letters will be perceived as more secure.

most participants displayed an unrealistic mental model of attackers, which may prevent them from fully
accounting for the actual spectrum of threats to their passwords.

Although much has been written about text passwords in recent years, our study is the first to focus
specifically on users’ perceptions of security. The main outcome of our work is to inform design directions
for helping users both make stronger passwords and better understand the implications of the decisions they
make when creating a password.

6.2 Methodology

We conducted an online study to gauge users’ perceptions of password strength and memorability, as well
as their understanding of attacker models. We then compared these perceptions to passwords’ resistance to
current large-scale attacks.

6.2.1 Study Structure

We structured the study in five parts designed to take 30 minutes total. The first part of the study asked
about demographics, including age and gender. Because participants’ perceptions would likely be influenced
by their technical understanding of the password ecosystem, we also asked whether they were a “security
professional or a student studying computer security,” and whether they had a job or degree in a field related
to computer science or technology.

In the second part of the study, which we term password pairs, we investigated 25 hypotheses about how
different password characteristics impact perceptions of security. As shown in Figure 6.1, a participant saw
two similar passwords that varied in a way dictated by the hypothesis. The participant rated the passwords on
a 7-point, labeled scale denoting which password is more secure. In addition, we required a free-response
justification for the rating.

We chose the 25 hypotheses (see Table 6.4 in the results section), to investigate eight broad categories of
password characteristics inspired by prior work [29, 102, 184, 188, 189]: capitalization; the location of digits
and symbols; the strength of letters vs. digits vs. symbols; the choice of words and phrases; the choice of
digits; keyboard patterns; the use of personal information; and character substitutions. As an attention check,

6.2. METHODOLOGY 81

Figure 6.2: An example task for rating the security and memorability in our selected-password analysis.

a 26th pair compared a password to itself. We randomized the order of the 26 pairs and left-right orientations
of each pair per participant.

To reduce potential selection biases, we created three pairs of passwords for each of the 25 hypotheses.
Each participant saw one of the three pairs, randomly selected. To create each pair, we first chose a password
from the widely studied [118, 126, 195] dataset of 32 million passwords leaked in plaintext from the gaming
website RockYou in 2009 [187]. In particular, we randomly permuted this set and selected the first password
that could plausibly be tested as part of each hypothesis. Thus, at least one password in each pair is from the
RockYou breach. For the second password in each pair, we either created the minimally different password
to test the hypothesis (e.g., we created ”astley123” to correspond to RockYou’s ”astleyabc”) or selected a
second RockYou password, as appropriate.

In the third part of the study, selected-password analysis, we investigated broader perceptions by asking
participants to rate their opinion of the security and memorability of 20 passwords selected from the RockYou
set [187]. As detailed below, we selected new passwords for each participant without replacement. As shown
in Figure 6.2, participants used a 7-point scale to rate the security (“very insecure” to “very secure”) and
memorability (“very hard to remember” to “very easy to remember”); we labeled only the endpoints of the
scale. We biased the selection of the passwords shown to each participant to include diverse characteristics.
Ten passwords were selected randomly from among RockYou passwords matching each of the ten most
common character-class structures. In addition, we selected one password containing at least three character
classes, one password containing a symbol, two long passwords (12+ characters), and six additional passwords
that do not fit any of the previous categories. We randomized the order in which we showed the passwords.

The fourth part of the study was similar to the third, except we instead asked about 11 strategies for
password creation and password management. We chose common strategies from prior work on password
creation [29, 115, 184, 188] and password management [49, 74, 169]. For example, one strategy we presented
was creating a password “using a phrase taken from the lyrics to a song (e.g., somewhere over the rainbow).”
We provide the full list of 11 strategies in the results section.

The fifth and final part of the study focused on participants’ impressions and understanding of attackers
who might try to guess their password. We intentionally presented this part of the study last to avoid priming
participants as they evaluated password security in the rest of the study.

We asked seven questions about attackers. Participants wrote free-text responses to separate questions
about “what characteristics make a password {easy, hard} for an attacker to guess.” Participants “describe[d]
the type of attacker (or multiple types of attackers), if any, whom you worry might try to guess your password,”

82 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

and explained to the best of their knowledge why an attacker would try to guess their password, as well as
how attackers try to do so. Finally, participants provided a numerical estimate of “how many guesses (by an
attacker) would a password need to be able to withstand for you to consider it secure,” as well as a free-text
justification for why they chose that number.

6.2.2 Recruitment

We recruited participants on Amazon’s Mechanical Turk (MTurk) platform for a “research study about
password security.” While imperfect, MTurk can provide data of at least the same quality as methods
traditionally used in research as long as the experiment is designed carefully [17,33]. We limited participation
in this study to MTurk users age 18 and older who live in the United States. We compensated participants $5
U.S. for the study, which took approximately 30 minutes.

To ensure quality MTurk data [100], we inserted the attention check described above. We only accepted
data from participants who rated that pair as equal in strength and wrote a variant of “the passwords are the
same” in their justification.

6.2.3 Measuring Real-World Attacks on Passwords

To understand how users’ perceptions of password security correspond to actual threats, we calculate each
password’s guessability [22, 23, 104] by simulating attacks using modern password-cracking techniques. We
use the Password Guessability Service (PGS) [37, 185], a product of our group’s prior evaluations of metrics
for calculating password strength [104, 185].

In prior work, we showed that considering only one of the numerous approaches to password cracking
can vastly underestimate the guessability of passwords with particular characteristics, while using a number
of well-configured approaches in parallel can conservatively estimate password guessability against an expert
attacker [185]. Thus, PGS simulates password-guessing attacks using Markov models [123], a probabilistic
context-free grammar [104,106,196], and the software tools oclHashcat [166] and John the Ripper [139]. For
each password, PGS conservatively outputs the smallest guess number across these four major password-
cracking approaches. Evaluating guessability using several password-cracking approaches in parallel helps
account for passwords that are modeled particularly well by some approaches, but not by others.

These approaches order their guesses based on training data, comprising sets of leaked passwords and
natural-language dictionaries [37]. Furthermore, we configured the software tools to reflect behaviors
common in the password-cracking community [185]. Thus, within the limitations of the training data and
theoretical models of how humans craft passwords, the ordering of guesses is grounded in data. If the guess
numbers are within an order of magnitude of each other, we judge the passwords to be of similar security.
When we judge passwords to be of different security, their guess numbers differ by over an order of magnitude.
These differences occur when some words or characteristics are far more common than others in the sets of
real passwords used to train the tools.

In the results section, we frequently compare participants’ perceptions of the relative security of passwords
to the relative difference in guess numbers. Because the PGS guess numbers reflect the performance of current
password-cracking approaches, we either state that participants’ perceptions were consistent or inconsistent
with current approaches.

6.2. METHODOLOGY 83

6.2.4 Quantitative Analysis

We used different statistical tests for our quantitative analyses investigating, respectively, participants’ strength
ratings, the relationship between security and memorability, and the relationship between independent
variables. For all tests, we set α = .05. We corrected for multiple testing using the conservative Bonferroni
method, which we applied per type of test (e.g., we multiplied p values by 75 for the 75 password pairs).

We treated participants’ rating for each password pair {PW1, PW2} as an ordinal rating from -3 to 3,
where -3 indicates the perception that PW1 is much stronger and 0 indicates that the passwords are equally
strong. To test whether participants tended to rate one password in the pair as stronger than the other, we
used the one-sample, two-sided Wilcoxon Signed-Rank test. This non-parametric test evaluates the null
hypothesis that the true password rating is 0 (equally secure) and the alternative hypothesis that the true rating
is non-zero (one password is perceived more secure than the other).

To investigate the relationship between security and memorability for the selected-password analysis and
password-creation strategies, we calculated Spearman’s rank correlation coefficient (Spearman’s ρ), which is
a nonparametric evaluation of the correlation between variables. The value for ρ varies between 1 (perfect
correlation) and -1 (perfect inverse correlation), where 0 indicates no correlation.

For our selected-password analysis, we also used regression models to evaluate the relationship between
numerous independent variables (e.g., password length, number of digits) and participants’ ratings of password
security and memorability. In particular, because participants’ ratings were ordinal on a 7-point scale and
because each participant rated 20 different passwords, we use a mixed-model ordinal regression.

6.2.5 Qualitative Analysis

We also used qualitative methods to better understand participants’ free-text responses. In particular, we
coded responses to the seven questions about attacker models, as well as all password pairs where participants’
perceptions differed statistically significantly from the guess numbers we calculated. One member of the
research team first read through all responses to a question and proposed codes that would capture common
themes. This researcher then coded all responses and updated the codebook when necessary. A second
coder used the annotated codebook to independently code the data. Inter-coder agreement ranged from
85.0% to 91.4% per question, while Krippendorff’s α ranged from 0.80 to 0.88. The coders met, discussed
discrepancies, and agreed on the final codes.

In presenting our results, we report counts of how many participants wrote responses exhibiting particular
themes to comprehensively summarize our data, not to suggest statistical significance or generalizability of
the proportions we report.

6.2.6 Limitations

The generalizability of our study is limited due to our use of an online convenience sample that is not
representative of any larger population. Password practices are impacted by an individual’s technical
skills [170], and the MTurk population is younger and more technical than the overall U.S. population [147].
This skew may be exacerbated by the self-selection biases of workers who would select a study on password
security. However, very few of our participants displayed any sophisticated understanding of potential or
likely threats to the security of their passwords.

84 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

The security of a password, both in actuality and in perception, depends on far more factors [59, 76] than
one could test in a single study. These factors include expectations about potential attackers, how the user
values the account [70, 136], the user’s demographics [22, 118, 126], and how well the training data used to
guess passwords matches the target population and the individual [118, 123]. Some of these factors require a
very large set of user-chosen passwords to analyze accurately [23]. Furthermore, the types and number of
guesses an attacker might make against a particular password are influenced by the value of the information
the password protects and either the hash function used or the rate-limiting employed.

While the Password Guessability Service we use reflects the performance of current password-cracking
approaches and has been shown to model a skilled attacker [185], no model is perfect. A new algorithm
or unexplored source of training data could vastly improve cracking and impact the ordering of guesses,
changing what features make a password secure.

6.3 Results

We first briefly describe our participants. To contextualize their other answers, we then report on participants’
impressions of attackers and password threats. Note that we asked these questions about attackers last in the
actual study to avoid priming participants. We then present participants’ perceptions of the password pairs,
followed by perceptions of both security and memorability for selected passwords and strategies.

6.3.1 Participants

A total of 165 individuals participated in our study. Our sample was nearly gender-balanced; 49% of
participants identified as female, and 51% as male. Participants hailed from 33 U.S. states. They ranged in
age from 18–66, with a mean age of 34.2 years and median of 33. All participants correctly answered the
attention-check question.

Few participants had special familiarity with computer security. Only six participants (4%) responded
that they were a professional or student in computer security. In addition, only 26 participants (16%) said
they had held a job or received a degree in “computer science or any related technology field.”

6.3.2 Attacker Model

Because any analysis of perceived or actual password security depends on the threat, we investigated whom,
if anyone, participants expected might try to guess their passwords and why such people might do so. We
also investigated participants’ understanding of how attackers guess passwords and expectation for how many
guesses an attacker might make.

Who Tries to Guess Passwords

Actual threats to passwords include both familiar people, who might attempt to access the account of a friend
or family member, and strangers conducting large-scale attacks on passwords. Most participants’ expectations
for who might try to guess their password centered on some combination of these two types (Table 6.1).
Overall, 135 participants (82%) mentioned a stranger of any sort as a possible attacker, and 38 participants
(23%) mentioned someone they know as a possible attacker.

6.3. RESULTS 85

Type of Attacker # %

Stranger 135 82%
Financially motivated 88 53%
Hackers 66 40%
Other strangers 14 8%
Government 3 2%

Familiar person 38 23%
People I know (generic) 23 14%
Family 9 5%
Friend 9 5%
Coworker 3 2%

No one 8 5%

Table 6.1: Themes describing “the type of attacker (or multiple types of attackers), if any, whom you worry
might try to guess your password.” # is the number of participants who mentioned the theme. The bolded
categories represent participants who mentioned at least one sub-theme.

Participants generally expected strangers to be both unfamiliar and geographically far away. For instance,
P62 feared “someone on the other side of world who compromises all my accounts.” Hackers were specifically
mentioned by 66 participants (40%). Most of these participants discussed hackers abstractly; only one (P30,
who has a technical background) expressed detailed knowledge of attacks. He wrote, “I mainly worry about
large scale attacks....If my password used personal information like my telephone number...it might not be
that detrimental because the attackers aren’t going to do a search for personal information on each individual.”

In contrast, many other participants anticipated that attackers who were strangers would have access to
their personal information. For instance, P126 worried about “a stranger that has gotten hold of the names
and birthdays of my family and pets,” while P164 worried about people who have “hacked into businesses
and gotten personal information, like my name, account numbers, my birth date.”

Other expected attackers were familiar; 38 participants (23%) mentioned worrying about attacks from
someone they know, such as “an angry ex or friend” (P98). Only 23 participants (14%), however, listed both
strangers and familiar people. P111 was one of these participants, listing both “cyber-thieves and nosy friends
or family members.”

Eight participants (5%) did not expect anyone would try to guess their password, most frequently because
they did not think they had anything an attacker would want. For example, P20 did not “worry too much
about people trying to guess my password as I am an insignificant person.”

Why Attackers Guess Passwords

There are a litany of reasons attackers might try to guess passwords, ranging from the hope of selling
credentials on the black market to pride within the hacker community. When we explicitly asked why
someone might try to guess their password, participants most frequently mentioned financial motivations and
the theft of personal information (Table 6.2).

Of the 165 participants, 109 (66%) specifically mentioned financial motivations why attackers would try
to guess a user’s password. For instance, P3 and P30 mentioned “credit card” and “banking information” as
objectives. Thirty-three participants (20%) specifically mentioned identity theft.

86 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

Motivation # %

Financial payoff 109 66%
Gather personal information 67 41%
Identity theft 33 20%
Fun / prove they can 10 6%
Spamming 6 4%
Spying 4 2%

Table 6.2: Themes’ frequency of occurrence in participants’ responses to “why would an attacker try to guess
your password, if at all?”

Next most commonly, participants listed the theft of personal information (67 participants, 41%). For
instance, P146 worried attackers “might try to hack into my email account so they can find more personal
information about me.” P19 articulated both financial and personal reasons, expecting attackers would try “to
find something embarrassing” or use personal information to “impersonate me, or get my money.”

Ten participants mentioned motivations related to attackers having fun or proving their skills. P105
articulated this motivation as, “To cause chaos, to say they did, because they can,” while P128 described such
attacks as “for their sick chuckles.” Six participants (4%) mentioned either email spam or social media spam,
while another four participants (2%) mentioned spying, including for “state intelligence purposes” (P11).

How Attackers Try to Guess Passwords

We also asked, “As far as you know, how do attackers try to guess your password?” As detailed in Table 6.3,
participants most commonly mentioned large-scale, automated guessing attacks (121 participants, 73%) or
attacks targeted to the particular user (72 participants, 44%). In reality, both types of attacks occur. While
146 participants (88%) mentioned at least one of these types, only 47 participants (28%) mentioned both.

Most, but not all, participants (121 participants, 73%) anticipated that passwords might be subjected to
large-scale guessing attacks. Nearly half of participants (79, 48%) specifically mentioned that they expected
attackers to use software or other algorithmic techniques for large-scale guessing. P3 explained, “They use
software designed to hack passwords. I’ve read about it.” Similarly, P48 anticipated “some kind of script that
runs down through password combinations automatically.”

Attackers often use lists of leaked passwords and dictionaries of words and phrases as a starting point [79,
185]. Participants expected that large-scale guessing would first prioritize, in P31’s words, “common things.
People are fairly uncreative.” For instance, P120 thought attackers would try “common names and numbers
first and then work from there like maybe what people like.” P157 expected attackers would “first [try] a
dictionary of common words” before proceeding to try all “combinations of letters & numbers.” While 42
participants (26%) used the phrase “brute force,” some meant trying every possible combination, while others
meant trying many possibilities (e.g., P10’s “brute forcing the dictionary”).

In contrast to large-scale guessing, 72 participants (44%) expected that password-guessing attacks could
be targeted specifically to them by “using information that they already know about me” (P29), or if an
attacker were to “scrape [my] personal details from social media” (P32). Participants expected that attackers
might use information including “my likes, hobbies, music” (P58), “important dates” (P87), “favorite places”
(P119) and “family members’ names or birthdates” (P61).

Some of the 47 participants who mentioned both large-scale guessing and targeted attacks spoke of them

6.3. RESULTS 87

Guessing Method # %

Automated, large-scale 121 73%
Software / algorithms 79 48%
“Brute force” 42 26%
Dictionaries / words 27 16%
Common passwords 26 16%
Common names 8 5%
Try guessing dates 7 4%

Targeted to user 72 44%
Use personalized information 62 38%
Social engineering 7 4%
Manual guessing 4 2%

Other means 22 13%
Hacking into system / database 12 7%
Keyloggers 10 6%
Phishing 5 3%

Table 6.3: Themes’ frequency of occurrence in participants’ responses to “how do attackers try to guess your
password?”

as separate attacks, while others expected the techniques to be used in tandem. P162 exemplified those
who discussed them separately, describing that attackers would guess passwords “if they know personal
information about you or use hacker software to decipher passwords.” In contrast, P80 wrote, “I think they
look for weak passwords that are commonly used and narrow their guesses with any personal information
that they have.”

Estimating Numbers of Adversarial Guesses

To understand participants’ security calculus, we asked, “How many guesses (by an attacker) would a
password need to be able to withstand for you to consider it secure?” We required a numerical estimate
(neither words nor exponential notation were permitted) and free-text justification. If stored following best
practices, a password that can withstand 106 and 1014 guesses would likely be safe from online and offline
attacks, respectively [69]. For passwords stored unsalted using a fast hash function (e.g., MD5), 1020 guesses
is plausible [78, 171].

Participants’ responses ranged very widely, from considering a password secure if it can withstand
2 guesses to estimating a secure password should be able to withstand 1059 guesses. We observed three
main categories of estimates; 34% of participants wrote a number of guesses that was 50 or smaller, 67% of
participants wrote a number of guesses that was 50,000 or smaller, and only seven participants (4%) wrote at
least 1014 guesses, which required that they type 14 or more zeros.

These three categories map to three streams of reasoning. The first stream focused on online attacks. In
total, 27 participants (16%) specifically noted lock-out policies, in which a server blocks guessing after a
few incorrect attempts. P12 explained, “Most secure sites cut you off after 3 or 4 guesses,” while P67 chose
20 guesses because “if the authentication mechanism hasn’t shut down attempts by this point, I’m more
worried about the platform than my password.”

The second stream of reasoning centered on an attacker “giving up.” In total, 42 participants (25%)

88 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

explicitly mentioned that an attacker would give up, yet the number of guesses they estimated it would take
varied widely. Some participants expected an attacker to get frustrated after dozens of guesses. For example,
P150 wrote, “I feel like by the 10th [guess] they’d give up.” Other participants chose far larger numbers.
For instance, P104 chose 150,000 guesses because “hackers have short attention spans...Hopefully if by that
many guesses they haven’t gotten it they are on to something else.” Ten other participants (6%) wrote that
attackers would move on to other users with even weaker passwords than them, implicitly giving up. P4
chose 1,000 guesses, explaining, “I feel as though it wouldn’t be efficient to continue attempting beyond that
point, even if the process were automated. There are so many more potential victims whose passwords might
be more obvious.”

The third stream of reasoning involved participants estimating a strong attacker’s computational resources.
The magnitude that constituted a very large number varied widely. For example, P3 chose 1 million guesses,
explaining, “I’ve read that hackers use sophisticated software that can bombard a computer or website with
thousands of ‘guesses’ a minute.” P78 also chose 1 million guesses because passwords “should be able to
withstand a pretty extensive ‘brute force’ attack.” Other participants chose far larger numbers. P103 chose
1014 because it “seemed like a high enough number to make it impossible or take more than 50 years.”

As evidenced by the wide variance in estimates, many participants were uncertain of the scale of guessing
attacks. P38 wrote, “I really wanted to write ‘infinite.’ I didn’t know how to quantify this because I don’t
know how many guesses hackers typically take.” She settled on 1,000 guesses as a proxy for “infinite.” Many
others made very low estimates. For example, P88 wrote, “A dozen guesses would mean they tried every
obvious password and hopefully move on after that point.” In contrast, P127 chose 1012 because “that’s
basically the highest number I can think of short of infinity,” yet represents under three seconds of guessing
in an offline attack against MD5-hashed passwords [166, 171]. Expertise did not reduce this variance. Of
the seven participants who wrote 1014 guesses or higher, corresponding to an offline attack [69], only one
held a degree or job in computer science. Similarly, guess estimates from the six participants who reported
computer security expertise ranged from 3 guesses to 500 million.

6.3.3 Password Pairs

In the password pairs portion of the study, participants rated the relative security of careful juxtapositions
of two passwords. As shown in Table 6.4, participants’ perceptions matched many, but not all, of our
25 hypotheses of their perceptions.

Beyond matching our hypothesized perceptions, participants’ perceptions were frequently consistent
with the passwords’ relative guessability. Of the 75 pairs of passwords (25 hypotheses × 3 pairs each),
participants’ perceptions of the relative security of 59 pairs (79%) were consistent with the performance of
current password-cracking approaches. In short, participants realized the following behaviors are beneficial
to security:

• capitalizing the middle of words, rather than the beginning
• putting digits and symbols in the middle of the password, as opposed to the end
• using random-seeming digit sequences, rather than years or obvious sequences
• using symbols in place of digits
• preferring dictionary words over common first names
• avoiding personal content (e.g., a relative’s name)
• avoiding terms related to the account (e.g., “survey” for an MTurk password)

6.3. RESULTS 89

Table 6.4: The 25 hypotheses we investigated among password pairs. The # column indicates for how many
of the three pairs per hypothesis participants’ perceptions matched the hypothesized perception.

Hypothesized user perception #

Capitalization
Non-standard capitalization more secure than capitalizing first letters 3

The use of letters vs. digits vs. symbols
Appending a lowercase letter more secure than appending a digit 2
Appending lowercase letters more secure than appending digits 0
Symbol more secure than corresponding digit (e.g., “!” vs. “1”) 3
All-symbol password more secure than all-digit password 3
Adding an exclamation point makes a password more secure 3
Appending 1 makes a password more secure 3
Appending 1! makes a password more secure 3

Location of digits and symbols
Digit in middle of password more secure than at beginning or end 3
Symbol in middle of password more secure than at beginning or end 2

Choice of digits and symbols
Appending random digits more secure than appending a recent year 3
Random digits more secure than common sequence (e.g., “123”) 3

Choice of words and phrases
Dictionary word more secure than a person’s name 3
Word that is hard to spell more secure than easy-to-spell word/phrase 1
Uncommon phrase more secure than common phrase 0
Phrase more secure than single word 2

Targeted and personal information
Unrelated word more secure than word related to the account 3
Unrelated name more secure than name of friend/family 3
Unrelated date more secure than birthdate of friend/family 3

Keyboard patterns
Common keyboard pattern more secure than common phrase 1
Password without obvious pattern more secure than keyboard pattern 2

Character substitutions
Lowercase letter less secure than number/symbol (e.g., “3” for “e”) 3
Uppercase letter less secure than number/symbol (e.g., “3” for “E”) 1
Relevant digit (e.g., “punk4life”) less secure than unrelated digit 3
Relevant digit (e.g., “4”) less secure than full word (e.g., “for”) 0

Their free-text responses supported their numerical ratings. Participants preferred “random capitization
of letters rather than capitalizing each word” (P8). They knew “the use of people’s names is more common”
(P12) and that “everyone puts the numbers at the end, moving them to a different spot helps” (P66). They
knew they should not use words associated with their account; P165 correctly noted, “Surveys are popular
on mturk and one password is associated with that.” In addition, they knew “people use years in passwords
(birthdays, anniversaries, etc.) often, so they are easier to guess” (P163).

90 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

PW1 PW2
Actually
Stronger

Perceived
Stronger p Perceptions

p@ssw0rd pAsswOrd PW2 (4×103) PW1 <.001 0 10 20 30 40 50 60 70 80 90 100

punk4life punkforlife PW2 (1×103) PW1 <.001 0 10 20 30 40 50 60 70 80 90 100

1qaz2wsx3edc thefirstkiss PW2 (3×102) PW1 <.001 0 10 20 30 40 50 60 70 80 90 100

iloveyou88 ieatkale88 PW2 (4×109) Neither – 0 10 20 30 40 50 60 70 80 90 100

astley123 astleyabc PW2 (9×105) Neither – 0 10 20 30 40 50 60 70 80 90 100

jonny1421 jonnyrtxe PW2 (7×105) Neither – 0 10 20 30 40 50 60 70 80 90 100

brooklyn16 brooklynqy PW2 (3×105) Neither – 0 10 20 30 40 50 60 70 80 90 100

abc123def789 293070844005 PW2 (8×102) Neither – 0 10 20 30 40 50 60 70 80 90 100

puppydog3 puppydogv PW2 (7×102) Neither – 0 10 20 30 40 50 60 70 80 90 100

qwertyuiop bradybunch PW2 (4×102) Neither – 0 10 20 30 40 50 60 70 80 90 100

bluewater nightgown PW2 (3×101) Neither – 0 10 20 30 40 50 60 70 80 90 100

iloveliverpool questionnaires PW2 (2×101) Neither – 0 10 20 30 40 50 60 70 80 90 100

L0vemetal Lovemetal Neither PW1 <.001 0 10 20 30 40 50 60 70 80 90 100

sk8erboy skaterboy Neither PW1 <.001 0 10 20 30 40 50 60 70 80 90 100

badboys234 badboys833 Neither PW2 .001 0 10 20 30 40 50 60 70 80 90 100

jackie1234 soccer1234 Neither PW2 .034 0 10 20 30 40 50 60 70 80 90 100

PW1 much more secure PW1 more secure PW1 slightly more secure Equally secure PW2 much more securePW2 more securePW2 slightly more secure

Table 6.5: Pairs of passwords for which participants’ perceptions of the relative security of the passwords
differed from actual security. The number in parentheses indicates how many times stronger PW2 was than
PW1 (ratio of guess numbers).

Participants also correctly recognized that users rarely include symbols in their passwords, rating pass-
words with symbols higher than those with digits even though we always replaced a digit with the symbol
that shares its key on the keyboard. As P16 explained, “The ˆ symbol is slightly more obscure than the 6,
although it’s the same key on the keyboard.” They also realized that “obscure words” (P4) would be less
likely to be guessed, particularly when the words were uncommon enough for P106 to incorrectly assert,
“Moldovan is more secure because it’s a made up word.”

In contrast, the 16 pairs for which users’ perceptions were inconsistent with current password cracking
reveal four main misconceptions. In Table 6.5, we list these pairs and the actual ratio between the passwords’
guess numbers. We consider two passwords to be equivalent in strength if their guess numbers are within an
order of magnitude of each other (i.e., the ratio is between 0.1 and 10). We also graph the distribution of
users’ perceptions and give the (Bonferroni-corrected) p-value from the one-sample Wilcoxon Signed-Rank
Test. Significant p-values indicate that participants tended to rate one password as more secure than the other.

The first common misconception was that adding digits inherently makes a password more secure than

6.3. RESULTS 91

Characteristic Coefficient Pr(>|z|)

Length 0.144 <.001
Contains uppercase letter 0.584 .020
Contains digit 0.971 <.001
Contains symbol 1.220 .006
Interaction: Upper*Digit 0.441 .010
Interaction: Digit*Symbol -0.613 .008

Table 6.6: Significant terms in our mixed-model, ordinal regression of how password characteristics correlate
with participants’ security ratings.

using only letters. Participants expected passwords like brooklyn16 and astley123 to be more secure than
brooklynqy and astleyabc, respectively. Participants felt that “a mix of numbers and letters is always more
secure and harder to guess” (P23) and that using “both numbers and letters...makes it more secure (unless the
numbers were a birthday, address, etc.)” (P101). Because users frequently append numbers, however, the
opposite is true in current password cracking. While, as P126 wrote, “Adding numbers makes the password
more complex (more potential combinations when 26 letters and 10 numbers are possible),” arguments based
on combinatorics fail because attackers exploit users’ tendency to append digits to passwords [79, 139].

Participants’ misconceptions about the security of digits also influenced how they perceived passwords
that subsitute digits or symbols for letters. Inconsistent with password-cracking tools, which exploit users’
tendency to make predictable substitutions, participants expected passwords like punk4life to be more secure
than punkforlife and p@ssw0rd to be more secure than pAsswOrd. Participants incorrectly expected that
“adding a number helps a lot” (P81). Similarly, P8 underestimated the rarity of unexpected capitalization,
writing that “symbols and numbers are used instead of just capitalization.”

Third, participants overestimated the security of keyboard patterns. Inconsistent with current password
cracking [91], participants believed that 1qaz2wsx3edc would be more secure than thefirstkiss, and that
qwertyuiop would be more secure than bradybunch. The fact that 1qaz2wsx3edc “contains [both] numbers
and letters” (P54) outweighed its status as a keyboard pattern. The significance of the Brady Bunch in popular
culture led participants to think it was more obvious than a keyboard pattern. P14 wrote, “Bradybunch is a
dictionary type of guess which makes it more vulnerable.” These participants, and many others, failed to
realize that attackers’ “dictionaries” include common strings like keyboard patterns, not just words.

Finally, participants misjudged the popularity of particular words and phrases. In our security analysis,
ieatkale88 required over a billion times as many guesses as iloveyou88 because the string “iloveyou” is one of
the most common in passwords [94]. While some participants realized that “eating kale is a lot more rare than
love” (P122), most did not; participants on the whole did not perceive one as more secure than the other. For
instance, P50 wrote, “I think both are the same. Both are a combination of dictionary words and are appended
by numbers.” Even beyond “iloveyou,” passwords often contain professions of love [188]. Participants did
not realize that the dictionary word questionnaires would thus be a more secure password than iloveliverpool.
Many participants thought the latter would be “more secure because it is a phrase, whereas the other password
is just one word” (P146).

92 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

Characteristic Coefficient Pr(>|z|)

Length -0.125 <.001
Contains digit -0.753 <.001

Table 6.7: The only two significant terms in our mixed-model, ordinal regression of how characteristics
correlate with memorability ratings.

6.3.4 Selected-Password Analysis

For the passwords in our selected-password analysis, we ran two mixed-model, ordinal regressions where
the security and memorability ratings (1–7) were each dependent variables, and the password’s length and
inclusion of {0,1,2+} uppercase letters, digits, and symbols were the independent variables. We included
terms for interactions among character classes.

In our model of security ratings (Table 6.6), participants tended to rate a password as more secure if it was
longer and if it included uppercase letters, digits, or symbols. More precisely, security ratings for paswords
selected from the RockYou set were signficantly correlated with all four main independent variables. We
also observed a significant positive interaction between the inclusion of uppercase letters and digits, and a
significant negative interaction between digits and symbols.

Participants’ memorability ratings were less clear-cut (Table 6.7). Participants perceived a password
as significantly less memorable if it was longer or contained digits. Note, however, that many RockYou
passwords contain long, random-seeming strings of digits that contain subtle patterns or are semantically
significant for speakers of other languages [118], which we hypothesize caused participants to perceive digits
as particularly hard to remember. No other regression terms were significant, suggesting that factors other
than length and character-class usage primarily impact perceived memorability. Unsurprisingly, participants’
memorability ratings were inversely correlated with strength ratings (Spearman’s ρ =−0.678, p<.001).

6.3.5 Password-Creation Strategies

Participants’ perceptions of the 11 common strategies for password creation and management that we showed
were generally consistent with current attacks on passwords. As shown in Table 6.8, participants realized
that password reuse is wholly insecure, yet memorable. While participants believed passwords based on
song lyrics or relevant dates would be memorable, they also mostly realized such passwords are insecure.
In contrast, participants had divergent perceptions of the security of writing a password down. Writing
passwords down was traditionally discouraged, yet has more recently been argued as a sensible coping
mechanism [70, 151].

As one might expect, participants perceived a tradeoff between security and memorability; the more
secure a participant rated a strategy, the less memorable he or she tended to rate it. As shown in Table 6.8, for
each strategy we calculated Spearman’s ρ to find the correlation between security and memorability ratings.
For all ten strategies other than writing a password down, we found a negative correlation between security
and memorability (ρ ranging from -0.22 to -0.47).

Some strategies balanced security and memorability more successfully. To ease comparison, we plot
the mean ratings for each strategy in Figure 6.3. Creating a made-up phrase (S3) and combining languages
(S5) had both security and memorability ratings with means above 4.4 on the 7-point scale. In contrast,

6.4. DISCUSSION 93

Strategy ρ Perceived Security Perceived Memorability

S1: Starting with a word that comes to mind, and then
adding digits or symbols to the end (e.g., bubblegum1!).

-0.22 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S2: Using a phrase taken from the lyrics to a song (e.g.,
somewhere over the rainbow).

-0.26 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S3: Using a phrase that you make up exclusively for this
account and that has nothing to do with the account (e.g.,
skyscraper cornstalks).

-0.24 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S4: Using the name of one of your family members
and their birth year (e.g., Zachary1976), assuming that
information is not on Facebook or other social media.

-0.30 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S5: Combining words from two different languages (e.g.,
desaparecido rainbow).

-0.23 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S6: For your password, using a date that is meaningful
to you (e.g., 12151976 because your sibling was born
on 12/15/1976), assuming that information is not on
Facebook or other social media.

-0.27 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S7: Basing a password on a phrase that describes your re-
lationship to the account (e.g., iloveshoppingonamazon
for your Amazon.com password).

-0.47 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S8: Building the password by following a pattern on the
keyboard (e.g., 1qaz2wsx3edc).

-0.47 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S9: Using the same password that you use for other
accounts.

-0.40 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S10: Using a tool that can randomly generate a complex
password for you.

-0.45 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

S11: Picking a complex password and writing that pass-
word down on a piece of paper that only you know about.

n.s. 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Table 6.8: Perceptions of the security and memorability of strategies. Participants rated both on a 1–7 scale,
where 7 (darker colors on the graphs) indicates “very secure” and “very easy to remember,” respectively.
Spearman’s ρ indicates the correlation between security and memorability ratings.

automatically generated passwords (S10) were perceived as secure, but not memorable, whereas basing
passwords on the account was perceived as very memorable, yet very insecure.

6.4 Discussion

We have presented the first study comparing users’ perceptions of the security of text passwords with those
passwords’ ability to withstand state-of-the-art password cracking. Because predictable passwords are
ubiquitous [22, 79, 94, 187] even for important accounts [126], we were surprised to find that participants’
perceptions of what characteristics make a password more secure are, more often than not, consistent with
the performance of current password-cracking approaches.

Participants did have some critical misunderstandings, however. They severely overestimated the benefit
of adding digits to passwords and underestimated the predictability of keyboard patterns and common

94 CHAPTER 6. DO USERS’ PERCEPTIONS OF PASSWORD SECURITY MATCH REALITY?

S11 (write down)

S10 (generator tool)

S9 (reuse)

S8 (keyboard pattern)

S7 (account-based)

S6 (meaningful date)

S5 (multiple languages)

S4 (name + year)

S3 (made-up phrase)

S2 (song lyrics)

S1 (word + digits/symbols)

1 2 3 4 5 6 7
Mean Rating

Memorability
Security

Figure 6.3: Mean ratings for the security and memorability of the 11 password-creation strategies.

phrases (e.g., “iloveyou”). In essence, participants did not realize how common these behaviors are, which
is not surprising since users never see other users’ passwords. A promising direction to help users better
evaluate their passwords relative to common practices is through targeted, data-driven feedback during
password creation. Current password-strength meters only tell users if a password is weak or strong,
not why [51, 182, 198]. Future work in this area could build on a recent study that showed users likely
“autocompletions” of the partial password they had typed [107]. In large part, our results suggest that users are
already aware of ways to make their passwords stronger, but they do not do so. Thus, such future work could
build on research using motivational statements [62, 186] or peer pressure [65, 163] to “nudge” users [175] to
create stronger passwords.

Our finding that participants mostly knew whether particular characteristics would make passwords
easier or harder for attackers to guess may seem at odds with the pervasiveness of poor passwords. This gap,
however, may be the result of neglecting to help users understand the spectrum of attacks against passwords.
As in other studies [98, 184, 194], our participants knew passwords were important, yet their models of
attackers were often incomplete. Whereas one-third of our participants considered a password secure if it
can withstand as little as several dozen guesses, others believed a password must withstand quadrillions of
guesses or more.

Users’ incomplete understanding of the scale of potential attacks thus seems to be a root cause of bad
passwords. As we surveyed in the background section, the spectrum of threats to passwords is complex and
nuanced. For instance, a password’s resistance to large-scale guessing matters mostly if the user reuses that
password for other accounts [69] or if the service provider fails to follow security best practices [36, 82, 122].
Following the principle of defense in depth, users should protect themselves against all likely attackers,
which is why security experts often recommend using password managers to store unique passwords for each
account [98]. Unfortunately, users receive scant holistic advice on the overall password ecosystem [70,98,144].
No system administrators are incentivized to encourage users to make weak passwords for unimportant
accounts or to write their passwords down [151]. Thus, users derive oversimplified folk models [194] and
misconceptions [184]. We showed that users understand quite a bit about the characteristics of strong and
weak passwords, which should be leveraged to help users create stronger passwords.

Chapter 7

Design and Evaluation of a Data-Driven
Password Meter

7.1 Introduction

In spite of their ubiquity [182], password-strength meters often provide ratings of password strength that are,
at best, only weakly correlated to actual password strength [51]. Furthermore, in contrast to greater trends
in the usable security community to give actionable, intelligible feedback, current meters provide minimal
feedback to users. They may tell a user that his or her password is “weak” or “fair” [51, 182, 199], but they
do not explain what the user is doing wrong in constructing a password, nor do they guide the user towards
mechanisms for doing better.

In this chapter, I describe our development and validation of an open-source password-strength meter1

that is both more accurate at rating the strength of a password and provides more useful, actionable feedback
to users. Whereas previous meters scored passwords using very basic heuristics (e.g., examining only the
password’s length and whether it includes digits, symbols, and uppercase letters), we use the complementary
techniques of simulating a very large number of adversarial guesses using artificial neural networks [130] and
employing nearly two dozen advanced heuristics to rate password strength. As we detail in Section 7.2, these
two techniques are complementary. Neural networks, particularly when used with Monte Carlo methods [53],
can provide accurate password-strength estimates in real time entirely on the client side [130]. However,
neural networks are effectively a black box and provide minimal human-understandable transparency for
their scoring. Although advanced heuristics also provide relatively accurate password-strength estimates, at
least for resistance to online attacks [199], we use them primarily to identify characteristics of the password
that are associated with guessability.

Beyond scoring password strength more accurately than previous meters, our meter also gives users
actionable, data-driven feedback about how to improve their specific candidate password. As we describe in
Section 7.3, we provide users with up to three ways in which they could improve their password based on the
characteristics the advanced heuristics identified in their particular password. We also provide modal windows

Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer, Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor, Henry Dixon,
Pardis Emami Naeini, Hana Habib, Noah Johnson, William Melicher. Design and Evaluation of a Data-Driven Password Meter.
Unpublished.

1Demo available at https://cups.cs.cmu.edu/˜meter/

95

https://cups.cs.cmu.edu/~meter/

96 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

that detail why these particular suggestions would improve the password and discuss general strategies for
making strong passwords. Furthermore, we generate proposed modifications to the user’s password through
judicious insertions, substitutions, rearrangements, and case changes. If our strength estimates indicate
substantial improvements in password strength, we show the user this suggested improvement.

We developed our meter through an iterative design process involving regular meetings with the members
of our research team and additional meetings with industry partners. As we detail in Section 7.4, we also
conducted a ten-participant laboratory study of the meter, iteratively updating the meter’s design after each
session. To measure how different aspects of our open-source meter impacted password security and usability,
we subsequently conducted a 4,509-participant online study, which we report in Section 7.5. Under the more
common password-composition policy we tested, we found that our data-driven meter with detailed feedback
led users to create significantly more secure passwords than a meter with only a bar as a strength indicator,
without a significant impact on any of our memorability metrics. In addition, most of our participants reported
that the text feedback was informative and helped them create stronger passwords.

7.2 Measuring Password Strength in our Data-Driven Meter

Measuring password strength in the browser involves complicated tradeoffs and considerations. On the one
hand, it is crucial for security that this rating of password strength accurately reflect the password’s resistance
to plausible attacks. On the other hand, accurate estimates are not useful during password creation unless
they are delivered quickly. For protecting against side-channel attacks, reducing the attack surface of a server,
and reducing latency, it is desirable that these accurate and fast estimates are delivered entirely on the client
side, which requires a compact model.

Below, we first detail why accurately estimating password strength on the client side is difficult. Sub-
sequently, we describe our two-pronged approach to scoring password strength in our meter. These two
approaches are highly complementary and enable us to provide accurate and actionable feedback on password
strength quickly and entirely on the client side. Our use of neural networks [130] as the first prong in this
approach provides principled, statistical models of password guessing, yet provides no intelligibility to
humans for its ratings. The second prong in our approach, employing advanced heuristics, is both fairly
accurate [199] and also provides human-intelligible explanations for its scoring.

7.2.1 The Difficulty of Accurate Client-Side Password-Strength Estimation

To evaluate a password’s resistance to a guessing attack, one can calculate a password’s guessability, which
we define as the number of guesses that a particular password-guessing model (in a particular configuration
and using particular training data) would take to guess that password. In prior work (Chapter 4), we showed
that well-configured models of numerous leading password-guessing approaches considered in parallel can
serve as a conservative proxy for password guessing directed by a human expert in password forensics, at
least through the cutoff of 1014 guesses we used in many of our tests [185].

Unfortunately, these models of password guessing are often inappropriate for real-time password-strength
evaluation. First of all, the models used in probabilistic password-guessing approaches, such as probabilistic
context-free grammars and Markov models, are often on the order of gigabytes [60, 104, 123, 185]. Even
modeling password-guessing software tools like John the Ripper and Hashcat (e.g., using HashcatJS [10],
a Javascript implementation of the Hashcat rule engine) requires that a full wordlist (often hundreds of

7.2. MEASURING PASSWORD STRENGTH IN OUR DATA-DRIVEN METER 97

megabytes deduplicated and compressed) be transferred to a client [185]. Overall, measuring password
strength using models of password guessing requires either more time or more disk space than would be
practical for performing this measurement on the client side, even when using variants of models optimized
for looking up password strength [104, 185].

As a result, previous attempts to use principled models of password-guessing attacks have necessitated
having a server-side component. For instance, researchers have built a password-strength meter based on
adaptive Markov models [38]. While Markov models are fairly accurate at guessing passwords [60, 123],
each password lookup requires a round-trip call to the server, and having a server-side component increases a
system’s attack surface, configuration requirements, and the possibility of timing-based side-channel attacks.
Other researchers have built Telepathwords, a meter that relies on extensive models of passwords and natural
language to predict the next character a user would type, subsequently rating a password’s strength based on
the number of unpredictable choices made [107]. For the same reasons as Markov models, Telepathwords’
models must be stored on a server and therefore suffer from the same disadvantages.

To this point, password-strength meters on the client side have relied on basic heuristics that can be
easily encoded in Javascript, run quickly, and require minimal data to be transferred to a client. The most
common heuristics include counting the number of characters in the password, identifying which character
classes (digits, symbols, lowercase letters, uppercase letters) have been used, and sometimes checking the
candidate password against a small blacklist of very common passwords [51, 182]. For a given password,
these characteristics can be calculated quickly entirely on the client side. Unfortunately, they are only weakly
correlated to actual password strength [51].

Recent innovations in password-strength estimation from both our research group and others have enabled
faster and more compact, yet still accurate, estimations of password strength entirely on the client side.
In our data-driven meter, we use two complementary approaches to measure password strength. The first
approach, using artificial neural networks (henceforth “neural networks”) to measure the probability of a
password represents recent work from our group [130]. The second approach, using advanced heuristics to
estimate password strength by examining common password patterns statistically, is our own implementation,
yet is conceptually inspired by the zxcvbn meter [198, 199]. Our approach models correlations between
patterns commonly found in passwords and password guessability. We ran a linear regression to identify
how to weight each characteristic to estimate password guessability. While neural networks model a very
effective password-guessing attack [130], they are effectively a black box for explaining why they assign a
particular probability to a particular password. As a result, the advanced heuristics provide complementary
human-intelligible explanations for password guessability in a way we have designed to correlate well with
the results of a password-guessing attack.

7.2.2 Neural Networks for Password-Strength Estimation

The first of our two methods for estimating password strength relies directly on the insights and codebase
from our recent research on training artificial neural networks to guess passwords [130]. For this portion of
the project, we build on the codebase developed for that project.2

Our implementation of neural networks for estimating password strength works by estimating the
probability of each character of the password based on the characters that came before it. The overall
probability of a password is the product of the probabilities of its characters. While this approach may

2https://github.com/cupslab/neural_network_cracking

https://github.com/cupslab/neural_network_cracking

98 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

superficially sound reminiscent of Markov models [60, 123], which also calculate the probability of each
character in a password based on the characters that came before it, our neural networks approach differs
in key ways. First, we train the neural network using up to the previous ten characters of context (previous
characters in the password), and the neural network effectively learns how much context to consider in its
training process. Thus, one aspect of the neural network is that its estimates of the probability of a character
is akin to considering a Markov model of variable length. Furthermore, neural networks learn additional,
higher-order features during their training.

We use recurrent neural networks, which allow connections between the layers of the network. Rather
than considering only individual characters, we calculate the probabilities of characters in a password by
considering 2,000 unique password tokens, which can be individual characters, syllables, or other multi-
character tokens. The potential design space for configuring other aspects of neural networks to guess
passwords is vast. In prior work [130], we tested a number of features of neural networks that intuition
suggested would likely improve password guessing. As a result, we provide context characters in reverse
order, which we found to work more effectively than providing them in the order in which they appear in the
password. We account for the probabilities that a letter is capitalized, or that a rare symbol is used, outside
the neural network in post-processing. We chose not to augment passwords with natural-language corpora
in our training data. While the inclusion of natural-language data generally improves the accuracy of other
password-guessing approaches [185, 197], we found the opposite effect for neural networks. Based on our
tests, our neural network uses transference learning, which enables the network to be trained in part on
passwords that do not fit the specified password-composition policy.

We tested a number of additional design dimensions that were chosen primarily to reduce the space
requirements for storing the model. Techniques for reducing the disk space required for the model while
minimally impacting guessing success enable us to model passwords entirely on the client side. For instance,
we tested a larger neural network containing 15,700,675 parameters and a smaller network containing 682,851
parameters. While the larger network was more accurate at guessing, the smaller network was not much
worse, yet far smaller. Therefore, our open-source password meter uses the smaller network. Similarly, we
quantize probabilities and store numbers using fixed-point encoding and ZigZag encoding. These techniques
again reduce the disk space needed for the model, yet only minimally impact guessing accuracy.

After calculating a password’s probability using the neural network model, the final step is to convert
that probability to an approximate number of guesses in a password-guessing attack. Making the likely
assumption that an attacker would guess passwords in order of descending probability, this step reduces to
estimating how many passwords have a higher probability than the candidate password. We approximate this
number using Monte Carlo methods [53] and pre-compute a mapping between probabilities and estimated
guess numbers.

To avoid causing perceptible lags in the meter interface, we perform all neural network calculations
asynchronously in a separate thread using the WebWorker framework [133].

7.2.3 Advanced Heuristics for Password-Strength Estimation

While basic heuristics (e.g., length and character-class usage) that have traditionally been used to estimate
password strength lead to poor estimates of password strength [51], the notable exception is the relatively
accurate [51, 199] zxcvbn meter [198]. In contrast to traditional meters, zxcvbn rates a password by using a
number of more advanced heuristics to identify common password patterns contained within the password. In

7.2. MEASURING PASSWORD STRENGTH IN OUR DATA-DRIVEN METER 99

particular, it searches for the following patterns: tokens (common passwords, dictionary entries, etc.), reversed
tokens (e.g., “drowssap”), sequences (e.g., “2468”), repeated sections (e.g., “princeprince”), keyboard patterns
(e.g., “zxcvbn”), dates (e.g. “8.7.47”), and sections that would need to be bruteforced (no obvious pattern).
By considering the space of possibilities within each of those patterns, as well as evaluating the frequency of
some of the most common password patterns based on data from large password breaches, zxcvbn provides
an estimate of the number of guesses required to arrive at that password.

While our meter searches for some of the same common password characteristics as zxcvbn when rating
a password, we take a different approach in using these characteristics to estimate password guessability.
Beyond verifying that a password has met the requirements specified by the password-composition policy,
we rate the password on 21 different characteristics, each implemented in its own function. Some of these
characteristics overlap conceptually with characteristics examined by zxcvbn (e.g., the use of keyboard
patterns, dates, and alphabetic sequences), while other characteristics (e.g., the predictability of the character-
class structure, the location of digits within the password) are unique to our approach.

Below, we first describe the different characteristics on which we rate passwords using the function
names we employ in our code. Afterwards, we describe how we used a linear regression to determine how to
combine the individual scores into a final score for the password.

• verifyMinimumRequirements() is a customizable function that evaluates whether a particular pass-
word meets a service’s password-composition policy. We currently support the eight dimensions of
requirements listed below. System administrators can choose which of these dimensions to include in
their minimum requirements, in addition to specifying the particulars of each included dimension.

1. Length (minimum and optionally also a maximum)

2. Minimum number of character classes

3. Make the inclusion of certain character classes mandatory

4. Forbid certain character clases

5. Forbid particular passwords (case-insensitive)

6. Specify the range of acceptable character codes, as well as identify any characters in that range
that are forbidden

7. Forbid a password from containing N or more consecutive identical characters

8. Require that a password differ from the chosen username by a minimum number of characters

• pwLength() returns the total number of characters in the password.

• countUC() returns the number of uppercase letters contained in the password.

• countLC() returns the number of lowercase letters contained in the password.

• countDIGS() returns the number of digits contained in the password.

• countSYMS() returns the number of symbols contained in the password.

• characterClasses() returns the number of character classes (1–4) in the password.

100 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

• keyboardPatterns() returns the total number of characters of a password contained in one or more
keyboard patterns. We define a keyboard pattern to be 4+ characters in a row for which the inter-key x-y
coordinate change on a physical QWERTY keyboard layout is the same. For instance, “qetu” would be
a keyboard pattern because each inter-key coordinate change is 2 keys to the right horizontally, and no
change vertically. Note that we only consider a string to be a keyboard pattern if the inter-key vector on
a QWERTY keyboard is identical. While some keyboard patterns in practice could include snake-like
bends, they would lead to many false positives (e.g., “reds,” “polk”) and common keyboard patterns of
that type would be identified as a common password substring, so we do not look for them.

• structurePredictable() identifies how common the character-class structure (e.g., “6 lowercase letters,
followed by 2 digits”) of the password is. It returns a number between 1 (Nth most common structure)
and N (most common structure). We are currently using N = 2,124 structures based on our work on
adaptive password-composition policies.

• uppercasePredictable() returns 1 (true) or 0 (false) whether the usage of uppercase characters in
this password is predictable. To determine predictability, we examined capitalization patterns in the
10 million Xato passwords [34]. The two most common capitalization patterns, which are thus the ones
we label as predictable, are capitalizing only the first character and using all uppercase characters.

• digitsPredictable() returns 1 (true) or 0 (false) whether the location of digits in this password is
predictable. To determine predictability, we examined patterns in the location of digits in the 10 million
Xato passwords [34]. The patterns we identified as predictable are constructing the password exclusively
of digits, putting the digits in one group at the beginning of the password, and putting the digits in one
group at the end of the password.

• symbolsPredictable() returns 1 (true) or 0 (false) whether the location of symbols in this password
is predictable. To determine predictability, we examined patterns in the location of symbols in the
10 million Xato passwords [34]. The patterns we identified as predictable are putting the symbols in
one group at the end of the password or constructing the password as letters-symbols-digits.

• alphabeticSequenceCheck() return the number of characters that are part of alphabetic sequences
(e.g., “abc” or “aceg”) or numerical sequences (e.g., “123” or “1357”) that are at least 3 characters long
and are defined using the difference in ASCII codes between adjacent characters. If the inter-character
difference in ASCII codes is the same, the elements in that string or substring are an alphabetic
sequence. If there are multiple such sequences, it returns the sum of the number of characters in each.

• commonsubstringCheck() returns the number of characters in the password that are common sub-
strings in passwords. We require that these substrings contain 4–8 characters and occur at least 2,000
times each among the 10 million Xato passwords [34]. We build the list of common substrings in
order of decreasing length, ignoring potential substrings that are themselves substrings already on our
list. For instance, if we identify “monkey” as a common substring, will not add “monke” to the list of
common substrings. In total, we identified 2,385 substrings that met these criteria.

• combinedDictCheck() returns three values. First, it returns the number of characters in the password
contained from any of the sources listed below:

7.2. MEASURING PASSWORD STRENGTH IN OUR DATA-DRIVEN METER 101

1. A list of the 234 most popular pet names

2. The 2,500 most popular male and 2,500 most popular female names according to the U.S. census

3. The top 50,000 three-word phrases used on Wikipedia [200]

4. Frequently used English words taken from the intersection of the BYU Corpus of Contemporary
American English (COCA) 100,000 most frequent 1-grams [50] and the Unix dictionary

5. The 100,000 top single words (1-grams) used on Wikipedia [200]

For each list, we removed those that were internal duplicates (e.g., some common male and female
names are identical, and some distinct three-word phrases appear the same after removing spaces and
punctuation), and we also removed any that appeared on a list above it (following the order listed
above) or was a keyboard pattern, string of a single character repeated, or alphabetic/numeric sequence.

In addition to checking for these words in a case-insensitive manner, we also evaluate whether a
transformation of these words is present by reversing all instances of the 10 most common character
substitutions in passwords [183]. For instance, if the user’s password contains a “4,” we will evaluate
whether replacing that character by an “a” or “for” leads to the password containing a dictionary word.
The commonness of the substitution (what percentage of all substitutions follow that particular rule, as
determined in Chapter 5) is the second value returned by this function. It also returns the number of
distinct dictionary tokens (e.g., a password that contains two separate dictionary words contains two
tokens) as the third value.

• commonpwCheck() returns the length of the longest substring of the password that is itself one of the
90,116 passwords that appears at least 10 times in the Xato.net corpus of 10 million passwords [34].

• repeats() returns the number of characters in the longest string of at least 3+ consecutive, repeated
characters (e.g., “monkeeey” returns 3, while “monkeey” returns 0) in the password.

• repeatedSections() returns the number of characters in the password that repeat, either forwards or
backwards, a string of 3+ characters that appeared earlier in the password (case insensitive) . For
instance, “monkey” returns 0, “monkeymonkey” and “monkeyyeknom” would each return 6, while
“monkeymonkey123yeknom” would return 12.

• identifyDates() returns the number of characters in the password contained in a date. We use the
common ways of writing dates observed by Veras et al. [189] in their investigation of the use of dates in
passwords from the RockYou breach [187]. We search for dates in MM-DD-YYYY, DD-MM-YYYY,
MM-DD-YY, and DD-MM-YY format using the following delimiters: space; period; hyphen; forward
slash. We subsequently search for dates in MMDDYYYY and DDMMYYYY format without any
delimiters. We also search for written-out months (e.g., “april”) and recent years (4 digits or 2 digits).
We also search for MM-DD and DD-MM dates using the following delimiters: space; period; hyphen;
forward slash. Finally, we search for recent years (1900 through 2049).

• duplicatedCharacters() returns the total number of characters that are duplicates of characters used
previously in the password. The repetition of characters does not need to be consecutive. For instance,
“zcbm” contains 0 duplicated characters, “zcbmcb” contains 2 duplicated characters, and “zcbmbb”
also contains 2 duplicated characters.

102 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Table 7.1: Linear regression results. The order of magnitude of the Password Guessability Service min auto
guess number [185] (that is, log10(guess#)) is the dependent variable, and the ratings of the passwords on
each characteristic are the independent variables. The function countSyms() was collinear with other terms,
so we dropped it from the regression. Adjusted R2 = 0.580.

Characteristic Coefficient Std. Error t-value p

Intercept 1.530 0.182 8.406 <.001
pwLength().score 0.313 0.050 6.231 <.001
countUC().score 0.911 0.051 17.894 <.001
countLC().score 0.737 0.050 14.802 <.001
countDIGS().score 0.758 0.050 15.258 <.001
countSYMS().score – – – –
characterClasses().score 0.991 0.048 20.61 <.001
keyboardPatterns().score -0.117 0.020 -5.920 <.001
structurePredictable().score -0.001 <.001 -17.074 <.001
uppercasePredictable().score -0.301 0.088 -3.407 <.001
digitsPredictable().score -0.557 0.058 -9.661 <.001
symbolsPredictable().score 0.135 0.115 1.177 0.239
alphabeticSequenceCheck().score -0.240 0.012 -20.07 <.001
commonsubstringCheck().score -0.136 0.006 -22.533 <.001
combinedDictCheck().score -0.553 0.013 -44.276 <.001
combinedDictCheck().dictionaryTokens 1.927 0.053 36.369 <.001
combinedDictCheck().substitutionCommonness 0.001 <.001 2.294 0.022
commonpwCheck().score -0.395 0.008 -51.182 <.001
repeats().score -0.004 0.015 -2/551 0.011
repeatedSections().score -0.298 0.021 -14.013 <.001
identifyDates().score -0.121 0.012 -10.528 <.001
duplicatedCharacters().score 0.046 0.015 3.005 0.003

• contextual() returns the password after removing the longest string of five or more contiguous charac-
ters of the password that overlap (case-insensitive) with the user’s chosen username. If there is no such
overlap, the function returns the original password.

• blacklist() returns the password after removing all occurences of a service-specific substring blacklist
of terms very closely related to the service. The site-specific blacklist for Carnegie Mellon, for instance,
might contain terms like “carnegie,” “mellon,” “cmu,” “education,” “tartans,” “andrew,” and other terms
closely associated with the institution. If there is no such overlap, the function returns the original
password.

After scoring a particular password on each of these different characteristics, we have 23 distinct scores,
three from combinedDictCheck() and one from each of the 20 other functions. To combine these individual
scores into a final score for the password in a principled way, we performed a linear regression. In particular,
we scored a sample of 15,000 passwords taken from the breach of the gaming website RockYou [187]
and another 15,000 passwords taken from the breach of Yahoo’s Associated Content service [77] by all
of these characteristics except for contextual() and blacklist(). We did not score the passwords on these
two functions because they are respectively user-specific and account-specific. The 21 scores from the 19
remaining functions were the independent variables in our regression.

7.3. VISUAL DESIGN AND USER EXPERIENCE 103

The dependent variable in our regression was the guessability of a password. We calculated each
password’s guessability using the CMU Password Guessability Service (PGS) [37,185], which is a product of
our prior work modeling password-guessing algorithms and tools (Chapter 4). We used the PGS recommended
settings, modeling a probabilistic context-free grammar [197], order-5 Markov model [123], Hashcat [166],
and John the Ripper [139], with the latter two in wordlist mode. For each password under each guessing
approach, PGS returns a guess number, which is the number of guesses that approach (in that configuration
and with that training data) took to arrive at that password, or “unguessed” if it did not guess that password
by its guessing cutoff (approach-dependent, but generally around 1014). We similarly followed the PGS
recommendation of conservatively considering a password to be guessed as soon as any of those four
approaches guessed it.

Because we were most concerned with the order of magnitude of guessing, rather than the specific guess
number, we took the logarithm (base 10) of the guess number and set that value as the dependent variable. We
arbitrarily set the dependent variable for unguessed passwords to 15, which is beyond the order of magnitude
for any password’s guess number in our PGS tests. We then tried modeling the scores of our 30,000 test
passwords’ scores to a generalized linear regression model, as well as an ordinal model. The linear regression
model was a better fit, and therefore we used the linear regression results, shown in Table 7.1. We also
initially tested using countSYMS() as part of the regression, but it was collinear (completely correlated) with
the number of character classes in the password (characterClasses()), so we dropped it from the regression.

The results of this regression enable us to weight the characteristics in a principled way to estimate
password strength. In scoring a candidate password, we use the coefficients determined in this regression
to weight the score from each characteristic. Before scoring the password, however, we remove from the
candidate password the overlap between a user’s chosen username and his or her chosen password (identified
by the contextual() function) and substrings of the password contained in a service-specific blacklist of terms
very closely related to the service (identified by the blacklist() function). In scoring a password, we thus
completely discount (give no scoring credit to) all characters in the password identified by either.

7.3 Visual Design and User Experience

In this section, we describe the visual design of our meter. At a high level, the meter comprises three different
screens. The main screen uses the visual metaphor of a bar to display the strength of the password, and it
also provides detailed, data-driven feedback about how the user can improve his or her password. The main
screen also contains links to the two other screens. Users who click “(Why?)” links next to the feedback
about their specific password are taken to the specific-feedback modal, which gives more detailed feedback.
Users who click the “How to make strong passwords” link or “(Why?)” links adjacent to feedback about
password reuse are taken to the generic-advice modal, which is a static list of abstract strategies for creating
strong passwords.

Below, we first explain how we synthesize the two password-strength ratings (described in Section 7.2)
and map these ratings to a visual representation, specifically a bar metaphor. We then describe each of the
three screens in our visual design, as well as their sub-components, in greater detail.

104 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

7.3.1 Translating Scores to a Visual Bar

Password-strength measurements are normally displayed to users not as a numerical score, but using visual
metaphors like a colored bar [51, 182]. In creating our meter, we needed to decide how to map a password’s
scores from both the neural network and advanced heuristic methods to the amount of the bar that should be
filled. This step is particularly crucial because we found in our prior work (Chapter 3) that the stringency of
the rating displayed by the meter has a significant impact on the strength of passwords users create [182].

We conservatively took the lower of the neural network and advanced heuristic estimates for the number
of guesses the password might withstand. So that the bar would scale with the order of magnitude of guessing
resistance and subsequently show progress even for the first few characters a used typed, we then calculated
the log10 of this lower estimate of the number of guesses.

Our prior work has shown that most users do not endeavor to fill the bar, but rather consider a password
sufficiently strong if only part of the bar is full [182]. As a result, we chose to map scores to the bar such
that one-third of the bar being filled means that the candidate password would likely resist an online attack,
while two-thirds of the bar being filled means that the candidate password would likely resist an offline
attack, assuming that a hash function designed for password storage (see Section 2.1) is used. In our default
configuration, we chose to map an estimated 1012 guesses to two-thirds of the bar being filled, and thus map
106 guesses to one-third of the bar being filled. We based these estimates on those of Florêncio et al. [69]. As
we describe in Section 7.5, however, we tested three different mappings (scoring stringencies) as part of our
online study of the meter.

7.3.2 Main Screen

The main screen includes fields for the username, password, and password confirmation. Similar to many
prior password-strength meters [51, 65, 182], a bar below the password field fills up and changes color to
indicate increasing password strength. Different from previous meters, though, our meter also displays
data-driven text feedback about what aspects of the user’s specific password could be improved.

As shown in Figure 7.1, the meter initially displays text noting which requirements have, and which have
not, been met. Once the user begins to enter a password, the meter indicates that a particular requirement
has been met by coloring that requirement’s text green and displaying a check mark. It denotes unmet
requirements by coloring those requirements’ text red and displaying empty checkboxes. Until the user’s
password meets the requirements, the bar displaying the password’s strength rating is always gray, as opposed
to changing colors to reflect password strength.

Colored Bar Once the password meets the account’s composition requirements, we display the bar in color
(termed the colored bar in the remainder of this chapter). With increasing password-strength ratings, the
bar progresses from red to orange to yellow to green. As described above, a bar that is at least one-third full
represents a password that is estimated to resist an online attack, whereas a bar that is at least two-thirds full
represents a password that is estimated to resist an offline attack. When it is one-third full, the bar is a dark
shade of orange. At two-thirds full, it is yellow, soon to turn to green. Rather than employing a small set of
discrete colors, the meter reflects small changes in password strength with small changes in color.

Text Feedback Whereas the colored bar is typical of password-strength meters [182], our meter is among
the first to provide detailed, data-driven text feedback on how the user can improve his or her specific

7.3. VISUAL DESIGN AND USER EXPERIENCE 105

Figure 7.1: The meter’s main screen prior to the password meeting the stated password-composition policy.
The bar is gray because the password does not comply with the composition policy.

candidate password. We designed the text feedback to be directly actionable by the user, in addition to being
specific to his or her password. Examples of this feedback include, as appropriate, exhortations to avoid
dictionary words and keyboard patterns, encouragement to move uppercase letters away from the front of the
password and digits away from the end of the password, and suggestions for including digits and symbols.

Most of the feedback comments on specific aspects of the password. Because users are likely not
expecting their password would be shown on screen, particularly if they are creating their password in a
public place, we designed two variants for each piece of feedback: a public and a sensitive version. The
public versions of feedback mention only the general class of characteristic the password contains (e.g.,
“avoid using keyboard patterns”), whereas the sensitive versions also display the problematic portion of the
password (e.g., “avoid using keyboard patterns like adgjl”). As shown in the top part of Figure 7.2, we display
the public versions of feedback when the user is not showing his or her password on screen, which is the
default behavior. We provide checkboxes with which a user can “show [their] password & detailed feedback,”
at which point we use the sensitive version (as shown in the bottom part of Figure 7.2).

To avoid overwhelming the user, we show at most three pieces of feedback at a time. Each of our 21
advanced heuristic functions returns either one sentence of feedback or the empty string. If the candidate
password is predictable in the way measured by the particular function, it returns the sentence of feedback. If
the password is not predictable in that way, the function returns the empty string. To choose which of the
potentially 21 pieces of feedback to display, we manually ordered the 21 functions to prioritize those that
would display the most critical problems and would provide the most novel information to users. We list our
final prioritization in Section D.1 in the appendix. Based on our iterative testing and formative laboratory
study (Section 7.4), we reordered these functions numerous times.

Suggested Improvement Humans are poor sources of randomness. Because many potential improvements
to a password involve making hard-to-predict modifications, we decided to augment our text feedback with

106 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Figure 7.2: The meter’s main screen giving feedback specific to the password the user typed. The two variants
for the same password reflect when the password is hidden (top) and shown (bottom).

7.3. VISUAL DESIGN AND USER EXPERIENCE 107

Figure 7.3: An example of suggested improvements for the password “Mypassword123.” The suggested
improvement is “My123passwoRzd,” with the changes highlighted in magenta.

a suggested improvement. Although the text feedback is specific to a particular candidate password, its
actionable requests (e.g., “capitalize a letter in the middle”) still require that the user make an unpredictable
choice. Therefore we also randomly generated a suggested improvement, or concrete modification of the user’s
candidate password. As shown in Figure 7.3, a suggested improvement for the password “Mypassword123”
might be “My123passwoRzd.”

We generate this suggested improvement as follows. First, we take the user’s current candidate password
and make one of the following modifications: toggle the case of a random letter (lowercase to uppercase, or
vice versa), insert a random character in a random position, or randomly choose a character for which we
substite a randomly chosen different character. In addition, if all of the password’s digits or symbols are in a
common location (e.g., at the end), we move them as a group to a random location within the password. We
choose from among this large set of modifications, rather than just making modifications corresponding to
the specific text feedback the meter displays, to greatly increase the space of possible modifications. We then
verify that this modification still complies with the password-composition requirements. If so, we rate its
strength by both the neural network and advanced heuristics.

To encourage passwords that we estimate would resist an offline attack, we require that the suggested
improvement would both fill at least two-thirds of the bar and would be at least 1.5 orders of magnitude
harder to guess than their current password. When we have generated a suggested improvement that meets
our strength threshold and the user is currently showing his or her password, we display the suggested
modification on screen with changes highlighted in magenta, as in Figure 7.3. If the user is not showing
his or her password, we do not want to display the suggested improvement on screen because it would
reveal the user’s password. Therefore, we instead show a blue button stating “see your password with our
improvements.” If our first try at making such a modification is not enough of an improvement and the user

108 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

has not already modified his or her candidate password, we recursively try to make additional modifications.
We stop recursing at a depth of 8 to avoid performance issues.

7.3.3 Specific-Feedback Modal

For the main screen, we designed the feedback specific to a user’s password to be both succinct and
action-oriented. Although the rationale for these specific suggestions might be obvious to many users, we
expected it would not be obvious to all users based on our prior work on password perceptions [181] and
misconceptions [184].

To have the screen real estate to give more detailed explanations of why our specific suggestions would
improve a password, we created a modal window. We term this window our specific-feedback modal, and we
show an example of it for the password “Potat0es5678” in Figure 7.4. When a user clicks the blue, underlined
“(Why?)” link next to each piece of password-specific feedback on the main screen, the modal appears.

The specific-feedback modal’s main bullet points mirror those from the main screen. As on the main
screen, we show more detailed feedback (e.g., the specific dictionary words observed) when the user is
showing his or her password. Below each of these main points, however, the specific-feedback modal also
explains why this action would improve the password. Our explanations take one of two primary forms. In
the first form, we explain how attackers could exploit particular characteristics we observe in the candidate
password. For instance, as in Figure 7.4, we explain that attackers try simple transformations of dictionary
words when we observe a password that contains such simple transformations. In the second form, we
provide statistics about how common different characteristics are to discourage users from employing those
characteristics. For instance, in Figure 7.4, we note (in more succinct phrasing) that 30% of passwords that
contain a capital letter have only the first character of the password capitalized. We base all of our statistics
on our analyses of the Xato corpus of 10 million passwords [34].

Because the detailed explanations might spur a user to modify his or her candidate password, we include
a password field at the top of the specific-feedback modal. When the user has modified this password, the “ok”
button at the bottom of the screen is replaced by buttons to cancel or keep the changes made to the password
in the modal window.

7.3.4 Generic-Advice Modal

Whereas we designed the main screen and the specific-advice modal to give feedback particular to the
candidate password a user had typed in, it is not always possible to generate such data-driven feedback.
For instance, until a user has typed more than a few characters into the password field, the strength of the
candidate password, or even what the candidate password might be, cannot yet be definitively determined. In
addition, extremely predictable candidate passwords (e.g., “password” or “monkey1”) essentially require that
the user completely rethink his or her strategy for creating a password.

We therefore also created a generic-advice modal (Figure 7.5) that recommends abstract strategies for
creating passwords. Users access the generic-advice modal by clicking “how to make strong passwords” or
“(Why?)” next to suggestions to avoid password reuse. The first of four points we make on the generic-advice
modal advises against reusing a password across accounts. We chose to make this the first point because
password reuse is very common [49, 68, 70, 169], yet is a major threat to security, as discussed in Section 2.1.

Abstract advice for creating a password can either focus on steps the user should take (i.e., “do this”)
or common patterns they should avoid (i.e., “do not do this”). Because the former more directly guides a

7.3. VISUAL DESIGN AND USER EXPERIENCE 109

Figure 7.4: The meter’s data-driven modal window giving feedback specific to the password the user typed.
The two variants reflect when the password is hidden (top) and shown (bottom).

110 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Figure 7.5: The meter’s generic-advice modal window, which warns against password reuse and provides
guidance about strategies for creating strong passwords, as well as highlighting predictable decisions to avoid.

user towards taking some action, we chose to recommend constructive, action-oriented strategies as our
second and third points. In particular, reflecting research that showed that passwords balancing length and
character-class complexity were often strong [155] and because attackers can often brute-force passwords up
to at least 9 characters in an offline attack [80,171], our second point recommends using at least 12 characters
in the password. To help inspire users who are unfamiliar with how to make a 12+ character password in
unfamiliar ways, we use the third point to propose a way of doing so based on Schneier’s recommended
method [152]. In particular, we encourage the user to make up a unique sentence and use mnemonics or
fragments from that sentence as the basis for their password. Finally, the fourth point recommends against
common password characteristics (Section 2.4) because some users mistakenly believe those characteristics
to be secure [181, 184].

7.4 Formative Laboratory Study

While we had followed an iterative design process involving members of our research team and collaborators
from industry, we wanted to solicit additional rich feedback from users. We therefore conducted a formative
study in which we brought ten participants to our lab to use our password-strength meter and provide detailed
feedback. We also interviewed them briefly about their password-creation habits, opinions, and strategies.
Based on this formative laboratory study, we made numerous tweaks to the wording and visual design of the
meter. Below, we discuss the study methodology, results, and our subsequent changes to the meter.

7.4. FORMATIVE LABORATORY STUDY 111

7.4.1 Methodology

We recruited participants from our local Craigslist site for a study about passwords. For the study, which
lasted approximately 45 minutes, we compensated participants with a $20 Amazon gift card.

The study comprised three parts. In the first part, we conducted a semi-structured interview that solicited
the participant’s goals when making a password, opinions about what makes a password secure, experiences
with different sources of password feedback (e.g., password-strength meters) and advice (e.g., newspaper
articles), and password management strategies. We designed these questions to gain a baseline understanding
of the participant’s opinions about password creation and management. In the second part, we showed
participants a static slideshow of five password-strength meters we observed when we surveyed the use of
password meters on the 100 most popular websites according to Alexa [5], updating for 2016 a survey we first
performed in 2012 (Section 3.2). To prompt participants to start providing feedback about the user experience
of password feedback, we asked participants to point out aspects they both liked and disliked of each meter
they saw.

The third part of the study, which was of primary interest to us, gave the participant the chance to try
two prototype password-strength meters. One meter, which we called the “red meter,” represented our
prototype meter at the moment the session was conducted. To give participants a point of comparison,
we created a second meter, which we called the “purple meter,” that used a re-colored version of the red
meter’s main screen. Rather than providing text feedback (other than the same feedback about meeting
password-composition requirements) or using our scoring, the purple meter instead scored the password
using zxcvbn [198]. The purple meter thus represents a best-in-class [51, 199] example of currently deployed
password-strength meters. We did not indicate the provenance of these meters until the debrief at the end of
the sesssion. Instead, we told participants that these were two prototype concepts that we were testing, and
we wanted both positive and negative feedback on both.

We provided the participant with a laptop that had the red and purple prototypes open in separate browser
tabs. We instructed the participant to try a number of passwords on each of the prototypes “to get a feel for
how they work.” We also asked that they try some of the same passwords on both. If a participant ran out of
ideas for passwords to try, we gave them a sheet of suggested passwords that would exercise key features of
each prototype. We provided participants a piece of paper with columns for each meter’s pros and cons, and
we instructed them that they could either tell us their feedback as they went along or they could jot down
their feedback on that sheet and summarize it for us at the end of the session. We emphasized that we were
curious about both positive and negative feedback. We used the feedback from this portion of the session to
identify potential usability issues.

The primary purpose of our formative laboratory study was to gather feedback on key usability charac-
teristics of the meter with the intent of improving its wording, design, and user experience. We therefore
chose to update the meter after each session to address usability problems or unclear aspects of the meter
identified in that session. This approach limits the generalizability of our scientific findings, yet maximizes
the benefits for improving the design of the meter, allowing us to quickly test potential remediations for
usability shortfalls.

To facilitate analysis, we transcribed all interviews. We developed a preliminary codebook based on our
initial hypotheses and the topics covered in the interview script. While coding, we updated the codebook to
reflect themes of potential interest not captured by the initial codebook.

112 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

7.4.2 Results

We begin by describing the demographics of the ten participants in our in-lab interviews. We then present the
key findings from our interviews, subsequently describing the design take-aways and resultant modifications
we made to our meter prior to beginning the online study.

Participant Demographics

Participants’ ages ranged from 22 to 61 (mean 39.2, median 41). Four participants identified as male, while
the other six identified as female. One participant was unemployed, three were full-time students, and the
other six were employed in a variety of fields (retail work, human services administration, social work,
medical billing, audio engineering, and construction).

Overall, participants were not especially tech-savvy. Only one of the ten participants reported having a
degree or job in a field related to computer science or technology, and all ten participants responded “no”
when asked if they have “particular expertise in computer security topics.” Despite this lack of technical
expertise, all used passwords regularly. Nine of the ten participants reported creating or changing a password
in the prior month, while the remaining participant reported doing so in the prior six months.

Key Findings

On the whole, most participants found the prototype representing our proposed meter to be helpful and
informative. As P17 explained, “It gives me lots of feedback right away, and...it instructed me to put my
capital in a different place, because I put it at the beginning where evidently most people do.” In particular,
she had not previously realized that her tendency to put capital letters at the beginning of passwords was very
typical until clicking a “(why?)” link next to feedback our meter provided. Other participants noted that the
optional nature of the feedback was an advantage, with P15 stating, “I liked that it had the little suggestion
button, and it kind of like taught you things and it was available if you wanted it.” Not every feature would
suit every participant, though. P19 made up sentences as the basis for her passwords, and she found that the
suggested improvement was useless because it was “the same letters, but jumbled around a bit with some new
letters added, so it doesn’t make sense with my original sentence.”

Some participants found the meter’s feedback slightly creepy. While P10 was explaining why he found
the meter to be fun, he explained, “Like if you are repeating a phrase, it tells you you should not repeat a
phrase. If you have just characters, it encourages you to put numbers and to mix uppercases. And it tells you
to not use words that you could find in a dictionary. Yeah. So that’s the fun part about it. But...it would make
some users think, ‘Oh someone’s reading my password right now.’ It’s this sense of paranoia.”

Another major theme in our laboratory study was participants’ reluctance to click on aspects of the
interface to learn more. Some information we deemed important was only available on these secondary
screens, including full explanations for why to avoid certain patterns in passwords and our suggestions for
ways to approach making a password, which is why we were concerned that many participants did not click
on these elements. Some participants explained that they did not do so because they are “not interested in
password education” or thought the feedback they received was obvious or otherwise self-explanatory. As
P17 explained, “I’m very naive and trusting I guess...I look at my password and say, ’Yes, any fool can
sort of figure out what I’m trying to put down there.”’ In other cases, though, the reluctance to click was a
misunderstanding. For instance, P15 did not click on the button to see the suggested improvement because

7.4. FORMATIVE LABORATORY STUDY 113

she thought it would be simply a random string. She did not understand why we forced users to take the step
of showing their password, saying, “Like why couldn’t it just suggest a better one, unless it was somehow
linked to what I had already [as my password] just changing something slightly.” Indeed, the password we
would have shown was a slightly changed version of her password, and we subsequently changed the wording
on the button to make this point clear.

A number of prior studies [49,68,169,170,184] have identified password reuse as very common, yet very
problematic for security because of the nature of attacks against passwords (see Section 2.1). Unfortunately,
our initial prototype meter did not emphasize to the user not to reuse passwords, and many of our participants
said they regularly reused passwords. Two participants in particular reused the same password across all of
their accounts. P19 explained, “There was a point when I had slightly different passwords for every site,
but then I would forget which password was associated with each site, so I would get locked out of the site
because I would try like 5 different passwords...I just like streamlined it and made [my passwords] all the
same.” Similarly, P18 mentioned that “whether it’s a bank account, or email, or whether it’s a gambling
account online...They’re all generally the same, if not close to the same, password.” When asked if he had
any concerns about this approach, he said, “No, because I don’t give [my password] to nobody.” Previously,
he carried around a rubber-banded stack of index cards with passwords, but tired of doing so.

7.4.3 Takeaways and Changes to the Meter

A major set of changes during and following the laboratory study related to users’ workflow through the three
screens described in Section 7.3. Few of the initial participants in the laboratory study visited either modal
window, and few chose to show their password on screen, which means that they did not see the suggested
improvement at all. As a result, we tested a number of variants to the workflow for subsequent participants.
We tried varying the layout, colors, format, and text descriptions for all buttons and links that would bring the
user to either modal window or show their password.

Aspects of the final prototype that we changed as a result of this experimentation include adding
“& detailed feedback” to “show password” options, placing “(Why?)” links next to each piece of text
feedback rather than presenting a single “learn more” button at the bottom of the window, and adding
a “see your password with our improvements” button where the suggested improvement would appear if
the password were shown. The text of this final button also underwent several iterations as a result of
our participants’ feedback. While we initially used the text “Show a better choice” and “Show a stronger
password,” participants expected that we would be presenting a randomly generated password, rather than
their password with randomly selected modifications. As a result, participants tended not to click “show a
stronger password,” and the one that did was surprised that a small modification of her password appeared on
screen. Based on the surprised participant’s feedback and discussions within our group, we settled on the text
“see your password with our improvements.”

Password reuse is among the major threats to password security, as discussed in Section 2.1. Even
after using our meter, though, two of our ten participants stated that reusing the same password across
sites is not problematic because their password was strong, echoing findings from prior work on security
misconceptions [184]. As a result, we revised the meter’s user experience to strongly advise against password
reuse. As shown in Figure 7.1 of the previous section, our first text feedback, even before listing password-
composition requirements, is now an admonition against password reuse with a “(Why?)” link to our
generic-advice modal. Similarly, when the meter estimates that the password would resist an offline attack,

114 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

the meter notes, “Your password is pretty good. Use it only for this account. (Why?)”
Another series of changes involved how we classified and discussed strings. Some strings conceptually

fall into numerous categories. For instance, “aaaa” is a repetition of the same character (the repeats() function),
yet also is a keyboard pattern by our definition. It also appears in many dictionaries as an initialism. This
overlap confused participants. They were surprised, for instance, that “qwerty” was considered a dictionary
word and that repeated characters were considered a keyboard pattern. As a result, we rebuilt our dictionaries,
removing all strings that were keyboard patterns, repetition of the same character, or other patterns (e.g.,
“xyz” and “1357”). We also eliminated overlap among these functions, such as preventing “aaaa” from being
classified as a keyboard pattern.

As a result of participant confusion, we also changed terminology and separated what we now call
“alphabetic patterns” (e.g., “xyz” and “aceg”) from what we now call “numerical patterns” (e.g., “1357”).
Similarly, while we had initially classified words that appeared commonly on Wikipedia as “dictionary words,”
participants disliked that surnames, uncommon words, and other proper names were termed dictionary words.
As P1 ruminated during his interview while expressing surprise at parts of his password that were identified
as dictionary words, “It’s like playing words with friends, except not really. It is a real word, right?” We
therefore now identify any non-dictionary word that falls into this category as a “word used on Wikipedia.”

Similarly, our function to identify dates had initially been very inclusive of what strings it judged to
be dates because of the vast array of ways in which dates appear in passwords [189]. Participants found it
confusing that the function identified what they intended to be fairly arbitrary strings of digits as dates, so we
subsequently winnowed down the list of patterns recognized by the dates function to include only the most
obvious dates.

We also made a number of minor wording tweaks, including to the wording we used when a password
was estimated to resist an offline attack (now the hints are “to make it even better”) and in how we explained
the technique of creating a novel sentence as the basis for a password. In response to a participant questioning
the meter’s feedback not to use the character transformation they had employed, we expanded our explanation
about how attackers guess simple transformations of common words. Finally, one participant who had a
disability brought up accessibility concerns, encouraging us to plan on adding additional support for screen
readers beyond those we had already considered.

7.5 Summative Online Study

After making all of the changes suggested by our formative laboratory study and further stress-testing the
meter among our team and industry collaborators, we conducted a summative online study. The dual purposes
of this study were both to measure how the meter impacted both the security and usability of the passwords
participants created, as well as to quantify on a larger scale how users interacted with different elements of
the meter.

7.5.1 Methodology

We recruited participants from Amazon’s Mechanical Turk3 crowdsourcing service for a study on passwords.
We required that participants be age 18+ and be located in the United States. In addition, because we had

3Amazon’s Mechanical Turk. https://www.mturk.com

https://www.mturk.com

7.5. SUMMATIVE ONLINE STUDY 115

only verified that the meter worked correctly on Firefox, Chrome/Chromium, Safari, and Opera, we required
they use one of those browsers.

In order to measure both password creation and password recall, the study comprised two parts. The first
part of the study, which we term Part 1, included a password creation task, a survey, and a password-recall task.
We assigned participants round-robin to a condition specifying the meter variant they would see when creating
a password. After studying 18 conditions in our first experiment, we were left with lingering questions. We
therefore ran a second experiment that added 8 new conditions and repeated 4 existing conditions.

The second part of the study, which we term Part 2, took place at least 48 hours after the first part of the
study and included a password-recall task and a survey. We compensated participants $0.55 for completing
Part 1 and $0.70 for Part 2.

Part 1

Following the consent process, we instructed participants that they would be creating a password. We asked
that they role play and imagine that they were creating this password for “an account they care a lot about,
such as their primary email account.” We informed participants they would be invited back in a few days to
recall the password and asked them to “take the steps you would normally take to create and remember your
important passwords, and protect this password as you normally would protect your important passwords.”

The participant then created a username and a password. While doing so, he or she saw the password-
strength meter (or lack thereof) dictated by his or her assigned condition, described below. Participants then
answered a survey about how they created that password. We first asked participants to respond on a 5-point
scale (“strongly disagree,” “disagree,” “neutral,” “agree,” “strongly agree”) to statements about whether
creating a password was “annoying,” “fun,” or “difficult.” We also asked whether they reused a previous
password, modified a previous password, or created an entirely new password.

The next three parts of the survey asked about the meter’s colored bar, text feedback, and suggested
improvements. At the top of each page, we showed a text explanation and visual example of the feature in
question. Participants in conditions that lacked one or more of these features were not asked questions about
that feature. For the first two features, we asked participants to rate on a five-point scale whether that feature
“helped me create a strong password,” “was not informative,” and caused them to create “a different password
than [they] would have otherwise.” We also asked about the importance participants place on the meter giving
their password a high score, their perception of the accuracy of the strength rating, and whether they learned
anything new from the feedback.

After the participant completed the survey, we brought him or her to a login page and auto-filled his or
her username. The participant then attempted to re-enter his or her password. We refer to this final step as
Part 1 recall. After five incorrect attempts, we let the participant proceed.

Part 2

After 48 hours, we automatically emailed participants to return and re-enter their password. We term this
step Part 2 recall, and it was identical to Part 1 recall. We then directed participants to a survey about how
they tried to remember their password. In particular, we first asked how they entered their password on the
previous screen. We gave options encompassing automatic entry by a password manager or browser, typing
the password in entirely from memory, and looking a password up on paper or electronically.

116 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Conditions

In Experiment 1, we assigned participants round-robin to one of 18 different conditions that differed across
three dimensions in a full-factorial design. We refer to our conditions using three-part names reflecting the
dimensions: 1) password-composition policy; 2) type of feedback; and 3) stringency. Table 7.2 lists the 18
conditions we tested and their short-form names, which we use throughout the results section.

Dimension 1: Password-Composition Policy We expected a meter to have a different impact of password
security and usability if used in association with a minimal or a more complex password-composition policy.
We tested the following two policies, which respectively represent a widespread, lax policy and a more
complex policy.

• 1class8 (1c8) requires that passwords contain 8 or more characters, and also that they not be (case-
sensitive) one of the 96,480 such passwords that appeared four or more times in the Xato corpus of
10 million passwords [34].

• 3class12 (3c12) requires that passwords contain 12 or more characters from at least 3 different character
classes (lowercase letters, uppercase letters, digits, and symbols). It also requires that the password not
be (case-sensitive) one of the 96,926 such passwords that appeared in the Xato corpus [34].

Dimension 2: Type of Feedback Our second dimension varies the type of feedback we provide to
participants about their password. While the first setting represents our standard meter, we removed features
for each of the other settings to test the impact of those features.

• Standard (Std) includes all previously described features.

• No Suggested Improvement (StdNS) is the same as Standard, except it never displays a suggested
improvement.

• Public (Pub) is the same as standard, except we never show sensitive text feedback (i.e., we never
show a suggested improvement and always show the less informative “public” feedback normally
shown when the password is hidden).

• Bar Only (Bar) shows a colored bar displaying password strength, but we do not provide any type of
text feedback other than which composition requirements have been met.

• No Feedback (None) gives no feedback whatsoever.

Dimension 3: Scoring Stringency Ur et al. found the stringency of a meter’s scoring has a significant
impact on password strength [182]. We thus tested two scoring stringencies. These stringencies changed the
mapping between the estimated number of guesses the password would resist and how much of the colored
bar was filled.

• Medium (M) One-third of the bar full represents 106 estimated guesses and two-thirds full represents
1012 guesses.

• High (H) One-third of the bar full represents 108 estimated guesses and two-thirds full represents 1016

guesses.

7.5. SUMMATIVE ONLINE STUDY 117

Table 7.2: The conditions we tested in Experiment 1 of our online study. The bold text represents the
short-form names we use throughout our results section, while the corresponding non-bold text details the
settings of each dimension.

1c8-Std-M (1class8-Standard-Med.) 3c12-Std-M (3class12-Standard-Med.)
1c8-Std-H (1class8-Standard-High) 3c12-Std-H (3class12-Standard-High)
1c8-StdNS-M (1class8-NoSuggestion-Med.) 3c12-StdNS-M (3class12-NoSuggestion-med.)
1c8-StdNS-H (1class8-NoSuggestion-High) 3c12-StdNS-H (3class12-NoSuggestion-High)
1c8-Pub-M (1class8-Public-Med.) 3c12-Pub-M (3class12-Public-Med.)
1c8-Pub-H (1class8-Public-High) 3c12-Pub-H (3class12-Public-High)
1c8-Bar-M (1class8-BarOnly-Med.) 3c12-Bar-M (3class12-BarOnly-Med.)
1c8-Bar-H (1class8-BarOnly-High) 3c12-Bar-H (3class12-BarOnly-High)
1c8-None (1class8-NoFeedback) 3c12-None (3class12-NoFeedback)

Table 7.3: The conditions we tested in Experiment 2 of our online study. The bold text represents the
short-form names we use throughout our results section, while the corresponding non-bold text details the
settings of each dimension.

1c8-Std-L (1class8-Standard-Low) 3c12-Std-L (3class12-Standard-Low)
1c8-Std-M (1class8-Standard-Med.) 3c12-Std-M (3class12-Standard-Med.)
1c8-Std-H (1class8-Standard-High) 3c12-Std-H (3class12-Standard-High)
1c8-NoBar-L (1class8-No Bar-Low) 3c12-NoBar-L (3class12-No Bar-Low)
1c8-NoBar-M (1class8-No Bar-Med.) 3c12-NoBar-M (3class12-No Bar-Med.)
1c8-NoBar-H (1class8-No Bar-High) 3c12-NoBar-H (3class12-No Bar-High)

Additional Conditions for Experiment 2 Experiment 2 added the following two settings for our feedback
and stringency dimensions, respectively:

• Feedback: Standard, No Bar (NoBar) The Standard meter without any colored bar. The text feedback
still depends on the password’s score, so stringency still matters.

• Stringency: Low (L) One-third of the bar full represents 104 estimated guesses and two-thirds full
represents 108

To investigate these two settings we introduced eight new conditions and re-ran the four existing standard
feedback medium and high conditions in a full-factorial design, as detailed in Table 7.3.

Analysis

We collected numerous types of data for each participant. Our main security metric was the guessability
of each participant’s password, as calculated by Carnegie Mellon University’s Password Guessability Ser-
vice [37], which models four types of guessing attacks and which they found to be a conservative proxy for
an expert attacker [185]. Our usability measurements encompassed both quantitative and qualitative data. We
recorded participants’ keystrokes as they created their password, enabling us to analyze metrics like password

118 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

creation time. To understand participants’ use of different features, we also instrumented all elements of the
user interface to record when they were clicked.

For both Part 1 and Part 2, we measured whether participants successfully recalled their password. For
participants who did successfully recall their password, we also measured how long it took them, as well as
how many attempts were required. Because not all participants returned for Part 2, we also measured what
proportion of participants did, hypothesizing that participants who did not remember their password might be
less likely to return. A crucial consideration is how participants remembered their password. To only study
attempts at recalling a password from memory, we analyzed password recall only among participants who
said they typed their password in entirely from memory, said they did not reuse their study password, and
whose keystrokes did not show evidence of copy-pasting.

We augmented our objective measurements with analyses of responses to multiple-choice questions and
qualitative analysis of free-text responses. These optional free-text responses solicited participants’ thoughts
about the interface elements, as well as why they did (or did not) find them useful.

Our primary goal was understanding how varying the three meter-design dimensions impacted our
quantitative metrics. Because we had multiple independent variables, each reflecting one design dimension,
we performed regressions. We ran a linear regression for continuous data (e.g., the time to create a password),
a logistic regression for binary data (e.g., whether or not they clicked on a given UI element), an ordinal
regression for ordinal data (e.g., Likert-scale responses), and a multinomial logistic regression for categorical
data with no clear ordering (e.g., how they entered their password).

For our security analyses, we performed a Cox Proportional-Hazards Regression, which is borrowed from
the literature on survival analysis and was used by Mazurek et al. to compare password guessability [126].
Because we know the starting point of guessing but not the endpoint, we use a right-censored model [72]. In
a traditional model using survival analysis in a clinical setting, each data point can be marked as “alive” or
“deceased,” along with the time of the observation. Our analogues for password guessing are “not guessed”
and “guessed,” along with the number of guesses at which the password was guessed, or the guessing cutoff.

We always first fit a model with the three design dimensions (composition policy, feedback, and stringency)
each treated as ordinal variables fit linearly, as well as interaction terms for each pair of dimensions. To
build a parsimonious model, we then removed any interaction terms that were not statistically significant, yet
always kept all three main effects, and re-ran the model.

We corrected for multiple testing using the Benjamini-Hochberg (BH) procedure [14]. We chose this
approach, which is more powerful and less conservative than methods like Holm Correction, because we
performed an exploratory study with a large number of variables. We corrected all p-values for each
experiment as a group. We use α = 0.05.

Note that we analyzed Experiments 1 and 2 separately. Thus, we do not compare conditions between
experiments. However, in the graphs and tables that follow we have combined our reporting of these two
experiments for brevity. We only report “NoBar” and low-stringency data from Experiment 2 in these tables
and graphs. For conditions that were part of both experiments, we only report the results from Experiment 1.

7.5.2 Limitations

We based our study’s design on one researchers have used previously to investigate various aspects of
passwords [92, 108, 155, 182]. However, the password participants created did not protect anything of value.
Beyond our request that they do so, participants did not need to exhibit their normal behavior. Mazurek et

7.5. SUMMATIVE ONLINE STUDY 119

Table 7.4: Results of our initial Cox regression model for Experiment 1, including all three dimensions and
their interactions. Bold p values are significant.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Composition policy -0.687 0.503 0.053 -13.032 <.001
Type of feedback -0.542 0.582 0.373 -1.451 0.147
Scoring stringency 0.006 1.006 0.173 0.034 0.973
Policy * Feedback 0.246 1.279 0.124 1.994 0.046
Policy * Stringency -0.041 0.960 0.075 -0.552 0.581
Feedback * Stringency -0.184 0.832 0.526 -0.349 0.727

al. [126] and Fahl et al. [67] examined the ecological validity of this protocol, finding it to be a reasonable,
albeit imperfect, proxy for high-value passwords for real accounts.

That said, no controlled experiment can capture every aspect of password creation. We tested recall at two
points in time. Similarly, we did not test habituation effects, either to the use of a particular password or to
the novel password-meter features we tested. We did not control the device [192, 203] on which participants
created a password, nor could we control how participants chose to remember their password.

7.5.3 Participants

We had 4,509 participants (2,717 in Experiment 1 and 1,792 in Experiment 2), and 84.1% of them returned
for Part 2. Among our participants, 52% identified as female, 47% identified as male, and the remaining 1%
identified as another gender or preferred not to answer. Participants’ ages ranged from 18 to 80 years old,
with a median of 32 (mean 34.7). We asked whether participants are “majoring in or...have a degree or job in
computer science, computer engineering, information technology, or a related field,” and 82% responded
“no.” Demographics did not vary significantly by condition.

7.5.4 Security Impact

Increasing levels of data-driven feedback, even beyond just a colored bar, led users to create stronger 1class8
passwords. That is, detailed text feedback led to even more secure passwords than just the colored bar alone.
The 3class12 policy also led to stronger passwords, but varying the stringency had only a small impact.

Impact of Composition Policy

We first ran a Cox regression with all three dimensions and their pairwise interactions as independent variables,
and the password’s survival term as the dependent variable. For Experiment 1, we found significant main
effects for both the policy and type of feedback, but we also observed a significant interaction effect between
the policy and type of feedback (Table 7.7). For increased intelligibility, we subsequently ran separate
regressions for 1class8 and 3class12 passwords. As the 3class12 policy requires longer passwords than
1class8, participants unsurprisingly created 3class12 passwords that were significantly longer (p < .001)
and significantly more secure (p < .001) than 1class8 passwords. Similarly, 3class12 passwords included
more digits, symbols, and uppercase letters than 1class8 passwords (all p < .001). Table 7.10 details these
password characteristics per condition.

120 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Table 7.5: Results of our Cox regression model for 1class8 passwords in Experiment 1.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Type of feedback -0.575 0.563 0.099 -5.787 <.001
Scoring stringency -0.021 0.980 0.061 -0.338 0.825

Table 7.6: Results of our Cox regression model for 3class12 passwords in Experiment 1.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Type of feedback -0.239 0.787 0.144 -1.667 0.171
Scoring stringency -0.078 0.925 0.086 -0.910 0.463

Impact of the Amount of Feedback

For 1class8 passwords, we found that increasing levels of data-driven feedback led participants to create
significantly stronger passwords (p < .001). Relative to having no feedback, the full suite of data-driven
feedback led to 44% stronger passwords. As shown in Figure 7.6, the colored bar on its own led participants
to create stronger passwords than having no feedback, echoing prior work [182]. The detailed text feedback
we introduce in this work led to even stronger passwords than just the bar. Increasing the amount of feedback
also led participants to create longer passwords (p < .001). It also led participants to include more digits,
symbols, and uppercase letters (p = .013, p = .001, p = .039). For example, the median length of 1c8-None
passwords was 10 characters, whereas the median for 1c8-Std-M was 12 characters.

Notably, the security of 1class8 passwords created with our standard meter (including all text feedback)
was more similar to the security of 3class12 passwords created without feedback than to 1class8 passwords
created without feedback, as shown in Figure 7.6.

To test how showing more detailed text and the suggested improvement impacts the passwords participants
created, we compared our standard meter (“Std”) to a meter that is otherwise identical to our standard meter,
yet never offers a suggested improvement (“StdNS”), the variant that never shows sensitive feedback and
never shows a suggested improvement (“Pub”), and control variants where we show only the colored bar
without text feedback (“Bar”) and no feedback (“None”). We also examined the variant of the standard meter
that includes all text feedback, yet leaves out the colored bar (“NoBar”). Figure 7.7 details the comparative
security impact of all six feedback levels. Whereas suggested improvements had minimal impact, having the
option to show potentially sensitive feedback provided some security benefits over the public (“Pub”) variant.
When we investigated removing the colored bar from the standard meter, but leaving the text feedback, we
found that removing the colored bar did not significantly impact password strength.

For 3class12 passwords, however, the level of feedback did not significantly impact password strength,
as shown in Figure 7.8. We hypothesize that either we are observing a ceiling effect, in which the 3class12
policy by itself led participants to make sufficiently strong passwords, or that the text feedback does not
provide sufficiently useful recommendations for a 3class12 policy.

7.5. SUMMATIVE ONLINE STUDY 121

Table 7.7: Results of our initial Cox regression model for Experiment 2, including all three dimensions and
their interactions.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Composition policy -0.391 0.676 0.101 -3.868 <.001
Type of feedback (Bar / No Bar) -0.059 0.943 0.072 -0.809 0.418
Scoring stringency -0.273 0.761 0.140 -1.958 0.050
Policy * Feedback -0.285 0.752 0.143 -2.002 0.045
Policy * Stringency 0.547 1.728 0.277 1.975 0.048
Feedback * Stringency -0.319 0.727 0.197 -1.616 0.106

Table 7.8: Results of our Cox regression model for 1class8 passwords in Experiment 2.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Type of feedback (Bar / No Bar) -0.043 0.958 0.090 -0.475 0.726
Scoring stringency -0.124 0.883 0.114 -1.091 0.426

Table 7.9: Results of our Cox regression model for 3class12 passwords in Experiment 2.

Dimension coef exp(coef) se(coef) z Pr(> |z|)

Type of feedback (Bar / No Bar) -0.082 0.921 0.097 -0.849 0.543
Scoring stringency -0.318 0.728 0.126 -2.522 0.043

1c8−Bar−M

1c8−None

1c8−Std−M

3c12−Bar−M
3c12−None

3c12−Std−M

0%

20%

40%

60%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 7.6: The guessability of passwords created without any feedback (“None”), with only a colored bar
(“Bar”), and with both a colored bar and text feedback (“Std”) among medium-stringency conditions.

122 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

1c8−Bar−H

1c8−NoBar−H

1c8−None

1c8−Pub−H
1c8−Std−H
1c8−StdNS−H

0%

20%

40%

60%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(a) 1class8, High-stringency

1c8−Bar−M

1c8−NoBar−M

1c8−None

1c8−Pub−M

1c8−Std−M

1c8−StdNS−M

0%

20%

40%

60%

101 103 105 107 109 1011 1013

Guesses

P
er

ce
nt

 g
ue

ss
ed

(b) 1class8, Medium-stringency

Figure 7.7: Guessability of 1class8 passwords created with different levels of feedback, including none. These
graphs show data from Experiment 1. However, 1c8-NoBar-M and 1c8-NoBar-H curves from Experiment 2
have been added for illustrative purposes.

7.5. SUMMATIVE ONLINE STUDY 123

3c12−Bar−M

3c12−None

3c12−Pub−M

3c12−Std−M

3c12−StdNS−M

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 7.8: Guessability of medium-stringency 3class12 passwords created with different levels of feedback.
For 3class12 passwords, the amount of feedback did not significantly impact guessability, which means that
no differences in this graph are statistically significant.

3c12−Std−H

3c12−Std−L

3c12−Std−M

0%

10%

20%

101 103 105 107 109 1011 1013 1015

Guesses

P
er

ce
nt

 g
ue

ss
ed

Figure 7.9: The guessability of 3class12 passwords created with different stringency levels. Stringency was a
significant factor in the guessability, albeit with a small effect size.

124 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Table 7.10: The characteristics of the passwords participants created in each condition.

Length # Uppercase # Digits # Symbols
Set Mean σ Med. Mean σ Med. Mean σ Med. Mean σ Med.

1c8-Std-L 12.0 4.7 11 1.2 1.5 1 2.5 2.3 2 0.7 1.1 0
1c8-Std-M 13.0 5.4 12 1.5 2.1 1 2.9 2.5 2 0.9 1.4 0
1c8-Std-H 12.9 4.4 11 1.9 2.1 1 3.1 2.3 3 0.9 1.2 1

1c8-StdNS-M 12.1 3.7 12 1.4 1.8 1 3.0 2.1 3 0.6 1.1 0
1c8-StdNS-H 13.4 5.3 12 1.4 1.8 1 3.2 2.3 3 0.9 1.3 0
1c8-NoBar-L 11.5 3.5 11 1.3 2.0 1 2.6 1.8 2 0.6 1.1 0

1c8-NoBar-M 12.1 3.9 11 1.5 1.9 1 2.8 2.0 3 0.9 1.6 0
1c8-NoBar-H 11.7 3.9 11 1.6 1.8 1 3.0 2.1 3 0.8 1.3 0

1c8-Pub-M 11.6 3.1 11 1.1 1.6 1 3.0 2.2 3 0.6 0.9 0
1c8-Pub-H 13.0 4.4 12 1.6 2.0 1 3.1 2.2 3 0.9 1.3 0
1c8-Bar-M 11.4 3.1 11 1.1 1.2 1 2.7 1.9 2 0.6 1.0 0
1c8-Bar-H 11.6 3.2 11 1.3 1.8 1 2.8 2.1 2 0.6 1.1 0
1c8-None 10.9 3.0 10 1.0 1.3 1 2.6 2.0 2 0.3 0.7 0

3c12-Std-L 14.0 2.5 13 1.9 1.7 1 3.1 1.8 3 1.1 1.1 1
3c12-Std-M 14.8 3.5 14 2.0 1.3 2 3.6 2.6 3 1.2 1.4 1
3c12-Std-H 15.3 5.2 14 2.4 2.1 2 3.9 2.2 4 1.2 1.5 1

1c8-StdNS-M 14.4 3.1 14 2.1 1.9 2 3.7 2.3 4 1.1 1.5 1
1c8-StdNS-H 15.1 3.7 14 1.9 1.3 2 3.8 2.3 4 1.4 1.4 1

3c12-NoBar-L 14.3 2.9 13 1.9 1.7 1 3.4 1.9 3.5 1.0 1.4 1
3c12-NoBar-M 14.7 7.5 13 2.3 3.5 1 2.8 1.9 3 1.2 1.7 1
3c12-NoBar-H 14.7 4.7 14 2.1 1.5 2 3.6 2.2 3 1.3 1.5 1

3c12-Pub-M 14.1 2.8 13 2.1 1.8 2 3.4 2.0 3 1.2 1.2 1
3c12-Pub-H 14.9 3.4 14 2.2 1.7 2 3.6 2.2 3 1.1 1.2 1
3c12-Bar-M 14.5 3.1 14 2.0 2.2 1 3.3 2.1 3 1.0 1.0 1
3c12-Bar-H 14.6 3.4 14 2.0 2.0 1 3.7 2.1 4 1.1 1.2 1
3c12-None 14.2 2.9 13 2.2 2.3 1 3.4 2.3 3 1.2 1.3 1

Impact of Stringency

Although prior work on password meters found that increased scoring stringency led to stronger pass-
words [182], we found that varying between medium and high stringency did not significantly impact
security. Because both our medium and high stringency levels were more stringent than most real-world
password meters, we investigated an additional low stringency setting in Experiment 2. With these three
levels, we found that increasing levels of stringency did lead to stronger passwords, but only for 3class12
passwords (p = .043). Figure 7.9 shows the impact of varying the 3class12 stringency. In all cases, however,
increasing the stringency led participants to create longer passwords (p < .001). It also led participants
to include more digits, symbols, and uppercase letters (p = .036, p = .018, p = .019). For example, the
median high-stringency 1class8 password was one character longer than the median low-stringency 1class8
password. For 3class12 passwords, high-stringency passwords were two characters longer. Note that the prior
work [182] tested a meter that used only basic heuristics (length and character classes) to score passwords,
with a particular emphasis on length. As a result, participants could fill more of the stringent meters simply
by making their password longer. In contrast, our meter scores passwords far more rigorously, which we
hypothesize might account for this difference.

7.5. SUMMATIVE ONLINE STUDY 125

Table 7.11: Characteristics of password creation and password recall by condition.

Novel Recall Part 2 Recall
Creation Time (s) Deletions From Memory Success Attempts

Set Mean σ Med. Mean σ Med. % % Mean σ Med.

1c8-Std-L 42.2 47.3 26.6 9.5 14.3 4 69.2 85.3 1.4 1.0 1
1c8-Std-M 59.0 130.5 28.1 11.4 16.0 6 51.0 75.4 1.3 0.9 1
1c8-Std-H 67.2 85.2 40.2 16.4 24.8 9 51.3 82.4 1.4 0.7 1

1c8-StdNS-M 44.4 61.6 26.8 13.0 23.5 7 59.4 80.0 1.3 0.7 1
1c8-StdNS-H 73.5 94.4 43.4 18.6 24.4 11 47.4 80.0 1.3 0.8 1
1c8-NoBar-L 41.0 50.8 18.6 7.7 11.6 2 59.3 84.4 1.1 0.5 1

1c8-NoBar-M 72.9 143.9 30.6 13.2 19.9 7 48.0 83.0 1.5 0.8 1
1c8-NoBar-H 65.5 87.1 32.8 13.8 19.8 4 54.1 77.6 1.4 0.7 1

1c8-Pub-M 46.0 54.7 28.7 11.6 16.3 6.5 53.2 78.8 1.3 0.8 1
1c8-Pub-H 67.7 75.5 42.7 22.0 33.5 10.5 52.0 83.1 1.4 0.9 1
1c8-Bar-M 29.7 47.5 15.5 6.5 12.5 0 54.2 82.3 1.4 0.7 1
1c8-Bar-H 28.0 31.3 15.8 6.0 10.3 0 49.4 84.4 1.5 0.9 1
1c8-None 21.5 26.7 10.9 3.3 5.3 0 54.4 84.9 1.4 1.0 1

3c12-Std-L 56.6 72.9 35.4 9.9 12.2 7 58.0 81.0 1.4 0.8 1
3c12-Std-M 62.8 80.8 42.2 15.1 23.0 8 53.6 79.1 1.3 0.8 1
3c12-Std-H 76.7 101.3 46.3 15.9 21.5 10 44.8 72.2 1.5 0.9 1

1c8-StdNS-M 65.9 67.4 41.5 15.6 19.4 11 54.7 71.0 1.7 1.2 1
1c8-StdNS-H 65.7 96.6 42.2 14.8 21.0 10 45.0 71.2 1.5 0.8 1

3c12-NoBar-L 57.5 92.6 35.1 10.9 15.6 5 56.1 69.6 1.4 0.8 1
3c12-NoBar-M 61.2 57.0 43.2 13.5 16.6 9 46.9 72.5 1.4 0.6 1
3c12-NoBar-H 72.3 87.9 42.5 14.8 17.9 9 49.7 83.6 1.6 1.1 1

3c12-Pub-M 53.9 53.4 37.7 12.0 15.9 7 46.3 76.5 1.3 0.8 1
3c12-Pub-H 113.8 54.3 40.1 16.4 21.0 10.5 42.4 80.8 1.6 1.1 1
3c12-Bar-M 49.3 59.4 31.8 10.2 14.0 6 49.7 71.0 1.4 0.8 1
3c12-Bar-H 41.0 34.5 29.0 8.8 12.0 3 50.3 79.7 1.5 0.9 1
3c12-None 51.8 90.1 31.6 10.0 13.6 6 50.7 73.5 1.4 0.7 1

7.5.5 Usability Impact

All of the meter’s design dimensions we tested impacted timing and participant-sentiment metrics, but they
mostly did not impact password memorability. Although increasing levels of data-driven feedback led to
stronger passwords, we did not observe any significant impact on memorability. We tested many metrics;
Table 7.12 summarizes our key findings. If we do not explicitly note a metric as being impacted by one or
more dimensions, we did not observe a significant difference.

Overall, 56.5% of participants said they typed their password in entirely from memory. Other participants
looked it up on paper (14.6%) or on an electronic source (12.8%), such as their computer or phone. An
additional 11.2% of participants said their password was entered automatically for them by a password
manager or browser, while 4.9% entered their password in another way (e.g., looking up hints).

Considering password reuse and copy-pasting, 50.6% of participants tried to recall a novel study password
from memory, and these are the participants for whom we examine password recall. Overall, 98.4% of these
participants successfully recalled their password during Part 1, and the majority did so on their first attempt.
In total, 89.3% of participants returned for Part 2, and 78.2% of returnees who tried to recall a novel study
password from memory successfully recalled their password, again primarily on their first attempt.

126 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Table 7.12: A summary of how the three dimensions impacted key metrics. We consider the impact when
moving from a 1class8 to 3class12 policy, increasing the amount of feedback, or increasing stringency.

Metric Composition Policy Amount of Feedback Scoring Stringency

Security
Passwords harder to guess ! 1class8 only 3class12 only

Password creation
Longer passwords ! ! !

More time to create ! ! !

More deletions – ! !

More likely to show password on screen ! – !

Less likely to show password on screen – ! –
Care more about receiving a high score from meter !

Care less about receiving a high score from meter !

More likely to show suggested improvement – – !

Sentiment about creation
More annoying ! ! !

More difficult ! ! !

Less fun – ! !

Password recall
Lower recall success (less memorable) in Part 1 – – –
Part 1 recall took longer – – !

Lower recall success (less memorable) in Part 2 ! – –
Part 2 recall took longer – – –
Required more attempts in Part 1 or Part 2 – – –
Participant less likely to try recalling from memory – – !

Impact of Composition Policy

Moving from a 1class8 to a 3class12 policy increased the time it took to create the password, measured
from the first keystroke to the last keystroke in the password box (p = .014). Table 7.11 details metrics of
the password-creation process. It also impacted participant sentiment about password creation, as shown in
Table 7.13. The 3class12 policy led participants to report password creation as significantly more annoying
(both p < .001) and significantly more difficult (p < .001 and p = .003, respectively).

Passwords created under a 3class12 policy were more secure than those created under 1class8, but
these security gains were somewhat futile because participants were less likely to remember their password.
Compared to 1class8, participants who made 3class12 passwords were less likely to successfully recall their
password during Part 2 (p = .025). Across conditions, 81.3% of 1class8 participants successfully recalled
their password during Part 2, whereas 75.0% of 3class12 participants did. The policy did not significantly
impact any other recall metrics.

Impact of the Amount of Feedback

Increasing the amount of feedback increased the time it took to create the password (p = .011). We observed
an interaction between the amount of feedback and the stringency; increasing the amount of feedback in

7.5. SUMMATIVE ONLINE STUDY 127

high-stringency conditions led to a greater time increase (p = .048).
To understand how participants change their password during creation, we examined the number of

deletions, which we defined as a participant removing characters from their password that they added in a
prior keystroke. Increasing amounts of feedback led to significantly more deletions (p < .001), implying
that the feedback causes participants to change their password-creation decisions. For instance, the median
number of deletions for 1c8-None was zero, while the median number for 1c8-Std-H was 9. We observed
two significant interaction effects. For high-stringency conditions, an increased amount of feedback led to
even more deletions (p = .002).

Increasing the amount of feedback negatively affected participant sentiment. It led participants to report
password creation as more annoying (both p < .001) and more difficult (p < .001 and p = .003, respectively).
It also led participants to report password creation as less fun (p = .025). For each sentiment, roughly
10%–15% of the participants in that condition moved from agreement to disagreement, or vice versa.

Even though increasing the amount of feedback led to significantly more secure passwords, it did not
significantly impact any of our recall metrics.

Impact of Stringency

Although increasing the scoring stringency led participants to create longer passwords, varying between
medium and high stringency did not cause them to take significantly longer to do so, nor did it impact
participant sentiment about password creation. When we added an additional low stringency level in
Experiment 2, however, participants who saw increased stringency took longer to create a password (p< .001)
and deleted more characters during creation (p < .001). They also took longer to recall their password during
Part 1 (p = 0.010) and were less likely to try recalling their password solely from memory (p = .002), though
stringency did not significantly impact other recall metrics.

Increasing the stringency greatly impacted participant sentiment. It led participants to perceive password
creation as more annoying, more difficult, and less fun (p < .001, p < .001, p = .010, respectively). It also
caused participants to be more likely to say the bar helped them create a stronger password (p = .027), less
likely to believe the bar was accurate (p < .001), and less likely to find it important that the bar gives them a
high score (p = .006). Increasing levels of stringency made participants more likely to say the text feedback
led them to create a different password than they would have otherwise (p = .010), but also less likely to
believe they learned something new from the text feedback (p < .001).

7.5.6 Interface Element Usage and Reactions

In this section, we discuss participants’ usage of, and reaction to, the different aspects of data-driven text
feedback, as well as the colored bar.

Text Feedback

Participants reacted positively to the text feedback, as detailed in Table 7.14. Most participants (61.7%)
agreed or strongly agreed that the text feedback made their password stronger. Similarly, 76.9% disagreed
or strongly disagreed that the feedback was not informative, and 48.7% agreed or strongly agreed that they
created a different password than they would have otherwise because of the text feedback. Higher stringency

128 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Condition Password Creation Difficult Password Creation Annoying
1c8-Std-L

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Std-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Std-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-StdNS-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-StdNS-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-NoBar-L

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-NoBar-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-NoBar-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Pub-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Pub-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Bar-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-Bar-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
1c8-None

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Std-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Std-L

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Std-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Std-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-StdNS-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-StdNS-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-NoBar-L

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-NoBar-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-NoBar-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Pub-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Pub-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Bar-M

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-Bar-H

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
3c12-None

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Strongly Disagree Disagree Neutral Agree Strongly Agree

Table 7.13: Participants’ agreement that creating a password was difficult or annoying.

7.5. SUMMATIVE ONLINE STUDY 129

Statement Participant Sentiment
The colored bar helped me create a stronger password.

0 10 20 30 40 50 60 70 80 90 100

The colored bar was not informative.
0 10 20 30 40 50 60 70 80 90 100

Because of the colored bar, I created a different password than I
would have otherwise. 0 10 20 30 40 50 60 70 80 90 100

It’s important to me that the colored bar gives my password a high
score. 0 10 20 30 40 50 60 70 80 90 100

The text feedback helped me create a stronger password.
0 10 20 30 40 50 60 70 80 90 100

The text feedback was not informative.
0 10 20 30 40 50 60 70 80 90 100

Because of the text feedback, I created a different password than I
would have otherwise. 0 10 20 30 40 50 60 70 80 90 100

The suggested improvements helped me create a stronger pass-
word. 0 10 20 30 40 50 60 70 80 90 100

Strongly Disagree Disagree Neutral Agree Strongly Agree

Table 7.14: Participants’ agreement with statements about the meter’s color bar, text feedback, and suggested
improvements.

participants were more likely to say they created a different password (p = .022), but no other dimension had
a significant impact.

Although most participants (68.5%) selected “no” when we asked if they learned “something new
about passwords (your password, or passwords in general) from the text feedback,” 31.5% selected “yes.”
Participants commonly said they learned about moving capital letters, digits, and symbols to less predictable
locations from the meter (e.g., “I didn’t know it was helpful to capitalize an internal letter.”). Many participants
also noted that the meter’s requests not to use dictionary entries or words from Wikipedia in their password
taught them something new. One of these participants noted learning “that hackers use Wikipedia.” Requests
to include symbols also resonated. As one participant wrote, “I didn’t know previously that you could input
symbols into your passwords.”

Participants also took the text feedback as an opportunity for reflection on their password-creation
strategies. One participant learned “that I tend to use full words which isn’t good,” while another learned
“don’t base the password off the username.” Participants exercised many of the features of our feedback,
including participants who “learned to not use L33T to create a password (exchanging letters for predictable
numbers).” Some participants also learned about password reuse, notably that “people steal your passwords
in data breaches and they try to use it to access other accounts.”

Suggested Improvement

When participants in applicable conditions showed their password or clicked “see your password with our
improvements,” they would see the suggested improvement. Across conditions, 37.8% of participants clicked
the “show password” checkbox. Participants who made a 3class12 password, saw a higher-stringency meter,

130 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

or who saw less feedback were more likely to show their password on screen (p < .001, p = .006, and
p= .022, respectively). While most participants who saw a suggested improvement did so as a consequence of
checking “show password & detailed explanations,” 8.7% of participants in applicable conditions specifically
clicked the “see your password with our improvements” button. Higher stringency made participants more
likely to show the suggested improvement (p = .003).

When we asked in the survey whether participants in those conditions had seen a suggested improvement,
34.8% selected “yes,” 55.6% selected “no,” and 9.6% chose the “I don’t remember” option. Nearly all partici-
pants who said they did not see a suggested improvement indeed were never shown a suggested improvement
because they never showed their password or clicked “see your password with our improvements.” Among
participants who said they saw a suggested improvement, 81.5% said that suggested improvements were
useful, while 18.5% said they were not. A slight majority (50.9%) of these participants agreed or strongly
agreed that the suggested improvement helped them make a stronger password. This help, however, did not
often come in the form of adopting the precise suggestion offered. In each condition that offered a suggested
improvement, at most 7% of participants used a password that the meter had suggested verbatim.

We asked participants who found the suggested improvements useful to explain why. They wrote that
seeing a suggested improvement “helps you modify what you already have instead of having to think of
something absolutely new” and “breaks you out of patterns you might have when creating passwords.”
Participants particularly liked that the suggested improvement was a modification of their password, rather
than an entirely new one, because it “may help spark ideas about tweaking the password versus having to
start from scratch.” As one participant summmarized, “It actually offers some help instead of just shutting
you down by essentially saying ‘no, not good enough, come up with something else.’ It’s very helpful.”

Participants who did not find it useful expressed two streams of reasoning. The first stream concerned
memorability. One participant explained, “I’m more likely to forget a password if I don’t use familiar
techniques.” while another wrote, “I already have a certain format in mind when I create my password to
help me memorize it and I don’t like to stray from that.” The second stream of reasoning concerned the
trustworthiness of the “algorithm that creates those suggestions.” As one participant succinctly explained, “I
don’t trust it. I dont want a computer knowing my passwords.”

Modal Windows

Clicking a “(why?)” link next to any of the up to three pieces of feedback in any condition with text feedback
opened the specific-advice modal. Few participants in our experiment clicked on “(why?)” links, and
therefore few participants saw the specific-advice modal. Only 1.0% of participants across all conditions
clicked on one of these links.

In contrast, 8.4% of participants looked at the generic-advice modal, though 3class12 participants were
less likely to do so (p = .025). Participants could arrive at the generic-advice modal by clicking “how to make
strong passwords” or clicking “(why?)” next to admonitions against password reuse. Participants arrived at
the generic-advice modal about evenly through these two methods.

Colored Bar

We also analyzed participants’ reactions to the colored bar. All three dimensions impacted how much of the
colored bar participants filled. Participants who were assigned the 3class12 policy or saw more feedback
filled more of the bar, while participants whose passwords were rated more stringently unsurprisingly filled

7.6. DISCUSSION 131

less (all p < .001). Few participants completely filled the bar (estimated guess numbers 1018 and 1024 in
medium and high stringency, respectively). The median participant often filled half to two-thirds of the bar,
depending on the stringency. For instance, for 1c8-Std-M, only 16.5% completely filled the bar, but 51.7%
filled at least two-thirds, and 73.1% filled at least half. Table 7.15 details these behaviors by condition.

Overall, participants found the colored bar useful. The majority of participants (64.0%) agreed or strongly
agreed that the colored bar helped them create a stronger password, 42.8% agreed or strongly agreed that the
bar led them to make a different password than they would have otherwise, and 77.2% disagreed or strongly
disagreed with the statement that the colored bar was not informative. Participants also looked to the colored
bar for validation; 50.9% of participants agreed or strongly agreed that it is important that the colored bar
gives their password a high score. High-stringency participants were less likely to care about receiving a high
score (p = .025). With increasing amounts of feedback, participants were more likely to care about receiving
a high score (p = .002), more likely to say that the bar helped them create a stronger password (p < .001)
that was different than they would have otherwise (p < .001). They were also less likely to believe the bar
was not informative (p = .024).

Participants mostly felt the colored bar accurately scored their password. Across conditions, 68.2% of
participants said they felt the bar scored their password’s strength accurately, while 23.6% felt the bar gave
their password a lower score than it deserved. An additional 4.2% of participants felt the bar gave their
password a higher score than it deserved, while 4.0% did not remember how the bar scored their password.
Participants were less likely to believe the rating was accurate in the more stringent conditions (p < .001).

We also tested removing the colored bar while keeping all text feedback. Removing the colored bar
caused participants to be more likely to return for Part 2 of the study (p = .020), but did not impact any other
objective security or usability metrics. Removing the colored bar did impact participant sentiment, however.
Participants who did not see a bar found password creation more annoying and difficult (both p < .001).

7.6 Discussion

In this chapter, we described our design and evaluation of a password meter that provides detailed, data-driven
feedback. Using a combination of artificial neural networks and nearly two dozen advanced heuristics to
score passwords, as well as giving users detailed text explanations of what parts of their particular password
is predictable, our meter gives both more accurate and more actionable information to users.

We found that our password-strength meter made 1class8 passwords harder to guess without significantly
impacting memorability. Text feedback led to more secure 1class8 passwords than a colored bar alone,
whereas colored bars alone are the type of meter widely deployed today [51]. Notably, leaving the detailed
text feedback but removing the colored bar did not significantly impact the security of the passwords
participants created. Combined with our finding that most people do not feel compelled to fill the bar, this
suggests that the visual metaphor has only marginal impact when detailed text feedback is also present.
As a result, we highly recommend the use of a meter that provides detailed text feedback for common
password-composition policies like 1class8. From our results, we recommend that the meter offer potentially
sensitive feedback when the user shows his or her password on screen. The suggested improvement did seem
to help some participants, but its overall effect was not strong and some participants did not trust suggestions
from a computer. While its inclusion does not seem to hurt, we would consider it optional. Similarly, although
the generic-advice modal was visited more than the specific-advice modal, only a fraction of participants
looked at it. Because not all users need to learn the basics of making strong passwords and because most

132 CHAPTER 7. DESIGN AND EVALUATION OF A DATA-DRIVEN PASSWORD METER

Table 7.15: The degree to which participants “filled” the colored bar that displayed their password strength.

% of Bar Filled % Participants Who Filled Bar...
Set Mean σ Median 1/3rd Full 1/2 Full 2/3rds Full Completely

1c8-Std-L 83.9 20.0 91.4 96.8 92.9 83.3 38.5
1c8-Std-M 67.2 25.1 67.4 90.3 73.1 51.7 16.6
1c8-Std-H 55.0 23.4 51.3 81.2 53.2 28.6 7.1

1c8-StdNS-M 65.8 24.2 69.2 90.3 71.6 52.9 9.7
1c8-StdNS-H 54.5 24.4 51.9 80.8 51.3 28.8 7.1

1c8-Pub-M 62.6 24.2 61.8 90.9 63.0 44.8 9.1
1c8-Pub-H 54.5 23.7 51.9 76.7 53.3 34.7 5.3
1c8-Bar-M 58.8 22.8 56.9 83.9 61.3 38.1 5.8
1c8-Bar-H 44.5 20.0 41.2 69.5 33.8 14.9 0.6

3c12-Std-L 95.4 10.1 100.0 100.0 99.3 97.3 72.7
3c12-Std-M 80.2 17.6 84.2 98.7 94.0 80.1 17.9
3c12-Std-H 64.7 18.8 62.5 96.6 80.0 37.9 5.5

1c8-StdNS-M 78.5 18.0 80.2 98.0 91.2 80.4 18.2
1c8-StdNS-H 65.6 17.7 64.4 98.7 83.2 43.0 6.0
3c12-Pub-M 78.9 18.3 80.2 99.3 93.9 77.6 19.7
3c12-Pub-H 63.0 17.5 63.1 95.8 77.8 43.8 3.5
3c12-Bar-M 75.8 19.0 77.7 97.4 89.4 70.2 15.2
3c12-Bar-H 61.2 16.2 61.4 96.0 76.2 37.7 1.3

users understand why dictionary words are bad as a major component of a password [181], it is reasonable
that only a handful of users would need to engage with these features. We recommend that they be included
to help these users.

In contrast to prior work that found scoring stringency to be crucial for password meters [182], we only
observed a significant effect for 3class12 passwords, and the effect size was small. Note that our meter used
far more advanced methods to score passwords more accurately than the basic heuristics tested in that prior
work. Because the high-stringency setting negatively impacted some usability metrics, we recommend our
medium setting.

Our recommendations differ for 3class12 passwords. The meter had minimal impact on the security of
3class12 passwords. While the meter introduced few usability disadvantages, suggesting that it may not hurt
to include the meter, we would not recommend it nearly as strongly as for 1class8 passwords.

To spur adoption of data-driven password meters, we are releasing our meter’s code open-source.4

4Available at https://github.com/cupslab/password_meter

https://github.com/cupslab/password_meter

Chapter 8

Conclusion and Future Work

8.1 Conclusions and Lessons Learned

In this thesis, I have used data-driven methods to support users’ password-creation decisions. I began by
discussing our large-scale, online study of password-strength meters (Chapter 3). We found that meters that
score passwords using even basic heuristics can improve password security without negatively impacting
usability, as long as those meters show password strength visually and score passwords more stringently than
the meters used in the wild at that time. While this first step showed that users can successfully be nudged
towards better passwords by well-designed interventions, the very minimal feedback we gave users in this
early part only vaguely reflected how people create passwords and how attackers try to guess passwords.

Moving towards building better interventions, I spent the subsequent chapters of the thesis delving into
the techniques of attackers and the habits of users through large-scale data analysis. Through extensive
experiments, we modeled how attackers would guess different sets of passwords using widely used conceptual
approaches to guessing passwords, each in a number of configurations (Chapter 4). We then compared these
models to the performance of an expert password-forensics firm we contracted. While the password-guessing
models used previously in the literature far underestimated the vulnerability of passwords to guessing by a
skilled professional, we proposed methods for considering multiple well-configured approaches in parallel to
model adversarial guessability, finding this method to be a relatively conservative proxy for guessing by a
skilled professional.

To better understand users, we first used crowdsourcing to manually reverse engineer passwords, undoing
substitutions and transformations, as well as separating passwords into their component parts (Chapter 5).
We used these reverse-engineered passwords to document the predictability of different behaviors in how
users structure passwords, incorporate semantically meaningful content, and approach the password-creation
process. We then sought to better understand users by studying how their perceptions of password security
matched our models of password-guessing techniques (Chapter 6). We found that users’ perceptions of what
individual password characteristics make a password more secure mostly matched our guessing models,
yet participants’ perceptions of attackers differed greatly from one person to another. As a result, many
participants believed passwords that were likely insecure in reality would be strong enough to resist an attack.

In the final section of my thesis (Chapter 7), I described the iterative design and two-part evaluation of our
data-driven password-strength meter. This meter integrates our previous insights about how attackers guess
passwords by using two complementary ways to measure a password’s strength. It also gives users detailed

133

134 CHAPTER 8. CONCLUSION AND FUTURE WORK

text feedback about how to improve their specific password, in addition to proposing concrete modifications
to their password as a suggested improvement. We found that this meter led participants to create stronger
passwords without being significantly less likely to remember their password. In addition, most of our
participants reported that the text feedback was informative and helped them create stronger passwords.

Below, I discuss key insights about passwords and usable security that became clear over the course of
this thesis.

8.1.1 Users’ Well-Ensconced Approaches

Across the user studies discussed in this thesis, in addition to a companion laboratory study of password
creation [184], I learned from myriad users about their password-creation strategies. Various users told me
about numerous different methods they had developed for making strong passwords, and these methods
combined professional security advice they had learned at work, folk wisdom they had learned informally, and
their own intuition and creativity. Participants described schemes they had developed and that they believed
to be secure. Some unfortunately were insecure (e.g., using “temp1234” for all accounts), others appeared
relatively secure (e.g., substantially mangling the names of minor characters from obscure mythological texts
that the participant associated with the purpose of the account), and others mirrored the advice of security
experts (e.g., making up unique sentences and mangling them).

A key takeaway from synthesizing all of these stories and strategies is that many users have well-
developed, albeit not always secure, methods of coping with passwords. Having likely made hundreds of
passwords in their life [70], a user has much experience making and coping with [169] passwords, although
not necessarily much feedback on their strategy. In essence, users could potentially learn that their password-
creation and password-management strategies are poorly thought out if they suffer a data breach, but they
will not necessarily come to such a conclusion. Any ad-hoc, post-mortem investigation of “being hacked”
will likely not elucidate that the account was compromised, for instance, because the user reused his or her
password on a different site that suffered a data breach. Similarly, for all but the largest breaches, users would
likely not learn that, against best-practice advice, the service that was breached hashed passwords insecurely
using MD5. In contrast, users who have “never been hacked” despite adopting poor security practices or
widely reusing passwords can mistakenly assume that their system is working. In some ways, their system
may be working, although the risk of a future compromise is high.

8.1.2 The Mismatched Incentives of Professional Password Advice

To this point, much of the information users have learned about passwords is from their own experiences
creating passwords for accounts. Unfortunately, mismatched incentives often prevent users from receiving
reasonable advice about the entire ecosystem, leading to their rational rejection of security advice [90]. For
instance, users are required to create accounts for many systems where the value of the account is minimal or
nonexistent to the user (e.g., making an account to read a newspaper article).

System administrators are incentivized, however, to demand that users make complex and unique
passwords for their own system. In the case of a data breach, a system administrator who let users know that
it is acceptable to make predictable passwords and reuse them across meaningless accounts would likely be
blamed. Furthermore, system administrators recommend that users take steps that are based on outdated
assumptions, and some of these steps (e.g., regularly changing their password) may be detrimental to security
in practice [41, 205].

8.1. CONCLUSIONS AND LESSONS LEARNED 135

The litany of onerous requirements related to passwords is an opportunity to shift blame to the user [3]
for not following practices that are mostly impossible in practice. In its place, user-centered guidance for
reasonably coping with the authentication ecosystem is necessary. I believe the meter I discussed in Chapter 7
to be a first step in that direction.

8.1.3 Mismatch Between Reality and Perception

In the course of making potentially hundreds of passwords in their lives, the participants in our studies had
spent substantial time engaging with password creation. While we found that a number of their perceptions
of how different password characteristics relate to password security matched reality (Chapter 6), they held
important misconceptions that led to poor security in practice [181, 184]. The importance of matching users’
perceptions to the reality of a security or privacy ecosystem is therefore a major takeaway from the work in
this thesis.

Many of users’ misconceptions about password security seem to stem from their prior interactions with
security tools and interfaces. Current tools to help users create better passwords are lacking. They rate weak
passwords as strong, and vice versa [51], giving users false confidence in the security of some passwords that
are actually predictable. These meters also provide feedback that is not very helpful and may even lead to
misconceptions about security [184]. Even though password reuse is a major security threat [49], these tools
often gloss over such ecosystem-level concerns. As a result, users are left with unusable security.

In the case of helping users create passwords, I found that iteratively designing a meter using data-driven
methods, as well as presenting data-driven, specific feedback to users, can help them create better passwords
(Chapter 7). This data-driven approach can potentially be extended to many other areas of usable security
and privacy, such as helping users make online privacy decisions.

8.1.4 Real-World Considerations in Modeling Attackers

In the process of modeling how attackers guess passwords (Chapter 4), we learned important lessons about
the importance of investigating not just how attackers behave, but why they do so. Using the method standard
in academic analyses, modeling a password’s security by counting the number of guesses the software tool
took to guess it, we found that Hashcat’s wordlist mode appeared to lag behind other password-guessing
approaches on our graphs. This apparent lag is caused by Hashcat’s ordering of guesses, as well as its lack of
support for filtering a guess based on non-compliance with a particular password-composition policy.

Despite what these graphs show, Hashcat is very widely used in practice, and we would highly recommend
it to someone attempting to crack passwords. Understanding why requires taking a step back to consider the
overall ecosystem. In many cases, the percentage of passwords cracked at the end of an attacker’s cracking
session, rather than how quickly each was cracked, matters most. Statistical approaches that produce an
optimal ordering of guesses according to their model of how passwords are chosen are, compared to Hashcat,
extremely slow in generating guesses. Because this guess-generation process can be a major time factor in an
offline attack that also involves hashing candidate guesses, Hashcat’s approach of very quickly generating
guesses, some of which are non-optimal or even impossible, can result in a more successful attack overall.

Therefore, when modeling security, it is important to consider both what an optimal attacker might do, as
well as what attackers are likely to do in practice given the availability of certain types of data, economics,
and rational coping mechanisms, among other factors. Accounting for both scenarios is key to producing
more accurate estimates of security.

136 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.2 Future Work

In this section, we outline promising directions for research to improve practical authentication for users,
particularly in the near-term future.

8.2.1 Improve the Ecosystem

On the one hand, an overall ecosystem in which users memorize hundreds of distinct, complex passwords
is unsustainable [70]. On the other hand, despite regular claims over the last decade that the password is
dead [113, 131], it is unlikely that passwords will entirely disappear in the foreseeable future because of their
advantages over alternative authentication methods [24]. In essence, rather than killing the password, it may
be worth re-envisioning the role of the password in authentication. Passwords are currently being asked to do
more than they are capable of [161].

Using a single-sign-on system, using a password manager, and enabling two-factor authentication have
the potential to greatly improve practical authentication security while retaining many of the benefits of
passwords. As we outline below, though, both infrastructural and usability questions remain about making
these systems fully usably and fully practical.

Infrastructure

Infrastructural changes could mitigate current issues with single-sign-on systems and password managers.
In a study of the OpenID single-sign-on system, researchers found that users lack trust in such systems
because they are a single point of failure and can reduce the user’s privacy when used to access accounts
with personally sensitive information [173]. Research into secure, yet privacy-preserving, single-sign-on
systems is therefore crucial in spurring adoption of such systems. Communicating intelligibly to users about
the privacy properties of such systems, which are likely to be complex, is an additional challenge.

Password managers could also be designed in a principled way. Currently, an exploit targeting a password
manager could release all of a user’s passwords, and a software crash without commensurate backups could
lock a user out of his or her accounts. One could imagine rigorously designing a password manager using
state-of-the-art techniques in software engineering to minimize the software’s trusted computing base and
prove correct important properties about its operation. In concert with rigorous usability testing, such an
approach could enable widespread adoption of password managers. Furthermore, with a more centralized
authentication ecosystem based on single-sign-on systems or password managers, two-factor authentication
would become even more valuable in helping users protect a larger number of accounts.

User Behavior and Perceptions

While building the infrastructure to support secure, yet practically private, authentication throughout an
ecosystem is a crucial first step, understanding how this ecosystem will impact subsequent user behavior is
equally important. For instance, if a user relies on a single-sign-on system for all of his or her accounts, the
security of that single-sign-on password is crucial. If users are not sufficiently supported to understand the
importance of this password, no amount of engineering will improve security throughout the ecosystem.

8.2. FUTURE WORK 137

8.2.2 Evaluating The Role of Password-Composition Policies

Onerous password-composition policies have traditionally been employed to push users towards stronger
passwords [156]. These policies require that passwords contain certain characteristics in the hopes that, in the
process of including these, users make hard-to-predict choices. Password-composition policies are thus an
indirect, unprincipled means of pushing users towards what are hoped to be stronger passwords. Researchers
have argued in the past that password-composition policies may not be the ideal method for thinking about
password strength; they instead argued that restricting the popularity of a password on a particular system
would be a better conception [149].

One might instead want to decide whether to allow a password based on how predictable it is. Doing
so has historically involved multiple challenges, including questions about how well models correspond to
passwords’ predictability to attackers and how one could compactly encode these models on the client’s
machine. While using principled models of password guessing [38] or password selection [107] had been
proposed previously, these models could not be transferred to the client’s machine.

Recent advances in password-strength estimation entirely on the client side [130,199] and our comparison
of our guessing models to professionals (Chapter 4), however, suggest that estimating the predictability
of a password on the client side, without enforcing any password-composition policy, is a possible way
forward. We found in Chapter 7 that our standard password-strength meter matched with a 1class8 password-
composition policy can lead users to make passwords that are somewhat similar in strength to those created
under a 3class12 policy, though introducing the meter introduced many of the same usability disadvantages
of a 3class12 policy. In light of these results, I believe further evaluating the role of password-composition
policies vis-à-vis advanced client-side password checking is worth future investigation.

8.2.3 Natural Language and Passwords

One of our goals in Chapter 5 was to understand the role of semantic content, including words and phrases, in
passwords by modeling substrings from the passwords using natural-language corpora. We found fairly wide
use of words and phrases from natural language in passwords. Furthermore, prior work found the inclusion
of natural-language data to improve password guessing [104, 197]. Surprisingly, our recent work on using
neural networks to guess passwords found that including natural language data actually made guessing less
accurate [130]. Further investigation could leverage our reverse-engineered passwords from Chapter 5 to
better understand whether natural-language corpora could also improve guessing by neural networks [130],
potentially by adding an additional layer to the neural network.

8.2.4 Automatically Modeling Targeted Attacks

In Chapter 4, we modeled adversarial password guessing in a large-scale, trawling attack. One of the
limitations of this approach, though, is that it does not consider attacks targeted to a particular individual. As
discussed in Chapter 2, users often include meaningful names and dates, in addition to things they like, in
their passwords. While tools like Wordhound [81] from the password-cracking community attempt to create
a user-specific or site-specific wordlist by scraping the internet based on keywords, our models of password
guessing could be improved by better quantifying and including the extent to which password guessing can
be targeted to an individual. Such a model of password guessing that automatically evaluates the extent to
which password guessing could be targeted to a particular password from a particular individual would be

138 CHAPTER 8. CONCLUSION AND FUTURE WORK

particularly helpful for removing a blind spot in current proactive password checking. This model potentially
could also take into account the degree to which that user has reused a variant of a candidate password, as
well as for which accounts, in estimating security.

8.2.5 Improvements to the Meter

The codebase for the meter described in Chapter 7 is already stable despite its complexity in adding many
new features beyond current password-strength meters. However, the additional features and improvements
listed below would support wider adoption of this meter.

Accessibility

We have taken initial steps in testing our meter with screen readers and labeling graphical components, yet
the meter would greatly benefit from further accessibility enhancements. These enhancements would include
adding explanatory text exclusively to assist users accessing the meter via screen readers, testing of color
shades to better support color-blind users, and easy ways to increase the size of text and buttons for users
with difficulty seeing.

Compression

While we have been cognizant throughout the design process of keeping the file sizes small for our data-driven
meter, a few megabytes of data must be transfered to clients. While our meter is still smaller in size than
many modern webpages, one could take additional steps to further reduce the meter’s size. For instance,
some of the dictionaries and wordlists we package with the meter could potentially be reduced in size by
automatically accounting for the similarity among entries, instead bundling smaller wordlists with more
advanced transformations (similar to mangling rules). This approach, however, would necessitate additional
client-side computation, which may impede performance.

Automatic Updates

We designed our meter to reflect the patterns in widely distributed password sets at the time we created
it. However, as the way users pick passwords changes over time in response to additional education,
requirements, and new cultural references, our meter could benefit from a system for automatically updating
itself. One could imagine the meter updating its wordlists and weightings of different characteristics when
fed recent password breaches and potentially scrapes of news websites to capture pop-culture references.
Such an approach would involve substantial additional architecture. One could also imagine enabling the
meter to automatically customize itself given an organization’s password corpus, although the security risks
of potentially leaking information about the organization’s password corpus likely outweight the benefits of
having more accurate scoring.

Additional Caching

Currently, the meter caches the scoring and feedback for passwords the user has typed in during a particular
section to improve performance. If the user deletes a character, for instance, the meter does not recompute
password strength. However, in the common case of a user adding additional characters to their existing

8.2. FUTURE WORK 139

candidate password, individual meter functions (e.g., dictionary lookups) do not currently rely on cached data.
Results of looking up a password’s substrings or evaluating other characteristics could potentially be cached,
though using more memory to save computation may not necessarily be beneficial for overall performance
and responsiveness.

Balancing Browser Support and Multi-Thread Support

To improve the responsiveness of the user interface, our meter scores passwords using neural networks [130]
in a separate thread using the WebWorker framework [133]. We have considered also moving heuristic
scoring to a separate thread, but doing so introduces a complex tradeoff. The WebWorker framework and
other techniques of writing multi-threaded code in the browser are not fully supported by all platforms. On
these platforms, the lack of WebWorker support is not completely problematic because we can still score
passwords using advanced heuristics. Moving forward, there remain open questions about how best to
balance having the meter work on as many platforms as possible, yet doing so as efficiently as possible. One
possible solution would be to perform multi-threaded computation only if the meter detects in a session that
the browser fully supports it.

140 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

[1] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku Nair. A comparison of machine learning
techniques for phishing detection. In Proc. APWG eCrime Researchers Summit, 2007.

[2] Steven Van Acker, Daniel Hausknecht, Wouter Joosen, and Andrei Sabelfeld. Password meters and
generators on the web: From large-scale empirical study to getting it right. In Proc. CODASPY, 2015.

[3] Anne Adams and Martina Angela Sasse. Users are not the enemy. CACM, 42(12):40–46, 1999.

[4] Anne Adams, Martina Angela Sasse, and Peter Lunt. Making passwords secure and usable. In Proc.
HCI on People and Computers, 1997.

[5] Alexa.com. The top 500 sites on the web. http://www.alexa.com/topsites, 2016.

[6] Hazim Almuhimedi, Florian Schaub, Norman Sadeh, Idris Adjerid, Alessandro Acquisti, Joshua Gluck,
Lorrie Cranor, and Yuvraj Agarwal. Your location has been shared 5,398 times! A field study on
mobile app privacy nudging. In Proc. CHI, 2015.

[7] Julio Angulo, Simone Fischer-Hübner, Tobias Pulls, and Erik Wästlund. Usable transparency with the
data track: A tool for visualizing data disclosures. In Proc. CHI Extended Abstracts, 2015.

[8] Farzaneh Asgharpour, Debin Lu, and L. Jean Camp. Mental models of computer security risks. In
Proc. WEIS, 2007.

[9] Adam J. Aviv and Dane Fichter. Understanding visual perceptions of usability and security of Android’s
graphical password pattern. In Proc. ACSAC, 2014.

[10] Dylan Ayrey. HashcatJS. https://github.com/praetorian-inc/hashcatJS, 2016.

[11] Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cranor, and Carolyn Nguyen. “Little brothers
watching you:” Raising awareness of data leaks on smartphones. In Proc. SOUPS, 2013.

[12] Chris Baraniuk. Ashley Madison: Two women explain how hack changed their lives. BBC http:
//www.bbc.co.uk/news/technology-34072762, August 27, 2015.

[13] Bob Beeman. Using “grep” (a Unix utility) for solving crosswords and word puzzle. http://www.
bee-man.us/computer/grep/grep.htm#web2, 2004, retrieved November 2010.

[14] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1):289–300, 1995.

141

http://www.alexa.com/topsites
https://github.com/praetorian-inc/hashcatJS
http://www.bbc.co.uk/news/technology-34072762
http://www.bbc.co.uk/news/technology-34072762
http://www.bee-man.us/computer/grep/grep.htm#web2
http://www.bee-man.us/computer/grep/grep.htm#web2

142 BIBLIOGRAPHY

[15] Francesco Bergadano, Bruno Crispo, and Giancarlo Ruffo. Proactive password checking with decision
trees. In Proc. CCS, 1997.

[16] André Bergholz, Gerhard Paa, Frank Reichartz, Siehyun Strobel, and Jeong-Ho Chang. Improved
phishing detection using model-based features. In Proc. CEAS, 2008.

[17] Adam J. Berinsky, Gregory A. Huber, and Gabriel S. Lenz. Evaluating online labor markets for
experimental research: Amazon.com’s Mechanical Turk. Political Analysis, 20:351–368, 2012.

[18] Chandrasekhar Bhagavatula, Blase Ur, Kevin Iacovino, Su Mon Kywe, Lorrie Faith Cranor, and Marios
Savvides. Biometric authentication on iPhone and Android: Usability, perceptions, and influences on
adoption. In Proc. USEC, 2015.

[19] Alex Biryukov, Daniel Dinu, , and Dmitry Khovratovich. Version 1.2 of Argon2. https://password-
hashing.net/submissions/specs/Argon-v3.pdf, July 8, 2015.

[20] Matt Bishop and Daniel V. Klein. Improving system security via proactive password checking.
Computers & Security, 14(3):233–249, 1995.

[21] Joseph Bonneau. The Gawker hack: How a million passwords were lost. Light Blue Touchpaper
Blog, December 2010. http://www.lightbluetouchpaper.org/2010/12/15/the-gawker-
hack-how-a-million-passwords-were-lost/.

[22] Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million passwords.
In Proc. IEEE SP, 2012.

[23] Joseph Bonneau. Statistical metrics for individual password strength. In Proc. WSP, 2012.

[24] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. The quest to replace
passwords: A framework for comparative evaluation of Web authentication schemes. In Proc. IEEE
SP, 2012.

[25] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. Passwords and the
evolution of imperfect authentication. CACM, 58(7):78–87, June 2015.

[26] Joseph Bonneau, Mike Just, and Greg Matthews. What’s in a name? Evaluating statistical attacks on
personal knowledge questions. In Proc. FC, 2010.

[27] Joseph Bonneau and Sören Preibusch. The password thicket: technical and market failures in human
authentication on the web. In Proc. WEIS, 2010.

[28] Joseph Bonneau and Stuart Schechter. Towards reliable storage of 56-bit secrets in human memory. In
Proc. USENIX Security, 2014.

[29] Joseph Bonneau and Ekaterina Shutova. Linguistic properties of multi-word passphrases. In Proc.
USEC, 2012.

[30] Joseph Bonneau and Rubin Xu. Of contraseñas, sysmawt, and mı̀mǎ: Character encoding issues for
web passwords. In Proc. W2SP, 2012.

https://password-hashing.net/submissions/specs/Argon-v3.pdf
https://password-hashing.net/submissions/specs/Argon-v3.pdf
http://www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-passwords-were-lost/
http://www.lightbluetouchpaper.org/2010/12/15/the-gawker-hack-how-a-million-passwords-were-lost/

BIBLIOGRAPHY 143

[31] Jon Brodkin. 10 (or so) of the worst passwords exposed by the LinkedIn hack. Ars Technica, June
2012.

[32] Kay Bryant and John Campbell. User behaviours associated with password security and management.
Australasian Journal of Information Systems, 14(1), 2006.

[33] Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s Mechanical Turk: A new
source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1):3–5, 2011.

[34] Mark Burnett. Today I am releasing ten million passwords. https://xato.net/today-i-am-
releasing-ten-million-passwords-b6278bbe7495#.s11zbdb8q, February 9, 2015.

[35] William E. Burr, Donna F. Dodson, and W. Timothy Polk. Electronic authentication guideline.
Technical report, NIST, 2006.

[36] Dell Cameron. Apple knew of iCloud security hole 6 months before Celebgate. The Daily Dot,
September 24 2014. http://www.dailydot.com/technology/apple-icloud-brute-force-
attack-march/.

[37] Carnegie Mellon University. Password guessability service. https://pgs.ece.cmu.edu, 2015.

[38] Claude Castelluccia, Markus Dürmuth, and Daniele Perito. Adaptive password-strength meters from
Markov models. In Proc. NDSS, 2012.

[39] Jon M. Chang. Passwords and email addresses leaked in Kickstarter hack attack. ABC News,
Feb 17, 2014. http://abcnews.go.com/Technology/passwords-email-addresses-leaked-
kickstarter-hack/story?id=22553952.

[40] Sonia Chiasson, Alain Forget, Elizabeth Stobert, P. C. van Oorschot, and Robert Biddle. Multiple
password interference in text passwords and click-based graphical passwords. In Proc. CCS, 2009.

[41] Sonia Chiasson and Paul C van Oorschot. Quantifying the security advantage of password expiration
policies. Designs, Codes and Cryptography, 77(2):401–408, 2015.

[42] Hsien-Cheng Chou, Hung-Chang Lee andHwan Jeu Yu, Fei-Pei Lai, Kuo-Hsuan Huang, and Chih-Wen
Hsueh. Password cracking based on learned patterns from disclosed passwords. International Journal
of Innovative Computing, Information and Control, 2013.

[43] Yiannis Chrysanthou. Modern password cracking: A hands-on approach to creating an optimised and
versatile attack. Master’s thesis, Royal Holloway, University of London, 2013.

[44] Jan De Clercq. Resetting the password of the KRBTGT active directory account, 2014.
http://windowsitpro.com/security/resetting-password-krbtgt-active-directory-

account.

[45] Frederick G. Conrad, Mick P. Couper, Roger Tourangeau, and Andy Peytchev. The impact of progress
indicators on task completion. Interacting with Computers, 22(5):417–427, 2010.

https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495#.s11zbdb8q
https://xato.net/today-i-am-releasing-ten-million-passwords-b6278bbe7495#.s11zbdb8q
http://www.dailydot.com/technology/apple-icloud-brute-force-attack-march/
http://www.dailydot.com/technology/apple-icloud-brute-force-attack-march/
https://pgs.ece.cmu.edu
http://abcnews.go.com/Technology/passwords-email-addresses-leaked-kickstarter-hack/story?id=22553952
http://abcnews.go.com/Technology/passwords-email-addresses-leaked-kickstarter-hack/story?id=22553952
http://windowsitpro.com/security/resetting-password-krbtgt-active-directory-account
http://windowsitpro.com/security/resetting-password-krbtgt-active-directory-account

144 BIBLIOGRAPHY

[46] Sunny Consolvo, Jaeyeon Jung, Ben Greenstein, Pauline Powledge, Gabriel Maganis, and Daniel
Avrahami. The wi-fi privacy ticker: improving awareness & control of personal information exposure
on wi-fi. In Proc. Ubicomp, 2010.

[47] Lorrie Faith Cranor, Pedro Giovanni Leon, and Blase Ur. A large-scale evaluation of U.S. financial
institutions’ standardized privacy notices. ACM TWEB, 10(3):17, 2016.

[48] curlyboi. Hashtopus. http://hashtopus.nech.me/manual.html, 2009-.

[49] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng Wang. The tangled
web of password reuse. In Proc. NDSS, 2014.

[50] Mark Davies. The corpus of contemporary American English: 425 million words, 1990–present.
http://corpus.byu.edu/coca/, 2008.

[51] Xavier de Carné de Carnavalet and Mohammad Mannan. From very weak to very strong: Analyzing
password-strength meters. In Proc. NDSS, 2014.

[52] Alexander De Luca, Alina Hang, Emanuel von Zezschwitz, and Heinrich Hussmann. I feel like I’m
taking selfies all day! Towards understanding biometric authentication on smartphones. In Proc. CHI,
2015.

[53] Matteo Dell’Amico and Maurizio Filippone. Monte Carlo strength evaluation: Fast and reliable
password checking. In Proc. CCS, 2015.

[54] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password strength: An empirical analysis.
In Proc. INFOCOM, 2010.

[55] Jega Anish Dev. Usage of botnets for high speed md5 hash cracking. In Proc. INTECH, 2013.

[56] Martin M. A. Devillers. Analyzing Password Strength. PhD thesis, Radboud University Nijmegen,
2010.

[57] Julie S. Downs, Mandy B. Holbrook, Steve Sheng, and Lorrie Faith Cranor. Are your participants
gaming the system? Screening Mechanical Turk workers. In Proc. CHI, 2010.

[58] Chris Duckett. Login duplication allows 20m Alibaba accounts to be attacked. ZDNet, Febru-
ary 5, 2016. http://www.zdnet.com/article/login-duplication-allows-20m-alibaba-
accounts-to-be-attacked/.

[59] Geoffrey B. Duggan, Hilary Johnson, and Beate Grawemeyer. Rational security: Modelling everyday
password use. International Journal of Human-Computer Studies, 70(6):415 – 431, 2012.

[60] Markus Dürmuth, Fabian Angelstorf, Claude Castelluccia, Daniele Perito, and Abdelberi Chaabane.
OMEN: Faster password guessing using an ordered markov enumerator. In Proc. ESSoS, 2015.

[61] Markus Dürmuth, Abdelberi Chaabane, Daniele Perito, and Claude Castelluccia. When privacy meets
security: Leveraging personal information for password cracking. CoRR, 2013. http://arxiv.org/
pdf/1304.6584.pdf.

http://hashtopus.nech.me/manual.html
http://corpus.byu.edu/coca/
http://www.zdnet.com/article/login-duplication-allows-20m-alibaba-accounts-to-be-attacked/
http://www.zdnet.com/article/login-duplication-allows-20m-alibaba-accounts-to-be-attacked/
http://arxiv.org/pdf/1304.6584.pdf
http://arxiv.org/pdf/1304.6584.pdf

BIBLIOGRAPHY 145

[62] David Eargle, John Godfrey, Hsin Miao, Scott Stevenson, Richard Shay, Blase Ur, and Lorrie Cranor.
You can do better — motivational statements in password-meter feedback. Proc. SOUPS Posters,
2015.

[63] Serge Egelman, Lorrie Faith Cranor, and Abdur Chowdhury. An analysis of p3p-enabled web sites
among top-20 search results. In Proc. ICEC, 2006.

[64] Serge Egelman, Marian Harbach, and Eyal Peer. Behavior ever follows intention?: A validation of the
security behavior intentions scale (SeBIS). In Proc. CHI, 2016.

[65] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov, and Cormac Herley.
Does my password go up to eleven? The impact of password meters on password selection. In Proc.
CHI, 2013.

[66] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proc. OSDI, 2010.

[67] Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew Smith. On the ecological validity of a
password study. In Proc. SOUPS, 2013.

[68] Dinei Florêncio and Cormac Herley. A large-scale study of web password habits. In Proc. WWW,
2007.

[69] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. An administrator’s guide to internet
password research. In Proc. USENIX LISA, 2014.

[70] Dinei Florêncio, Cormac Herley, and Paul C. van Oorschot. Password portfolios and the finite-effort
user: Sustainably managing large numbers of accounts. In Proc. USENIX Security, 2014.

[71] Alain Forget, Sonia Chiasson, P. C. van Oorschot, and Robert Biddle. Improving text passwords
through persuasion. In Proc. SOUPS, 2008.

[72] John Fox and Sanford Weisberg. An R Companion to Applied Regression (Online Appendix).
Sage Publications, second edition, 2011. https://socserv.socsci.mcmaster.ca/jfox/Books/
Companion/appendix/Appendix-Cox-Regression.pdf.

[73] Simson Garfinkel and Heather Richter Lipford. Usable security: History, themes, and challenges.
Synthesis Lectures on Information Security, Privacy, and Trust, 2014.

[74] Shirley Gaw and Edward W. Felten. Password management strategies for online accounts. In Proc.
SOUPS, 2006.

[75] Megan Geuss. Mozilla: Data stolen from hacked bug database was used to attack Fire-
fox. Ars Technica http://arstechnica.com/security/2015/09/mozilla-data-stolen-
from-hacked-bug-database-was-used-to-attack-firefox/, September 4, 2015.

[76] Jeffrey Goldberg. Defining password strength. In Proc. Passwords, 2013.

https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.pdf
https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Cox-Regression.pdf
http://arstechnica.com/security/2015/09/mozilla-data-stolen-from-hacked-bug-database-was-used-to-attack-firefox/
http://arstechnica.com/security/2015/09/mozilla-data-stolen-from-hacked-bug-database-was-used-to-attack-firefox/

146 BIBLIOGRAPHY

[77] Dan Goodin. Hackers expose 453,000 credentials allegedly taken from Yahoo service. Ars Technica,
July 2012. http://arstechnica.com/security/2012/07/yahoo-service-hacked/.

[78] Dan Goodin. Why passwords have never been weaker—and crackers have never been stronger.
Ars Technica, August 2012. http://arstechnica.com/security/2012/08/passwords-under-
assault/.

[79] Dan Goodin. Anatomy of a hack: How crackers ransack passwords like “qeadzcwrsfxv1331”.
Ars Technica, May 2013. http://arstechnica.com/security/2013/05/how-crackers-make-
minced-meat-out-of-your-passwords/.

[80] Dan Goodin. “thereisnofatebutwhatwemake”-turbo-charged cracking comes to long pass-
words. Ars Technica, August 2013. http://arstechnica.com/security/2013/08/

thereisnofatebutwhatwemake-turbo-charged-cracking-comes-to-long-passwords/.

[81] Dan Goodin. Meet wordhound, the tool that puts a personal touch on password cracking. Ars Technica,
August 2014.

[82] Dan Goodin. Once seen as bulletproof, 11 million+ Ashley Madison passwords already cracked.
Ars Technica http://arstechnica.com/security/2015/09/once-seen-as-bulletproof-
11-million-ashley-madison-passwords-already-cracked/, September 10, 2015.

[83] Google. Web 1T 5-gram version 1, 2006. http://www.ldc.upenn.edu/Catalog/CatalogEntry.
jsp?catalogId=LDC2006T13.

[84] Beate Grawemeyer and Hilary Johnson. Using and managing multiple passwords: A week to a view.
Interacting with Computers, 23(3), June 2011.

[85] Haible. gperf. https://www.gnu.org/software/gperf/, 2010-.

[86] S.M. Taiabul Haque, Matthew Wright, and Shannon Scielzo. A study of user password strategy for
multiple accounts. In Proc. CODASPY, 2013.

[87] Marian Harbach, Markus Hettig, Susanne Weber, and Matthew Smith. Using personal examples to
improve risk communication for security & privacy decisions. In Proc. CHI, 2014.

[88] Eiji Hayashi, Nicolas Christin, Rachna Dhamija, and Adrian Perrig. Use your illusion: Secure
authentication usable anywhere. In Proc. SOUPS, 2008.

[89] Alan Henry. Five best password managers. LifeHacker, January 11, 2015. http://lifehacker.
com/5529133/.

[90] Cormac Herley. So long, and no thanks for the externalities: The rational rejection of security advice
by users. In Proc. NSPW, 2009.

[91] Shiva Houshmand, Sudhir Aggarwal, and Randy Flood. Next gen PCFG password cracking. IEEE
TIFS, 10(8):1776–1791, Aug 2015.

http://arstechnica.com/security/2012/07/yahoo-service-hacked/
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/08/thereisnofatebutwhatwemake-turbo-charged-cracking-comes-to-long-passwords/
http://arstechnica.com/security/2013/08/thereisnofatebutwhatwemake-turbo-charged-cracking-comes-to-long-passwords/
http://arstechnica.com/security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
http://arstechnica.com/security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
https://www.gnu.org/software/gperf/
http://lifehacker.com/5529133/
http://lifehacker.com/5529133/

BIBLIOGRAPHY 147

[92] Jun Ho Huh, Seongyeol Oh, Hyoungshick Kim, Konstantin Beznosov, Apurva Mohan, and S. Raj
Rajagopalan. Surpass: System-initiated user-replaceable passwords. In Proc. CCS, 2015.

[93] Troy Hunt. The science of password selection. Blog Post, July 2011. http://www.troyhunt.com/
2011/07/science-of-password-selection.html.

[94] Imperva. Consumer password worst practices, 2010. http://www.imperva.com/docs/WP_
Consumer_Password_Worst_Practices.pdf.

[95] Philip Inglesant and M. Angela Sasse. The true cost of unusable password policies: Password use in
the wild. In Proc. CHI, 2010.

[96] InsidePro. PasswordsPro. http://www.insidepro.com/eng/passwordspro.shtml, 2003-.

[97] Iulia Ion, Marc Langheinrich, Ponnurangam Kumaraguru, and Srdjan Čapkun. Influence of user
perception, security needs, and social factors on device pairing method choices. In Proc. SOUPS,
2010.

[98] Iulia Ion, Rob Reeder, and Sunny Consolvo. “. . .no one can hack my mind”: Comparing expert and
non-expert security practices. In Proc. SOUPS, 2015.

[99] Panagiotis G. Ipeirotis. Demographics of Mechanical Turk. Technical report, New York University,
2010.

[100] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality management on Amazon Mechanical
Turk. In Proc. HCOMP, New York, NY, USA, 2010.

[101] Blake Ives, Kenneth R. Walsh, and Helmut Schneider. The domino effect of password reuse. CACM,
47(4):75–78, April 2004.

[102] Markus Jakobsson and Mayank Dhiman. The benefits of understanding passwords. In Proc. HotSec,
2012.

[103] Ari Juels and Ronald L. Rivest. Honeywords: Making password-cracking detectable. In Proc. CCS,
2013.

[104] Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Richard Shay, Tim Vidas, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms. In Proc. IEEE SP, 2012.

[105] Aniket Kittur, Ed H. Chi, and Bongwon Suh. Crowdsourcing user studies with Mechanical Turk. In
Proc. CHI, 2008.

[106] Saranga Komanduri. Modeling the adversary to evaluate password strengh with limited samples. PhD
thesis, Carnegie Mellon University, 2015.

[107] Saranga Komanduri, Richard Shay, Lorrie Faith Cranor, Cormac Herley, and Stuart Schechter. Telepath-
words: Preventing weak passwords by reading users’ minds. In Proc. USENIX Security, 2014.

http://www.troyhunt.com/2011/07/science-of-password-selection.html
http://www.troyhunt.com/2011/07/science-of-password-selection.html
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://www.insidepro.com/eng/passwordspro.shtml

148 BIBLIOGRAPHY

[108] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman. Of passwords and people: Measuring the effect of
password-composition policies. In Proc. CHI, 2011.

[109] KoreLogic. ”Crack Me If You Can” - DEFCON 2013. http://contest-2013.korelogic.com,
2010-.

[110] KoreLogic. “Crack Me If You Can” - DEFCON 2010. http://contest-2010.korelogic.com/
rules.html, 2010.

[111] KoreLogic. Pathwell topologies. KoreLogic Blog, 2014. https://blog.korelogic.com/blog/
2014/04/04/pathwell_topologies.

[112] KoreLogic. ”Analytical Solutions: Password Recovery Service. http://contest-2010.

korelogic.com/prs.html, 2015.

[113] Munir Kotadia. Gates predicts death of the password. CNET News, February 25, 2004.

[114] Naveen Kumar. Password in practice: An usability survey. Journal of Global Research in Computer
Science, 2(5), 2011.

[115] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of mnemonic phrase-based
passwords. In Proc. SOUPS, 2006.

[116] John Leyden. Office workers give away passwords for a cheap pen. The Register, 2003.

[117] Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and Kevin Chen-Chuan Chang. Towards social user
profiling: Unified and discriminative influence model for inferring home locations. In Proc. KDD,
2012.

[118] Zhigong Li, Weili Han, and Wenyuan Xu. A large-scale empirical analysis of Chinese web passwords.
In Proc. USENIX Security, 2014.

[119] Jialiu Lin, Shahriyar Amini, Jason Hong, Norman Sadeh, Janne Lindqvist, and Joy Zhang. Expectation
and purpose: Understanding users’ mental models of mobile app privacy through crowdsourcing. In
Proc. UbiComp, 2012.

[120] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling users’ mobile app privacy preferences:
Restoring usability in a sea of permission settings. In Proc. SOUPS, 2014.

[121] George Loewenstein and Emily Celia Haisley. The economist as therapist: Methodological rami-
fications of ‘light’ paternalism. In The Foundations of Positive and Normative Economics. Oxford
University Press, 2008.

[122] Dylan Love. Apple on iCloud breach: It’s not our fault hackers guessed celebrity passwords. Inter-
national Business Times, September 2 2014. http://www.ibtimes.com/apple-icloud-breach-
its-not-our-fault-hackers-guessed-celebrity-passwords-1676268.

http://contest-2013.korelogic.com
http://contest-2010.korelogic.com/rules.html
http://contest-2010.korelogic.com/rules.html
https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies
https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies
http://contest-2010.korelogic.com/prs.html
http://contest-2010.korelogic.com/prs.html
http://www.ibtimes.com/apple-icloud-breach-its-not-our-fault-hackers-guessed-celebrity-passwords-1676268
http://www.ibtimes.com/apple-icloud-breach-its-not-our-fault-hackers-guessed-celebrity-passwords-1676268

BIBLIOGRAPHY 149

[123] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A study of probabilistic password models. In
Proc. IEEE SP, 2014.

[124] David Malone and Kevin Maher. Investigating the distribution of password choices. In Proc. WWW,
2012.

[125] Simon Marechal. Automatic wordlist mangling rule generation. Openwall Blog, 2012. http:
//www.openwall.com/presentations/Passwords12-Mangling-Rules-Generation/.

[126] Michelle L. Mazurek, Saranga Komanduri, Timothy Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Patrick Gage Kelley, Richard Shay, and Blase Ur. Measuring password guessability for an
entire university. In Proc. CCS, 2013.

[127] B. Dawn Medlin and Joseph A. Cazier. An empirical investigation: Health care employee passwords
and their crack times in relationship to HIPAA security standards. IJHISI, 2(3), 2007.

[128] Eric Medvet, Engin Kirda, and Christopher Kruegel. Visual-similarity-based phishing detection. In
Proc. SecureComm, 2008.

[129] William Melicher, Darya Kurilova, Sean M. Segreti, Pranshu Kalvani, Richard Shay, Blase Ur, Lujo
Bauer, Nicolas Christin, Lorrie Faith Cranor, and Michelle L. Mazurek. Usability and security of text
passwords on mobile devices. In Proc. CHI, 2016.

[130] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. Fast, lean, and accurate: Modeling password guessability using neural networks.
In Proc. USENIX Security, 2016.

[131] David A. Milman. Death to passwords. ComputerWorld. http://blogs.computerworld.com/
17543/death_to_passwords, 2010.

[132] Robert Morris and Ken Thompson. Password security: A case history. CACM, 22(11), 1979.

[133] Mozilla Developer. Using Web workers. https://developer.mozilla.org/en-US/docs/Web/
API/Web_Workers_API/Using_web_workers, Accessed 2016.

[134] MWR InfoSecurity. MWR InfoSecurity, 2014. https://www.mwrinfosecurity.com/.

[135] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using time-space
tradeoff. In Proc. CCS, 2005.

[136] Gilbert Notoatmodjo and Clark Thomborson. Passwords and perceptions. In Proc. AISC, 2009.

[137] Openwall. Wordlists. http://download.openwall.net/pub/wordlists/, 2015.

[138] Colin Percival. Stronger key derivation via sequential memory-hard functions. http://www.tarsnap.
com/scrypt/scrypt.pdf, 2009.

[139] Alexander Peslyak. John the Ripper. http://www.openwall.com/john/, 1996-.

http://www.openwall.com/presentations/Passwords12-Mangling-Rules-Generation/
http://www.openwall.com/presentations/Passwords12-Mangling-Rules-Generation/
http://blogs.computerworld.com/17543/death_to_passwords
http://blogs.computerworld.com/17543/death_to_passwords
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://www.mwrinfosecurity.com/
http://download.openwall.net/pub/wordlists/
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.openwall.com/john/

150 BIBLIOGRAPHY

[140] PHDays. “Hash Runner” - Positive Hack Days. http://2013.phdays.com/program/contests/,
2013.

[141] Pieroxy. lz-string: Javascript compression, fast! http://pieroxy.net/blog/pages/lz-string/
index.html, Accessed 2016.

[142] Robert W. Proctor, Mei-Ching Lien, Kim-Phuong L. Vu, E. Eugene Schultz, and Gavriel Salvendy.
Improving computer security for authentication of users: Influence of proactive password restrictions.
Behavior Research Methods, Instruments, & Computers, 34(2):163–169, 2002.

[143] Niels Provos and David Mazieres. A future-adaptable password scheme. In Proc. USENIX ATC, 1999.

[144] Emilee Rader, Rick Wash, and Brandon Brooks. Stories as informal lessons about security. In Proc.
SOUPS, 2012.

[145] Ashwini Rao, Birendra Jha, and Gananand Kini. Effect of grammar on security of long passwords. In
Proc. CODASPY, 2013.

[146] Rapid7. Linkedin passwords lifted, retrieved September 2012. http://www.rapid7.com/

resources/infographics/linkedIn-passwords-lifted.html.

[147] Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zaldivar, and Bill Tomlinson. Who are the crowd-
workers?: Shifting demographics in Mechanical Turk. In Proc. CHI Extended Abstracts, 2010.

[148] Norman Sadeh, Alessandro Acquisti, Travis D. Breaux, Lorrie Faith Cranor, Aleecia M. McDonald,
Joel Reidenberg, Noah A. Smith, Fei Liu, N. Cameron Russell, Florian Schaub, Shomir Wilson,
James T. Graves, Pedro Giovanni Leon, Rohan Ramanath, and Ashwini Rao. Poster: Towards usable
privacy policies: Semi-automatically extracting data practices from websites’ privacy policies. In Proc.
SOUPS Extended Abstracts, 2014.

[149] Stuart Schechter, Cormac Herley, and Michael Mitzenmacher. Popularity is everything: a new approach
to protecting passwords from statistical-guessing attacks. In Proc. HotSec, 2010.

[150] Bruce Schneier. MySpace passwords aren’t so dumb. http://www.wired.com/politics/

security/commentary/securitymatters/2006/12/72300, 2006.

[151] Bruce Schneier. Password advice. http://www.schneier.com/blog/archives/2009/08/

password_advice.html, August 2009.

[152] Bruce Schneier. Choosing secure passwords. Schneier on Security https://www.schneier.com/
blog/archives/2014/03/choosing_secure_1.html, March 3, 2014.

[153] SCOWL. Spell checker oriented word lists. http://wordlist.sourceforge.net, 2015.

[154] Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Blase Ur, Timothy
Vidas, Lujo Bauer, Nicholas Christin, and Lorrie Faith Cranor. Correct horse battery staple: Exploring
the usability of system-assigned passphrases. In Proc. SOUPS, 2012.

http://2013.phdays.com/program/contests/
http://pieroxy.net/blog/pages/lz-string/index.html
http://pieroxy.net/blog/pages/lz-string/index.html
http://www.rapid7.com/resources/infographics/linkedIn-passwords-lifted.html
http://www.rapid7.com/resources/infographics/linkedIn-passwords-lifted.html
http://www.wired.com/politics/security/commentary/securitymatters/2006/12/72300
http://www.wired.com/politics/security/commentary/securitymatters/2006/12/72300
http://www.schneier.com/blog/archives/2009/08/password_advice.html
http://www.schneier.com/blog/archives/2009/08/password_advice.html
https://www.schneier.com/blog/archives/2014/03/choosing_secure_1.html
https://www.schneier.com/blog/archives/2014/03/choosing_secure_1.html
http://wordlist.sourceforge.net

BIBLIOGRAPHY 151

[155] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek,
Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Can long passwords
be secure and usable? In Proc. CHI, 2014.

[156] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek,
Sean M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Designing password
policies for strength and usability. ACM TISSEC, 18(4):13, 2016.

[157] Richard Shay, Saranga Komanduri, Adam L. Durity, Phillip (Seyoung) Huh, Michelle L. Mazurek,
Sean M. Segreti, Blase Ur, Lujo Bauer, Lorrie Faith Cranor, and Nicolas Christin. Can long passwords
be secure and usable? In Proc. CHI, 2014.

[158] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon, Michelle L. Mazurek,
Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Encountering stronger password requirements:
User attitudes and behaviors. In Proc. SOUPS, 2010.

[159] Steven K. Shevell, editor. The Science of Color. Elsevier, 2003.

[160] Supriya Singh, Anuja Cabraal, Catherine Demosthenous, Gunela Astbrink, and Michele Furlong.
Password sharing: Implications for security design based on social practice. In Proc. CHI, 2007.

[161] Daniel J. Solove and Woodrow Hartzog. Should the FTC kill the password? The case for better
authentication. Bloomberg BNA Privacy & Security Law Report 1353, 2015.

[162] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of keystrokes and timing
attacks on SSH. In Proc. USENIX Security Symposium, 2001.

[163] Andreas Sotirakopoulos, Ildar Muslukov, Konstantin Beznosov, Cormac Herley, and Serge Egelman.
Motivating users to choose better passwords through peer pressure. Proc. SOUPS Posters, 2011.

[164] SpiderOak. Zero knowledge cloud solutions. https://spideroak.com/, 2016.

[165] Jeffrey M. Stanton, Kathryn R. Stam, Paul Mastrangelo, and Jeffrey Jolton. Analysis of end user
security behaviors. Computers & Security, 24(2):124–133, 2005.

[166] Jens Steubbe. Hashcat. http://hashcat.net/oclhashcat-plus/, 2009.

[167] Jens Steube. Mask Attack. https://hashcat.net/wiki/doku.php?id=mask_attack, 2009-.

[168] Jens Steube. Rule-based Attack. https://hashcat.net/wiki/doku.php?id=rule_based_
attack, 2009-.

[169] Elizabeth Stobert and Robert Biddle. The password life cycle: User behaviour in managing passwords.
In Proc. SOUPS, 2014.

[170] Elizabeth Stobert and Robert Biddle. Expert password management. In Proc. Passwords, 2015.

[171] Stricture Consulting Group. Password audits. http://stricture-group.com/services/

password-audits.htm, 2015.

https://spideroak.com/
http://hashcat.net/oclhashcat-plus/
https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=rule_based_attack
http://stricture-group.com/services/password-audits.htm
http://stricture-group.com/services/password-audits.htm

152 BIBLIOGRAPHY

[172] Wayne C. Summers and Edward Bosworth. Password policy: The good, the bad, and the ugly. In Proc.
WISICT, 2004.

[173] San-Tsai Sun, Eric Pospisil, Ildar Muslukhov, Nuray Dindar, Kirstie Hawkey, and Konstantin Beznosov.
What makes users refuse web single sign-on?: An empirical investigation of OpenID. In Proc. SOUPS,
2011.

[174] Terms of Service; Didn’t Read. http://tosdr.org/.

[175] Richard H. Thaler and Cass R. Sunstein. Nudge: Improving decisions about health, wealth, and
happiness. Yale University Press, 2008.

[176] Michael Toomim, Travis Kriplean, Claus Pörtner, and James Landay. Utility of human-computer
interactions: Toward a science of preference measurement. In Proc. CHI, 2011.

[177] Trustwave. 2014 business password analysis. Password Research, 2014.

[178] Trustwave Spiderlabs. eHarmony password dump analysis, June 2012. http://blog.spiderlabs.
com/2012/06/eharmony-password-dump-analysis.html.

[179] Trustwave Spiderlabs. SpiderLabs/KoreLogic-Rules. https://github.com/SpiderLabs/

KoreLogic-Rules, 2012.

[180] Janice Y. Tsai, Serge Egelman, Lorrie F. Cranor, and Alessandro Acquisti. The effect of online
privacy information on purchasing behavior: An experimental study. Information Systems Research,
22(2):254–268, June 2011.

[181] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. Do
users’ perceptions of password security match reality? In Proc. CHI, 2016.

[182] Blase Ur, Patrick Gage Kelly, Saranga Komanduri, Joel Lee, Michael Maass, Michelle Mazurek,
Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
How does your password measure up? The effect of strength meters on password creation. In Proc.
USENIX Security, August 2012.

[183] Blase Ur, Saranga Komanduri, Richard Shay, Stephanos Matsumoto, Lujo Bauer, Nicolas Christin,
Lorrie Faith Cranor, Patrick Gage Kelley, Michelle L. Mazurek, and Timothy Vidas. Poster: The art of
password creation. In Proc. IEEE SP Posters, 2013.

[184] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. “I added ‘!’ at the end to make it secure”: Observing password creation in
the lab. In Proc. SOUPS, 2015.

[185] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri,
Darya Kurilova, Michelle L. Mazurek, William Melicher, and Richard Shay. Measuring real-world
accuracies and biases in modeling password guessability. In Proc. USENIX Security, 2015.

[186] Anthony Vance, David Eargle, Kirk Ouimet, and Detmar Straub. Enhancing password security through
interactive fear appeals: A web-based field experiment. In Proc. HICSS, 2013.

http://tosdr.org/
http://blog.spiderlabs.com/2012/06/eharmony-password-dump-analysis.html
http://blog.spiderlabs.com/2012/06/eharmony-password-dump-analysis.html
https://github.com/SpiderLabs/KoreLogic-Rules
https://github.com/SpiderLabs/KoreLogic-Rules

BIBLIOGRAPHY 153

[187] Ashlee Vance. If your password is 123456, just make it HackMe. New York Times, http://www.
nytimes.com/2010/01/21/technology/21password.html, 2010.

[188] Rafael Veras, Christopher Collins, and Julie Thorpe. On the semantic patterns of passwords and their
security impact. In Proc. NDSS, 2014.

[189] Rafael Veras, Julie Thorpe, and Christopher Collins. Visualizing semantics in passwords: The role of
dates. In Proc. VizSec, 2012.

[190] Melanie Volkamer and Karen Renaud. Mental models – general introduction and review of their
application to human-centred security. In Number Theory and Cryptography, volume 8260 of Lecture
Notes in Computer Science, pages 255–280. 2013.

[191] Emanuel von Zezschwitz, Alexander De Luca, and Heinrich Hussmann. Survival of the shortest: A
retrospective analysis of influencing factors on password composition. In Proc. INTERACT, 2013.

[192] Emanuel von Zezschwitz, Alexander De Luca, and Heinrich Hussmann. Honey, I shrunk the keys:
Influences of mobile devices on password composition and authentication performance. In Proc.
NordiCHI, 2014.

[193] Kim-Phuong L. Vu, Robert W. Proctor, Abhilasha Bhargav-Spantzel, Bik-Lam (Belin) Tai, and
Joshua Cook. Improving password security and memorability to protect personal and organizational
information. IJHCS, 65(8):744–757, 2007.

[194] Rick Wash. Folk models of home computer security. In Proc. SOUPS, 2010.

[195] Matt Weir. The RockYou 32 million password list top 100. http://reusablesec.blogspot.com/
2009/12/rockyou-32-million-password-list-top.html, December 2009.

[196] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for password creation
policies by attacking large sets of revealed passwords. In Proc. CCS, 2010.

[197] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill Glodek. Password cracking using proba-
bilistic context-free grammars. In Proc. IEEE SP, 2009.

[198] Dan Wheeler. zxcvbn: Realistic password strength estimation. https://blogs.dropbox.com/
tech/2012/04/zxcvbn-realistic-password-strength-estimation/, 2012.

[199] Dan Lowe Wheeler. zxcvbn: Low-budget password strength estimation. In Proc. USENIX Security,
2016.

[200] Wikipedia. Wikimedia downloads. http://dumps.wikimedia.org/.

[201] Craig E. Wills and Mihajlo Zeljkovic. A personalized approach to web privacy: awareness, attitudes
and actions. Information Management & Computer Security, 19(1):53–73, 2011.

[202] Jianxin Jeff Yan. A note on proactive password checking. In Proc. NSPW, 2001.

[203] Yulong Yang, Janne Lindqvist, and Antti Oulasvirta. Text entry method affects password security. In
Proc. LASER, 2014.

http://www.nytimes.com/2010/01/21/technology/21password.html
http://www.nytimes.com/2010/01/21/technology/21password.html
http://reusablesec.blogspot.com/2009/12/rockyou-32-million-password-list-top.html
http://reusablesec.blogspot.com/2009/12/rockyou-32-million-password-list-top.html
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
https://blogs.dropbox.com/tech/2012/04/zxcvbn-realistic-password-strength-estimation/
http://dumps.wikimedia.org/

154 BIBLIOGRAPHY

[204] Shiva Houshmand Yazdi. Analyzing password strength and efficient password cracking. Master’s
thesis, The Florida State University, 2011.

[205] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. The security of modern password expiration:
An algorithmic framework and empirical analysis. In Proc. CCS, 2010.

[206] Leah Zhang-Kennedy, Sonia Chiasson, and Robert Biddle. Password advice shouldn’t be boring:
Visualizing password guessing attacks. In Proc. eCRS, 2013.

[207] Moshe Zviran and William J. Haga. Password security: An empirical study. J. Mgt. Info. Sys., 15(4),
1999.

Appendices

155

Appendix A

Surveys from “How Does Your Password
Measure Up...”

A.1 Survey Questions

A.1.1 Day 1 Survey

Page 1

We will now ask you some questions about the password you just created. After you finish this survey, we
will ask you to reenter your password, at which point you will receive the MTurk confirmation code. Don’t
worry if you’ve forgotten your password; you will still receive the code!

1. Creating a password that meets the requirements given in this study was annoying.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

2. Creating a password that meets the requirements given in this study was difficult.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

3. Creating a password that meets the requirements given in this study was fun.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

4. If I changed my real email account password to the password I created in this study, it would make my
email account less secure.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

Page 2

All questions on this page are about the password strength meter (above) that you saw when creating your
password.

1. The password strength meter helped me create a stronger password that I would have otherwise.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

157

158 APPENDIX A. SURVEYS FROM “HOW DOES YOUR PASSWORD MEASURE UP...”

Figure A.1: Example meter shown to participants.

2. The password strength meter was not informative.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

3. I created a different password than I would have otherwise based on feedback from the password
strength meter.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

4. It’s important to me that the password strength meter gives my password a high score.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

5. I did not understand how the password strength meter rated my password.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

6. I think the password strength meter gave an incorrect score of my password’s strength.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

7. I often see password meters when I’m creating new online accounts.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

8. I would have created the same password without the password strength meter.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

9. The password strength meter was annoying.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

Page 3

1. While creating your password, how many times did you look at the password strength meter?
() Not at all
() Once or twice
() Three to five times
() More than five times
() I watched it the whole time while I was creating my password

2. Please explain how the password strength meter helped you create a better password, or explain why it
was not helpful.

3. How did the password meter impact the password you chose?
() It had no impact
() I typed a password and then made it longer to increase the password meter score

A.1. SURVEY QUESTIONS 159

() I typed a password and then added some special characters to increase the password meter score
() I typed a password and then deleted some or all of what I typed and tried again to increase the
password meter score
() Since I saw the meter I tried harder to pick a good password that would be likely to have a high
password meter score
() I tried multiple passwords to see what the meter would say before I picked one to submit
() Other

Page 3

1. What is your gender?
() Male
() Female
() I prefer not to answer

2. How old are you?

3. Are you majoring in or do you have a degree or job in computer science, computer engineering,
information technology, or a related field?
() Yes
() No
() I prefer not to answer

4. What country do you live in?

5. Are you red-green colorblind?
() Yes
() No
() I prefer not to answer

A.1.2 Day 2 Survey

Page 1

Thank you for participating in this Carnegie Mellon University password study. The purpose of this study
is to help us learn about how people use different types of password systems. Please answer the following
questions honestly. There are no right or wrong answers and everyone who finishes this task completely will
receive their bonus payment.

1. When you created your password for this study, which of the following did you do?
() I reused a password I was already using for an email account
() I modified a password I was already using for an email account
() I reused a password I was already using for a different account
() I modified a password I was already using for a different account
() I created an entirely new password
() Other

160 APPENDIX A. SURVEYS FROM “HOW DOES YOUR PASSWORD MEASURE UP...”

2. Was the password you created for this study stored by your web browser?
() No
() Yes

3. Did you write down the password you created for this study?
() No
() Yes, on paper
() Yes, electronically (stored in computer, phone, etc.)
() Other

4. If you wrote down your password for this study, how is it protected? (choose all that apply)
() I did not protect it
() I stored it in an encrypted file
() I hid it
() I stored it on a computer or device protected with another password
() I locked up the paper
() I always keep the password with me
() I wrote down a reminder instead of the actual password
() I keep the paper in an office or room that only I use
() I stored it on a computer or device that only I use
() Other

Page 2

1. Have you written down your real email account password?
() No
() Yes, on paper
() Yes, electronically (stored in computer, phone, etc.)
() Other

2. If you wrote down your real email account password, how is it protected? (choose all that apply)
() I did not protect it
() I stored it in an encrypted file
() I hid it
() I stored it on a computer or device protected with another password
() I locked up the paper
() I always keep the password with me
() I wrote down a reminder instead of the actual password
() I keep the paper in an office or room that only I use
() I stored it on a computer or device that only I use
() Other

3. To how many people have you given your real email account password?

4. Remembering the password I created for this study was difficult.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

A.1. SURVEY QUESTIONS 161

5. Remembering the password I use for my main email account is difficult.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

6. The password I created for this study is weaker or less secure than a password I would use for one of
my real accounts.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree () NA

162 APPENDIX A. SURVEYS FROM “HOW DOES YOUR PASSWORD MEASURE UP...”

Appendix B

Surveys and Full Data from “Do Users’
Perceptions...”

B.1 Survey Questions

B.1.1 Part 1

This study consists of 5 parts.
Please answer the following demographic questions.

1. What is your gender?
() Male
() Female
() Other
() Prefer not to answer

2. What is your age?

3. Have you ever held a job or received a degree in computer science or any related technology field?
() Yes
() No

4. Are you either a computer security professional or a student studying computer security?
() Yes
() No

B.1.2 Part 2 (Repeated 26 times)

The next 26 questions will ask you to compare pairs of passwords and rate which is more secure, or whether
they are equally secure. As you think about these comparisons, imagine that you use this password for an
important account that is protecting information that you care a lot about.

163

164 APPENDIX B. SURVEYS AND FULL DATA FROM “DO USERS’ PERCEPTIONS...”

1. In your opinion, which of the following passwords is more secure?
p1 p2

() p1 is much more secure
() p1 is more secure
() p1 is slightly more secure
() Both passwords are equally secure
() p2 is slightly more secure
() p2 is more secure
() p2 is much more secure

2. Why?

B.1.3 Part 3 (Repeated 20 times)

For the next 20 questions, we will present a password and ask you to rate how secure you think it is, as well
as how easy you think it is to remember. As you choose ratings, imagine that you use this password for an
important account that is protecting information that you care a lot about.

1. Please rate the security of the following password: pn

(very insecure) () 1 () 2 () 3 () 4 () 5 () 6 () 7 (very secure)

2. Please rate the memorability of the following password: pn

(very hard to remember) () 1 () 2 () 3 () 4 () 5 () 6 () 7 (very easy to remember)

B.1.4 Part 4 (Repeated 11 times)

For the next 11 questions, we will present a strategy for creating passwords and ask you to rate how secure
you think it is, as well as how easy you think it is to remember. As you choose ratings, imagine that you use
this password for an important account that you care a lot about.

Consider the following password-creation strategy: strategyn

1. Please rate the security of passwords created using that strategy.
(very insecure) () 1 () 2 () 3 () 4 () 5 () 6 () 7 (very secure)

2. Please rate the memorability of passwords created using that strategy.
(very hard to remember) () 1 () 2 () 3 () 4 () 5 () 6 () 7 (very easy to remember)

B.1.5 Part 5

The final 7 questions cover attacks against passwords.

1. In your opinion, what characteristics make a password easy for an attacker to guess?

2. In your opinion, what characteristics make a password hard for an attacker to guess?

B.2. FULL LIST OF PASSWORD PAIRS 165

3. Please describe the type of attacker (or multiple types of attackers), if any, whom you worry might try
to guess your password.

4. As far as you know, why would an attacker try to guess your password, if at all?

5. As far as you know, how do attackers try to guess your password?

6. How many guesses (by an attacker) would a password need to be able to withstand for you to consider
it secure?

7. Please explain how you arrived at the number of guesses you wrote for the previous question.

B.2 Full List of Password Pairs

PW1 PW2 Stronger Perceived Stronger p

MAncity123 ManCity123 PW1 PW1 < .001
uniVersal Universal PW1 PW1 < .001
goLD.tEeTh. gold.teeth. PW1 PW1 < .001
iloveyou! iloveyou PW1 PW1 < .001
CHAINLOW! CHAINLOW PW1 PW1 < .001
!angryinch angryinch PW1 PW1 < .001
babydoll1 babydoll PW1 PW1 < .001
Indiana1 Indiana PW1 PW1 < .001
michelle1 michelle PW1 PW1 < .001
jdsprig1! jdsprig PW1 PW1 < .001
scotishot1! scotishot PW1 PW1 < .001
rredheadss1! rredheadss PW1 PW1 < .001
restless1 restlessu PW2 PW2 < .001
puppydog3 puppydogv PW2 Neither n.s.
5jungle1 5junglek PW2 PW2 < .001
bobcat01 bobc01at PW2 PW2 < .001
spongebob01 sponge01bob PW2 PW2 < .001
99tinkerbells tink99erbells PW2 PW2 < .001
$HREEne2l$ HREEne2l PW2 PW2 .039
mbmcbg8& mbmc&bg8 Neither Neither n.s.
#!madalion mada#!lion PW2 PW2 < .001
barbara1993 barbara7391 PW2 PW2 < .001
feliz2009 feliz5224 PW2 PW2 < .001
islandia2007 islandia3847 PW2 PW2 < .001
Thumper123 Thumper728 PW2 PW2 < .001
babig123 babig974 PW2 PW2 < .001
badboys234 badboys833 Neither PW2 .001
jonny1421 jonnyrtxe PW2 Neither n.s.

166 APPENDIX B. SURVEYS AND FULL DATA FROM “DO USERS’ PERCEPTIONS...”

PW1 PW2 Stronger Perceived Stronger p

brooklyn16 brooklynqy PW2 Neither n.s.
astley123 astleyabc PW2 Neither n.s.
sandman@ sandman2 PW1 PW1 < .001
:):)salasar 1989salasar PW1 PW1 < .001
isaacˆjoe isaac6joe PW1 PW1 < .001
0849023189)*$()@#!*(PW2 PW2 < .001
18521852 !*%@!*%@ PW2 PW2 < .001
123456789 !@#$%ˆ&*(PW2 PW2 < .001
Caitlin1016 Treason1016 PW2 PW2 < .001
08alyssa 08tomato PW2 PW2 < .001
jackie1234 soccer1234 Neither PW2 .034
survey77† boring77 PW2† PW2 < .001
ilikeamazon† ilikecereal PW2† PW2 < .001
turkturk† gamegame PW2† PW2 < .001
iloveliverpool questionnaires PW2 Neither n.s.
computer moldovan PW2 PW2 < .001
Cryingwolf Desiccated Neither Neither n.s.
iknewyouweretrouble punkygirlfairyrules Neither Neither n.s.
goldenkey jadeisfit Neither Neither n.s.
iloveyou88 ieatkale88 PW2 Neither n.s.
bluewater nightgown PW2 Neither n.s.
momoffive cornflake PW1 PW1 < .001
loveispain strawberry PW1 PW1 < .001
1qaz2wsx3edc thefirstkiss PW2 PW1 < .001
1234567890 livestrong PW2 PW2 < .001
qwertyuiop bradybunch PW2 Neither n.s.
abc123def789 293070844005 PW2 Neither n.s.
1b2b3b4b5b 5ndco2sjg7 PW2 PW2 < .001
asdfghjkl1 msutvsxoa1 PW2 PW2 < .001
07211985† 07251985 PW2† PW2 < .001
11-8-1992† 4-13-1997 PW2† PW2 < .001
KELLY1975† KELLY1998 PW2† PW2 < .001
carmen89† laurie89 PW2† PW2 < .001
iloverobert† ilovethomas PW2† PW2 < .001
yolandamarina† jessicamelisa PW2† PW2 < .001
L0vemetal Lovemetal Neither PW1 < .001
sw33th3art sweetheart PW1 PW1 < .001
Z@kie142 Zakie142 PW1 PW1 < .001
gas0l1nal0v3 gasOlInalOvE Neither Neither n.s.
jan3tt3chr1st1na janEttEchrIstIna Neither Neither n.s.
p@ssw0rd pAsswOrd PW2 PW1 < .001
l0ngh0rns l5ngh5rns PW2 PW2 < .001

B.2. FULL LIST OF PASSWORD PAIRS 167

PW1 PW2 Stronger Perceived Stronger p

punk4life punk7life PW2 PW2 < .001
sk8erboy sk2erboy PW2 PW2 < .001
KL+MO4EVER KL+MOFOREVER PW1 PW1 < .001
punk4life punkforlife PW2 PW1 < .001
sk8erboy skaterboy Neither PW1 < .001

Table B.1: The full list of password pairs we tested, along with the relative security of the passwords according
to our models of password cracking and participants’ perceptions. Significant p values indicate that there was
a preference toward one password over the other.

168 APPENDIX B. SURVEYS AND FULL DATA FROM “DO USERS’ PERCEPTIONS...”

Appendix C

Scripts/Surveys from “...Data-Driven
Password Meter...”

C.1 Script for Laboratory Study

C.1.1 Introduction

Hello, my name is [name]. Thanks for coming! Before we get started, are you okay with me recording audio
for our session? [await confirmation] Great.

Today, we would like your feedback about making passwords and keeping track of them. We’ll be using
your feedback to inform the design of a tool to help people make better passwords.

First, some risks and benefits.
Potential Risks: Talking about your own password can be a sensitive subject, so please don’t say anything

you wouldn’t want shared outside of this session. I will not ask what any of your actual passwords are, nor
should you reveal that information.

Benefits: You will be compensated with a $20 Amazon gift card. However, you will not receive any other
benefits from participating in this study.

You are allowed to leave at any time. If you still consent to being part of this study, please say, “Yes.”
[await verbal confirmation] Great.

The purpose of this study is to inform the design of tools to help users like you create better passwords.
We’ll start with some general questions about how you create and remember passwords. Then, I’ll show
you a slideshow of designs for password tools that companies and researchers have created. Afterwards,
we’ll go through a hands-on portion, where you can try out some tools. In all portions of the study, please
feel encouraged to point out aspects you like about designs, as well as aspects you don’t like. There is not a
particular design we hope you’ll like better than the others; we’re most interested in your honest and blunt
feedback for everything we show you.

C.1.2 Part I – Open, Abstract Discussion of Password Creation

1. First, when did you last create or change a password? Why?

2. What are your goals when you are creating a password?

169

170 APPENDIX C. SCRIPTS/SURVEYS FROM “...DATA-DRIVEN PASSWORD METER...”

3. What makes a password secure? [Follow-up question if relevant] How did you learn what makes a
password secure?

4. Have any particular sources of information been particularly helpful in learning how to make secure
passwords?

5. Have you seen any news articles or TV programs where they talk about password advice? What have
you learned from them?

6. Have you ever received feedback on the screen where you are creating a password? Is this feedback
helpful?

7. (If not mentioned) Are you familiar with password meters, which rate the strength of your passwords
as you create them? What do you think of them?

8. When you make a password, what kinds of threats, if any, are you trying to protect against?

9. How do you keep track of all your passwords? [Follow-up question if relevant] Where did you learn to
do that?

C.1.3 Part II – Password Feedback Slideshow

We’ve been talking a bit about password feedback, but now let’s actually look at some designs for giving
feedback. I’m going to go through a slideshow of some example designs.

As we’re looking at each of these, I want you to give me your thoughts and feedback about each one.
Please tell me what you like about it, as well as what you don’t like about it?

See Figure C.1 for the slideshow images.

C.1.4 Part III – Meter Testing

Okay, next is the hands-on portion. I’d like each of you to spend about 5 minutes trying passwords on two
different prototype tools to get a feel for how they work. [give laptop, show them tabs with prototypes, and
identify the nomenclature] As you do that, please jot down some brief notes on the pros and cons sheets
we’ve provided for each meter. Feel free to add any other comments as well. Try some of the same passwords
on both. In addition, at the end, I’ll give you a sheet of sample passwords to try to make sure you’ve seen
different features of the meter. Unlike some experiments, there isn’t one design we secretly hope you prefer,
so please give us your honest and candid feedback on both. If you have any questions about what you should
do, I’d be happy to help.

[Allow at least 5 minutes for the meter testing session. Keep going until the participant seems to lose
interest.]

Okay, now we’re going to talk a little bit about the prototypes.

1. What did you like about each prototype?

2. What did you dislike about each prototype?

3. What would you change?

C.1. SCRIPT FOR LABORATORY STUDY 171

Figure C.1: Images we showed in the meter slideshow. They are respectively screenshots from password
meters used on Adobe, Twitter, Wordpress, AOL Mail, and Google.

172 APPENDIX C. SCRIPTS/SURVEYS FROM “...DATA-DRIVEN PASSWORD METER...”

C.1.5 Part IV – Ending

Great, just to wrap up, I have two final questions.

1. What kinds of advice, feedback, and help are most useful to you as you create a password?

2. Is there anything else you’d like to add about today’s tasks, or about passwords in general?

Thank you again for helping us out we truly value your feedback. We will now give you your $20
Amazon gift cards. If you have any other questions, I’d be happy to answer them now. Thanks, again!

C.2 Surveys from Online Study

C.2.1 Day 1 Survey

Page 1

Thank you for creating a password. Next, we would like you to answer some survey questions.

1. Creating a password during this study was annoying.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

2. Creating a password during this study was fun.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

3. Creating a password during this study was difficult.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

4. Which of the following best describes your approach to creating your password in this study?
() I reused a password that I currently use, or previously have used, for a different account.
() I modified a password that I currently use, or previously have used, for a different account.
() I created an entirely new password, but I used the same general approach that I normally do.
() I created an entirely new password, and I used a different approach than I normally do.

5. In general, I am confident in my ability to create strong passwords.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

Page 2 (for participants who saw the colored bar)

Figure C.2: Example colored bar shown to participants.

C.2. SURVEYS FROM ONLINE STUDY 173

The following questions refer only to the colored bar (measuring the strength of your password) that you
saw during the study. A sample is shown above.

1. The colored bar helped me create a stronger password.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

2. The colored bar was not informative.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

3. Because of the colored bar, I created a different password than I would have otherwise.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

4. What is your opinion of the accuracy of the colored bar’s rating?
() The colored bar’s rating accurately reflected the strength of my password.
() The colored bar’s rating did not accurately reflect the strength of my password; the colored bar gave
my password a lower score than it deserved.
() The colored bar’s rating did not accurately reflect the strength of my password; the colored bar gave
my password a higher score than it deserved.
() I don’t remember how the colored bar rated my password.

5. Do you have any other thoughts about the colored bar?

Page 3 (for participants who saw text feedback)

Figure C.3: Example text feedback shown to participants.

The following questions refer only to the text feedback you saw during the study. A sample is shown
above. They also refer to any text feedback you saw on other screens, if you happened to click any links that
were given.

1. The text feedback helped me create a stronger password.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

2. The text feedback was not informative.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

3. Because of the text feedback, I created a different password than I would have otherwise.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

174 APPENDIX C. SCRIPTS/SURVEYS FROM “...DATA-DRIVEN PASSWORD METER...”

4. Did you learn something new about passwords (your password, or passwords in general) from the text
feedback?
() Yes () No

5. (If “Yes,” automatically displays) What new thing(s) did you learn?

6. (If “No,” automatically displays) Where have you learned how to make strong passwords?

7. Do you have any other thoughts about the text feedback?

Page 4 (for participants who could be shown a suggested improvements)

Figure C.4: Example suggested improvement shown to participants.

The following questions refer only to the suggested improvements to your password that you may have,
or may not have, seen during the study. A sample is shown above for the password “Mypassword123”

1. Did you see suggested improvements when you were creating your password?
() Yes
() No
() I don’t remember

2. (If “Yes,” automatically displays) The suggested improvements helped me create a stronger password.
() Strongly disagree () Disagree () Neutral () Agree () Strongly agree

3. In your opinion, is it useful to see suggested improvements while you are creating a password?
() Yes () No

4. (If “Yes,” automatically displays) Why?

5. (If “No,” automatically displays) Why not?

6. Do you have any other thoughts about the suggested improvements?

Page 5

1. With what gender do you identify?
() Female
() Male
() Other
() I prefer not to answer

2. How old are you?

C.2. SURVEYS FROM ONLINE STUDY 175

3. Are you majoring in or do you have a degree or job in computer science, computer engineering,
information technology, or a related field?
() Yes
() No
() I prefer not to answer

C.2.2 Day 2 Survey

Page 1

The purpose of this study is to help us learn about how people use different types of password systems.
Please answer the following questions honestly. There are no right or wrong answers and everyone who
finishes this task completely will receive their bonus payment.

1. Which of the following statements best reflects how you entered your password on the previous
screen?
() My password was automatically entered for me by a password manager or by my browser () I typed
my password in entirely from memory
() I had written my password down on paper, and I typed it in after looking it up
() I had saved my password electronically (e.g., in a file or on my phone), and I typed it in after looking
it up
() Other

2. 2. Which of the following statements reflect how you normally enter passwords in your daily life?
(Choose all that apply)
() My passwords are automatically entered for me by a password manager or by my browser
() I type my passwords in entirely from memory
() I write my passwords down on paper, and I type them in after looking them up
() I save my passwords electronically (e.g., in a file or on my phone), and I type them in after looking
them up
Other

3. Regardless of how you entered your password on the previous screen, did you do any of the following
after you created your password? (Choose all that apply)
() I wrote my password for this study down on paper
() I stored my password for this study electronically (e.g., in a file or on my phone)
() I wrote down or electronically stored hints to help me remember my password for this study, but not
my password itself
() I did not do any of the above

4. What would you have done differently in creating, protecting, and remembering your password if this
password were used for an account you use outside this study?

5. Do you use the password you created for this study for any other account?
() Yes

176 APPENDIX C. SCRIPTS/SURVEYS FROM “...DATA-DRIVEN PASSWORD METER...”

() No
() I prefer not to answer

Appendix D

Data-Driven Meter Details

D.1 Prioritization of Feedback from Advanced Heuristics

Throughout our group meetings and during the laboratory study, we tested and iteratively updated many
prioritizations of the feedback we provided users in the standard meter. For each advanced heuristic, if the
associated function has feedback relevant to that particular password, it returns a non-empty string for both
publicFeedback and sensitiveFeedback. If it does not have feedback, which occurs when that heuristic does
not indicate a predictable pattern, it returns the empty string. We traverse the list of functions in descending
priority for the first (up to) three pieces of feedback to give the user. If, however, our scoring functions rate
the password such that its score fills the bar, we ignore all text feedback and tell the user that his or her
password appears strong.

The list of functions that provide feedback, in descending order of priority, is as follows:

1. contextual()

2. blacklist()

3. combinedDictCheck()

4. keyboardPatterns()

5. repeats()

6. identifyDates()

7. repeatedSections()

8. alphabeticSequenceCheck()

9. commonpwCheck()

10. uppercasePredictable()

11. digitsPredictable()

12. symbolsPredictable()

13. duplicatedCharacters()

14. pwLength()

177

178 APPENDIX D. DATA-DRIVEN METER DETAILS

15. countSYMS()

16. countUC()

17. countDIGS()

18. countLC()

19. commonsubstringCheck()

20. structurePredictable()

21. characterClasses()

D.2 Description of Open-Source Meter Files

Our code, which we are releasing open-source,1 comes packaged with the files listed below.
The main file in our code is meter.htm. Beyond the other files listed below, which are already called by

meter.htm as appropriate, meter.htm depends on two common external web-development libraries. These
libraries are JQuery (minified version 2.2.4 JS file used for testing) and Bootstrap (minified version 3.3.6 of
both the CSS and JS file used for testing).

Both libraries are currently included in meter.htm. However, these lines can be removed if the meter code
is included in another page that already loads JQuery version 2.x and Bootstrap 3.x. Note that Bootstrap
3.x currently requires JQuery 2.x and is not compatible with JQuery version 3.x.

All code expects all of the files listed below to be in the same directory.

D.2.1 Files for Displaying the Meter

meter.htm The main file for our demo meter. This file contains the HTML layout for our demo meter, the
CSS stylesheet specifying how the different elements should be displayed, as well as all Javascript functions
related to modifying the visual aspects of the meter.

config.css The primary configuration settings for the meter’s visual design are located in this file. These
settings include colors, fonts, sizes, and border radii.

config.js The primary configuration settings for the meter are located in this file. Currently, these settings
revolve around the password-composition policy of the site, blacklists, and the HTML5 icons used.

D.2.2 Files Related to Calculating Heuristic Scoring

rulefunctions.js A Javascript file containing the functions used to score the password based on 21 different
heuristics. The first series of functions are helper functions (mostly string and array prototypes), followed
by a function to verify that a password meets the minimum requirements of a given password-composition
policy. The remainder of the functions are used in our heuristic scoring.

1Available at https://github.com/cupslab/password_meter

https://github.com/cupslab/password_meter

D.2. DESCRIPTION OF OPEN-SOURCE METER FILES 179

globalarrays.js To improve the readability of rulefunctions.js, this file contains large arrays of strings used
by some of the heuristic scoring functions.

D.2.3 Files Related to Wordlists

lz-string.js This file, developed by a third party [141], implements Lempel-Ziv-Welch (LZW) lossless data
compression in Javascript. We use this file to decompress the compressed wordlist.

englishwords-compressed.txt A compressed version of 130,517 frequently used English words taken from
the intersection of the BYU Corpus of Contemporary American English (COCA) [50], the UNIX dictionary,
and the 100,000 top single words (1-grams) used on Wikipedia [200].

names-compressed.txt A compressed version of 4,937 male and female names popular in the United
States, per recent census data.

passwords-compressed.txt A compressed version of the 87,143 most common passwords (by frequency)
seen in the Xato corpus of 10 million passwords [34].

phrases-compressed.txt The 49,927 unique entries after filtering out non-ascii and spaces from the 100,000
top 3-word phrases (3-grams) used on Wikipedia [200].

D.2.4 Files Related to Neural Networks

nn-client.min.js The main file for instantiating our artificial neural networks for calculating password
guessability. This file loads the other files, below, as needed. Therefore, only this file needs to be explicitly
included in the primary page.

basic 3M.info and guess numbers.no bloomfilter.json A JSON encoding of a pre-computed mapping
of estimating a password’s guess number from its probability by using Monte Carlo methods. This is a
companion file to the one that follows.

basic 3M.weight arch.quantized.fixed point1000.zigzag.nospace.json A JSON encoding of the artifi-
cial neural network we computed using a 3 MB (before optimizations and compression) network in which
probabilities have been quantized and stored used fixed-point encoding and ZigZag encoding. The weights
have been quantized to three decimal digits, as well. This model ignores letter capitalization, which must be
post-processed.

worker.min.js To calculate neural network guess numbers asynchronously (and thereby avoid causing the
interface to lag), this file uses the WebWorker framework [133] to spawn separate threads for calculating
guess numbers for a password using neural networks.

180 APPENDIX D. DATA-DRIVEN METER DETAILS

	1 Introduction
	2 Related Work
	2.1 Threats to Password Security
	2.2 Password-Security Metrics
	2.3 Types of Guessing Attacks
	2.3.1 Brute-Force and Mask Attacks
	2.3.2 Probabilistic Context-Free Grammar
	2.3.3 Markov Models
	2.3.4 Neural Networks
	2.3.5 Mangled Wordlist Attacks

	2.4 How Users Choose Passwords
	2.4.1 Structural Characteristics of Human-Chosen Passwords
	2.4.2 Linguistic and Semantic Properties of Passwords
	2.4.3 Password Management and Reuse

	2.5 Helping Users Create Better Passwords
	2.5.1 Password-Composition Policies
	2.5.2 Proactive Password Checking
	2.5.3 Password Meters

	2.6 Users' Perceptions of Security
	2.7 Data-Driven Feedback

	3 The Impact of Password-Strength Meters
	3.1 Introduction
	3.2 Password Meters ``In the Wild''
	3.3 Methodology
	3.3.1 Password-Scoring Algorithms
	3.3.2 Conditions
	3.3.3 Mechanical Turk
	3.3.4 Statistical Tests
	3.3.5 Calculating Guess Numbers

	3.4 Results
	3.4.1 Password Characteristics
	3.4.2 Password Guessability
	3.4.3 Password Memorability and Storage
	3.4.4 Password Creation Process
	3.4.5 Participant Demographics

	3.5 Participants' Attitudes and Perceptions
	3.5.1 Attitudes Toward Password Meters
	3.5.2 Participant Motivations

	3.6 Discussion
	3.6.1 Effective Password Meters
	3.6.2 Ethical Considerations
	3.6.3 Limitations

	3.7 Conclusion

	4 Understanding Biases in Modeling Password Cracking
	4.1 Introduction
	4.2 Methodology
	4.2.1 Datasets
	4.2.2 Training Data
	4.2.3 Simulating Password Cracking
	4.2.4 Computational Limitations

	4.3 Results
	4.3.1 The Importance of Configuration
	4.3.2 Comparison of Guessing Approaches
	4.3.3 Differences Across Approaches
	4.3.4 Robustness of Analyses to Approach

	4.4 Supplementary Experimental Results
	4.4.1 Alternate PCFG Configurations
	4.4.2 Alternate JTR Configurations
	4.4.3 Alternate Hashcat Configurations
	4.4.4 Ecological Validity

	4.5 Conclusion

	5 The Art of Password Creation: Semantics and Strategies
	5.1 Introduction
	5.2 Datasets
	5.3 Methodology
	5.3.1 Reverse Engineering Passwords
	5.3.2 Semantic Analyses
	5.3.3 The Process of Password Creation
	5.3.4 Security Analysis

	5.4 Results
	5.4.1 General Password Characteristics
	5.4.2 Character Substitutions in Passwords
	5.4.3 Passwords Semantics
	5.4.4 The Process of Password Creation

	5.5 Design Recommendations and Conclusions

	6 Do Users' Perceptions of Password Security Match Reality?
	6.1 Introduction
	6.2 Methodology
	6.2.1 Study Structure
	6.2.2 Recruitment
	6.2.3 Measuring Real-World Attacks on Passwords
	6.2.4 Quantitative Analysis
	6.2.5 Qualitative Analysis
	6.2.6 Limitations

	6.3 Results
	6.3.1 Participants
	6.3.2 Attacker Model
	6.3.3 Password Pairs
	6.3.4 Selected-Password Analysis
	6.3.5 Password-Creation Strategies

	6.4 Discussion

	7 Design and Evaluation of a Data-Driven Password Meter
	7.1 Introduction
	7.2 Measuring Password Strength in our Data-Driven Meter
	7.2.1 The Difficulty of Accurate Client-Side Password-Strength Estimation
	7.2.2 Neural Networks for Password-Strength Estimation
	7.2.3 Advanced Heuristics for Password-Strength Estimation

	7.3 Visual Design and User Experience
	7.3.1 Translating Scores to a Visual Bar
	7.3.2 Main Screen
	7.3.3 Specific-Feedback Modal
	7.3.4 Generic-Advice Modal

	7.4 Formative Laboratory Study
	7.4.1 Methodology
	7.4.2 Results
	7.4.3 Takeaways and Changes to the Meter

	7.5 Summative Online Study
	7.5.1 Methodology
	7.5.2 Limitations
	7.5.3 Participants
	7.5.4 Security Impact
	7.5.5 Usability Impact
	7.5.6 Interface Element Usage and Reactions

	7.6 Discussion

	8 Conclusion and Future Work
	8.1 Conclusions and Lessons Learned
	8.1.1 Users' Well-Ensconced Approaches
	8.1.2 The Mismatched Incentives of Professional Password Advice
	8.1.3 Mismatch Between Reality and Perception
	8.1.4 Real-World Considerations in Modeling Attackers

	8.2 Future Work
	8.2.1 Improve the Ecosystem
	8.2.2 Evaluating The Role of Password-Composition Policies
	8.2.3 Natural Language and Passwords
	8.2.4 Automatically Modeling Targeted Attacks
	8.2.5 Improvements to the Meter

	Appendices
	A Surveys from ``How Does Your Password Measure Up...''
	A.1 Survey Questions
	A.1.1 Day 1 Survey
	A.1.2 Day 2 Survey

	B Surveys and Full Data from ``Do Users' Perceptions...''
	B.1 Survey Questions
	B.1.1 Part 1
	B.1.2 Part 2 (Repeated 26 times)
	B.1.3 Part 3 (Repeated 20 times)
	B.1.4 Part 4 (Repeated 11 times)
	B.1.5 Part 5

	B.2 Full List of Password Pairs

	C Scripts/Surveys from ``...Data-Driven Password Meter...''
	C.1 Script for Laboratory Study
	C.1.1 Introduction
	C.1.2 Part I – Open, Abstract Discussion of Password Creation
	C.1.3 Part II – Password Feedback Slideshow
	C.1.4 Part III – Meter Testing
	C.1.5 Part IV – Ending

	C.2 Surveys from Online Study
	C.2.1 Day 1 Survey
	C.2.2 Day 2 Survey

	D Data-Driven Meter Details
	D.1 Prioritization of Feedback from Advanced Heuristics
	D.2 Description of Open-Source Meter Files
	D.2.1 Files for Displaying the Meter
	D.2.2 Files Related to Calculating Heuristic Scoring
	D.2.3 Files Related to Wordlists
	D.2.4 Files Related to Neural Networks

