Scratchable Devices: User-Friendly Programming for
Household Appliances

Jordan Ash, Monica Babes, Gal Cohen, Sameen $aal,Lichtenberg,
Michael Littman, VukosiMarivate, Phillip Quiza, Bla Ur, and Emily Zhang

Rutgers University, New Brunswick, NJ
jordash@den. rut gers. edu, babes@s. rutgers. edu,
gal cohen@den. rut gers. edu, sanj al al @den. rut gers. edu,
sam i chten@nuail .com nittman@s.rutgers. edu,
vukosi @s. rut gers. edu, pqui za@den. r ut ger s. edu,
bl ase@l aseur.com 1800. ehz. hang@nai |l . com

Although household devices and home appliancestitamenore and more as
network-connected computers, they don’t providegpamming interfaces for
the average user. We first identify the programmgrgnitives and control
structures necessary for the universal programnohgdevices. We then
propose a mapping between the features necessampneoprogramming of
devices and the existing functionality of Scratah,educational programming
language we use as a basic interface between theedeand the users. Using
this modified version of the Scratch language, wendnstrate usage cases in
which novice programmers can program appliancegreasing their
functionality and ability to be customized. We atdmw how standardizing this
programming paradigm can facilitate knowledge tfanto new devices. We
conclude by discussing our experiences prototypnogrammable appliances.

Keywords: educational programming; end-user programming; home
automation; household devices; programming langsiageratch;
ubiquitous computing; usability;

1 Introduction

From the Jetsons’ futuristic home to the persordliemperature, music, and lighting
systems in Bill Gates’ estate [1], the concept ofmk automation intrigues and
fascinates the average person. From a hardwarg@qutiree, home automation is
already a reality as equipment for interconnectiegices is commercially available.
With the arrival of an ‘Internet of Things’, a futuproposed by major electronics
manufacturers [2] in which every household deviod appliance would have an IP
address and be connected to the internet, capahdevare would become even more
ubiquitous. However, the manner in which the avenagrson might interact with and
customize household devices has not been wellestudi

2Ash, Babes, Cohen, Jalal, Lichtenberg, Littman, Mawnate, Quiza, Ur, Zhang

One source of interest with home automation is ithiata mode of self-expression
in addition to adding convenience and functionatityone’s lifestyle. A home is
important: it is, to many, a reflection of who thaye and what they value. This
human desire for customization propelled persoedlidngtones into a multi-billion
dollar industry [16]. It is a natural step to makdiome’s electronics and appliances
into something personal, creative, and increasifigigtional.

Existing home automation systems focus on the hamelfor connecting devices,
paying little attention to creating a usable andversal programming paradigm
capable of controlling any type of appliance. Tihdity to fully customize a home
requires the logical and control structures of apressive programming language,
whereas existing systems generally provide onlyeaurbased system for controlling
appliances. Our goal is to enable users to writeple programs that add unique
functionality, allow devices to communicate, andestime.

The overriding goal of our project is to enable dverage person, somebody with
no previous programming experience, to write progrdor customizing their home
appliances. To this end, we propose using a vanéithe graphical programming
language Scratch, designed for novice programmésj, [as the standard for
programming home devices since Scratch is meartietdntuitive for first-time
programmers.

In this paper, we lay out a comprehensive yet @salytem for programming
home devices. We outline the primitive operatinasessary for such a programming
system and show how the style and metaphors ofSttratch language directly
support these operations. As initial support for ooncept, we demonstrate usage
cases building on these primitives. These compgatmele programs demonstrate
novel, useful functionality for an automated hom'e also discuss the construction
of our prototype “Scratchable Devices.”

2 Background and Related Work

We first explain the physical communication staddaaind programming methods of
existing home automation systems and introducé&thatch programming language.

2.1 Existing Home Automation Systems

Existing residential home automation systems piilgndocus on communication
protocols. X10 [17], one of the most widely usewtpcols, communicates over
power lines. INSTEON, designed to provide adddihlydity over X10, enables
communication over both power lines and wireless [R#. Protocols that are
primarily wireless include Z-Wave [18]. Althoughetse standards specify how home
devices communicate, they do not prescribe usgbiliandards or programming
methodologies. Since our investigation focuseghenuser interface, our proposal
could be considered orthogonal to existing comnmatioa standards.

The control systems for existing home autoamagolutions range in complexity
from touch screens to intricate (at times uninteiti software packages that allow

Scratchable Devices: User-Friendly Programming foHousehold Appliance8

users to write programs in scripting languages. él@x, each of these approaches
treats usability and functionality as mutually ersile, in contrast to our proposed
Scratchable Devices.

Hardware methods for controlling household devioedude universal remote
controls and wall-mounted touch screens [9]. Tosmteen systems generally allow
users to control devices, monitor their state, setda device to change states at some
later time. Software for smart phones and tabeish as the iPhone and iPad, is also
available from multiple manufacturers [4], [5].

Computer software, either local or web-based Bilso commonly used to control
home automation systems. Often, this software igrobbed through a series of menus
that closely mirror the functionality of touch sereinterfaces. The user's ability to
write their own programs is often limited to wriirmacros, as in the Active Home
program [17]. These macros lack the control stmest of full programming
languages, such as iteration and conditional sttésn

Some home automation systems do grant limited adeesontrol structures. For
instance, Zeus [15] allows users to define conditiostatements, although this
language lacks iteration and other hallmarks ofyfdeatured languages. The
PowerHome program provides customers with a fulbéeommands in the scripting
language of their choice [11], but these languaaresdesigned neither for novice
users nor for the specifics of home-automation iapfibns. None of these
approaches successfully merges functionality waidbility.

2.2 Scratch

Scratch, a graphical and interactive programmingrenment developed to foster
children’s excitement and interest in computer paogming, has a number of
features that make it suitable for first time progmers [13]. Scratch makes
programming simple by representing statements ag-and-drop blocks that snap
together. These blocks include basic elements asckariables, conditionals, loops,
inputs, and Booleans. Scratch is object-centeré@reveach object is called a sprite.
Each sprite appears as an image whose graphicebegze, termed a costume, is
under user control. All sprites appear on a stagich is an area of the screen that
displays each sprite in its current costume.

Users write event-driven scripts to control sprifésr instance, a user could create
one sprite that looks like a cat and another s looks like a dog. After choosing
the cat sprite by clicking on it, the user couldteva script that changes the cat’s
costume whenever the spacebar is pressed or makeathmeow if the dog is too
close. Sprites can also communicate with each ¢hineugh a broadcast mechanism.

To make household devices programmable to usetsoutitprior programming
experience, the language they use must be simpleata, intuitive, and present a
uniform interface across different household deviceBecause of Scratch’s gentle
learning curve and visually attractive, non-intiatithg interface, it is used with great
success in schools nationwide, from elementaryutjinohigh school, and even in
some introductory computer science courses at tsifies [6], [13].

4Ash, Babes, Cohen, Jalal, Lichtenberg, Littman, Masiate, Quiza, Ur, Zhang

3 Programming Primitives for Home Automation

To design a general-purpose programming languagbdosehold devices, we first
propose a set of language-independent programnringtipes that formalize users’
interaction with their appliances. At a high lewsk propose that these primitives be
object-centered since users see each householdedaeyvia separate object. We also
suggest that the language standardize the appeaaadcfunctionality of outputs and
inputs. The output of each object will be statengjes. Inputs to our language consist
of sensors (on devices or free-standing), physitalaction with individual devices
(such as button presses), and state queries. Wigoadtly identify inter-device
communication as an essential primitive. Our piireg are outlined ifrig. 1.

3.1 Outputs As State Changes

From a programming perspective, the most impomaoperty of a household device
is its current state. The simplest devices havarpistate; for example, a lamp can be
either ‘on’ or ‘off. More complicated devices méagve many different states, but the
user should still conceive of all manipulationsthe device as a state change. For
instance, a washing machine could have multipleesaxf being ‘on’, such as being
‘on in Permanent Press mode’ or ‘on inBright Colors mode’.

For both simple and complex devices, we propose ttiea primary output of a
home automation programming language be changssatd on a per-device basis.
Therefore, a simple device will have only a ‘Turn’®lock and a ‘Turn Off' block.
More complex devices would add a drop-down menpasiible modes to the ‘Turn
On’ block. For instance, a washing machine's Tumbibck could be edited via a
drop-down menu to specify that the device must turin ‘Permanent Press mode.

3.2 Inputs

Many sensor readings will be available globallyatbobjects, including the time and
date as well as environmental conditions. Sensadings related to time include
blocks such as ‘Time’ and ‘Is Workday’, where tlatér block returns a Boolean
value. A number of global sensors could measureetdironment, such as the
‘Temperature’ or ‘Brightness’ in a particular rooadlowing users to create a ‘Smart
House'. These global sensors could be collocateth vdevices or placed
independently throughout a home.

Local inputs include both a user's physical inteéoas with a device and state
queries. For instance, the action of a user prgsasibutton or turning a knob on a
particular device would be represented, respegtil®l a Boolean block and a block
that returns a number. State queries, such asdc®és On?’ block and a washing
machine’s ‘Device Is In [Cotton Cycle] State?’ btpavould return a Boolean value.

Scratchable Devices: User-Friendly Programming foHousehold Appliance$

Novel Language Inputs Novel Language Outpsit

Iteration Basic Device State Changes

Time Is €53 : €E) EON @ Relational/ w
- Logical
Environment Sensors :
Operators Complex Device

Conditionals State Changes

Physical Interaction Delays/Timing

Rendomness

State Queries Bl’Oad(.:ast.
Communication

Multimedia -

Audio

Fig. 1. This table outlines the novel inputs and outputniives necessary for controlling
household devices with a graphical language. Nacgsontrol structures are also indicated.

3.3 Communication Between Devices

To permit rich interaction between household desjige communication channel is
necessary. Since the number of purpose-built conmation channels between
particular devices would increase exponentiallyhwihe number of devices, we
propose that a user send messages as broadcasts iokoud, with low-level
communication transparent to the user. Each dewvma@ld have an input block for
receiving messages. Thus, a toaster could senmélsage ‘Turn On Coffee Maker’,
and a coffee maker would have a correspondingtseriften by the user that listens
for the broadcast ‘Turn On Coffee Maker' and regimrappropriately. Since
messages are broadcasts, our proposed programamiggage enables one message
to simultaneously communicate with many devicesusTithe message ‘Breakfast
Time’ could coordinate multiple devices working étiger every morning.

3.4 Control structures

To present a user with the power to fully expressoh her ideas, our language must
contain the core control structures of modern mogning languages. Iteration,
conditionals, and both relational and logical opens are all essential. In addition,
pseudo-randomness, multimedia functions, and thityalor objects to communicate
all greatly increase the usefulness and expresssgeof this programming language.

3.5 A Device’s Logic

A Scratchable Device should be sold with its logid functionality programmed in
our language and visible to the user. An intetesiger could view and modify the
core operations of a device. For instance, a cseld reprogram the buttons of a

6Ash, Babes, Cohen, Jalal, Lichtenberg, Littman, Mawnate, Quiza, Ur, Zhang

coffee maker to reflect the way he or she usesdthace. Once the user writes a
program, this program could reside on a centralczadroller or on the device itself.
However, the logic that ensures the safety of acgeshould reside on the device
itself and should operate independently of the ognable functions. For instance,
a device with a heating element should be ablauto itself off based on time or
temperature thresholds specified by the manufactureorder to prevent a fire,
regardless of whether a user’s program is requg#tie device to remain on.

4 Mapping Primitives to Scratch and Prototyping

The programming primitives we have outlined for &chable Devices can be
mapped to the graphical programming language Strateach device in a home
automation system can be considered a sprite at@grwhich functions as an object.
The state of the device can be represented vishglly Scratch costume, and a user
can view the current state of all the devices @nShratch stage.

We have prototyped our programming paradigm usiv@B (Build Your Own
Blocks) [10], a variant of Scratch in which we ceneate customized programming
blocks. These blocks follow the style and struetaf Scratch, with blocks such as
‘“Turn On’ that appear as if they were native togsahn.

5 Usage Cases

We believe that the ability to program home apmémwill enable users to dnore,
extending the capabilities of these appliances heyehat is typical of devices today.
In addition, users should be able to accompliskstéaster by using programming
rather than menus, and learn to use new dewoeser because of the unified
interface across machines. To demonstrate the ifunadity of our proposed
programming paradigm, we present the following esaxamples.

5.1 ‘Clapper for a Light

D |
i

Fig. 2.This script allows any device to be turned on dbgfclapping.

Our first usage case illustrates how novel yetuldefitures can be added to a device
with short programs. InFig. 2, we present a script that uses the computer’'s

Scratchable Devices: User-Friendly Programming foHousehold Applianced

microphone and Scratch’s'loud?’ Boolean, true whienmicrophone’s input exceeds
a threshold, to turn on or off a lamp. This codpléed as part of the lamp’s sprite.

Knowing how to program a ‘Clapper’ light makes é@ry easy to make a ‘Clapper’
fan or alarm. In fact, the Scratch code is idemtioat would instead be placed within
the sprite for the fan or alarm clock, respectiveBeusability of code makes
introducing a new device to a household very simjplecontrast to current devices,
the learning curve for new Scratchable Devices dida minimal.

5.2 Wake Up With Coffee

The Scratchable Devices paradigm makes inter-deg@m@munication seamless,
whereas this sort of communication is complex opadssible in current systems.
InFig. 3(a) an alarm clock tells a coffee maker to turn orY:&7 AM, waits three
minutes, and sounds the alarm’s buzzer. Thus, eoffid be ready when the user
wakes up. The script iRig. 3(a), written in the alarm clock’s sprite in Scratch,
broadcasts the message ‘make coffee’. The soripigi 3(b) must be included in the
coffee maker’s sprite in order to define what ‘makéfee’ means.

wait unt wealt (3 | mins

braadcast make coffee play sound Java Jive! |until done]

sait £} mins wait until 4 ’
(@) (b) (©)

Fig. 3.(a)An alarm clock requests coffee and sounds its buafterwards, waking the user to a
fresh-brewed poib) The coffee maker responds to “make coffee” by dviitg on(c) Each
time the coffee maker goes on, it announces whegdffee is done.

5.3 ‘Coffee is Ready’ with a Song

Scratchable Devices can also be customized with maltimedia, similar to cell
phone ringtones. For instance, users can proghain toffee maker to play their
favorite song when their coffee is ready, as showFig. 3(c).

5.4 Activity Simulator for Vacations

Elements common to most programming languages Isanaald functionality to
homes Fig. 4 depicts a program that uses a pseudorandom gen&vaurn a house
light on and off randomly after 6 PM, deterring guatial thieves while a user is away
on vacation. Pseudorandomness, while simple to @mipl a language like Scratch,
would be difficult to implement without a fully-feared programming language.

8Ash, Babes, Cohen, Jalal, Lichtenberg, Littman, Mawnate, Quiza, Ur, Zhang

Time (3 : [N [N ?

repeat | 20

pick random to
pick random to

Fig. 4 A house light is turned on and off during evenigits to deter would-be robbers.

5.5 Setting Alarm Time

In existing systems, changing a clock’s alarm tinoen 9:00am to 8:45am would
generally require around 68 button presses to advéimth the minute and hour.
However, small changes in Scratchable Devices eagffiected by editing a text box,
or the user can reprogram existing buttons for comroperations. This same
mechanism works across devices, resulting in knagderansfer.

More usage examples can be found on our scratchabl edevices.com website.

6 Prototype Construction

We have constructed prototype Scratchable Devineliding lights, fans, and alarm
clocks. While our prototypes demonstrate the felityibof this programming
paradigm and provide an upper bound on the hardwasts, existing or future
hardware systems for home automation could justedsform the hardware layer of
Scratchable Devices. Homemade Scratchable Devioek csimilarly exist. The
primary contribution of this paper is theer experience in the household devices
domain rather than a specification for hardwarellewontrol.

XBee Arduino Device

Fig. 5.Diagram of our prototype system, which uses the@gsing language to pass commands
from Scratch wirelessly (using XBee) to devices oatgd by microcontrollers.

Scratch Processing XBee

On the user experience level, our Scratchable [@eviprototypes have been
implemented using the BYOB (Build Your Own Blockg&riant of Scratch. We
chose BYOB because a number of our proposed progragnprimitives, including

Scratchable Devices: User-Friendly Programming foHousehold Appliance®

the "Turn On’ block for each device and our usé¢iroé as a global sensor, required
new types of Scratch blocks.

To allow BYOB to communicate with physical dexs¢ we have used the
Processing language as a translator [12]. A prodgrathe Processing language runs
in the background at the same time as Scratch¢tilegewhen a variable in Scratch
has been changed. Each Scratch sprite (housebwickedl has one or more variables
indicating its state. Each physical device hasodally unique 3-byte ID, and each
corresponding sprite’s variables begin with that IDur program in Processing takes
messages received from Scratch and broadcasts whithiwut modification over an
XBee 802.15.4 wireless module.

Every Scratchable Device, such as a lamp or #sp has an XBee 802.15.4
wireless module connected to an Arduino hobbyistrodontroller [3]. Since
communication takes place on a broadcast medidndegices receive all messages.
In a commercial implementation, it would be wisel&dine a bootstrapping procedure
in which newly purchased household devices infoh@ lbcal Scratch instance of
their device ID and feature set. That device waultbmatically appear as a sprite
(object) in the Scratch instance.

When a Scratchable Device receives a messagesséd to its ID or a broadcast
message, such as ‘Breakfast Time’, it is programtuedad the message payload and
change the state of the device accordingly.We haverse-engineered a number of
household appliances and inserted relays, LCD ssresnd additional mechanisms
that are controlled by Arduino microcontrollers.eWave also attached small circuits
to the buttons of the devices so that the micraotlets can detect physical button
presses and pass this information to Scratch, ee3sing.

7 Conclusion and Future Work

We presented Scratchable Devices, a programmiradigem for household devices
that allows the average person to program his orapgliances using a graphical
programming language. The logical and control cstmes of a programming
language provide additional functionality to househ devices and potentially
simplify existing tasks. We presented the programgprimitives necessary for
interaction with household devices and showed hbe graphical, educational
programming language Scratch maps directly to th@suitives. We provided a
short list of simple usage cases in our programrmargdigm to support our claims.

In the near future, we will conduct user stud@serify the usability of the system
compared to standard interfaces. Using this kinbohative design-evaluation [7],
our interface will be made entirely with the averagser in mind.We are particularly
interested in verifying that users with no prograimgrexperience can, with minimum
time and effort, learn to program devices in wahat add novel operations. We are
also interested in any cognitive dissonance betveegrparadigm and the conception
the users have of their household devices.

In the long run, we want to encourage electroni@nufacturers to employ a
version of our programming paradigm as an industandard. Both similar and

10Ash, Babes, Cohen, Jalal, Lichtenberg, Littman, Mavate, Quiza, Ur, Zhang

dissimilar devices should all use the same progriagmrotocol. This consistency
throughout the home would make for a simplifiedher user experience.

Acknowledgments

The authors thank Roy Cohen, Matt Continisio, Stevisher, Rich Katz, Molly
Littman, Lisa Littman, Luis Piloto, Amanda Rumseyd Raheem Scott-Griffith for
their contributing ideas to the design and consivamf prototype Scratchable
Devices. This material is based upon work supgddstethe National Science
Foundation under Grant No. NSF 11S-0713148 (RELptapent).

References

1. Allon, F.: Space, Media Flows and ‘smartiiiy in the Absolute Present. MediaSpace:
place, scale, and culture in a media age, (2003) 25

2. Vance, A.: You Too can Join the InterneThbings,
http://bits.Blogs.Nytimes.com/2010/09/20/you-Too-clin-the-Internet-of-Things/.

3. Banzi, M.: Getting started with arduino. Mdkaoks (2008)

4. Control 4: My Home - iPad,
http://www.control4.com/residential/products/moliighome-Ipad/.

5. Creston Electronics Inc.: Apple & Creston.dRé, iPod and iPad Mobile Control,
http://www.Crestron.com/solutions/apple_mac_iphopedi ipad_control/.

6. DesJardins, M., & Littman, M.: Broadening @&uat Enthusiasm for Computer Science
with a Great Insights Course. (2010) 157-161

7. Egan,D. E., Remde, J. R., Gomez, L. M. efFakmative Design Evaluation of
Superbook. ACM Transactions on Information Systef@I§), 7 (1989) 30-57

8. Hawking Technologies Inc: HomeRemote Pro El@dxatomation Starter Kit,
http://www.Hawkingtech.Com/.

9. HomeSeer Technologies LLC: Home Automatiost&ys,
http://store.Homeseer.com/store/Touchscreen-Userfaite-Plug-Ins-C98.Aspx.

10. Monig, J., & Harvey, B.: Build Your Own Blockmiversity of California at Berkeley.
(2010)

11. PowerHome Automation LLC: PowerHome Autowrati
http://www.Hawkingtech.Com/.

12. Reas, C., & Fry, B.: Processing: A programnfiagdbook for visual designers and
artists. The MIT Press (2007)

13. Resnick, M., Maloney, J., Monroy-Hernand®zet al.: Scratch: Programming for all.
Commun ACM,52 (2009) 60-67

14. SmartLabs® Inc: How INSTEON Works, Url:pghttwww.Insteon.net/about-
Howitworks.Html.

15. Trax Softworks Inc.: Zeus Description amfares, http://www.Hawkingtech.Com/.

16. Wagner, A.: The Mobile Storefront: Let Ydtingers do the Shopping. (2005) 45

17. X10.com: Standard and Extended X10 Cod®oPog
http://software.x10.com/pub/manuals/xtdcode.Pdf.

18. Z-Wave Alliance: About Z-Wave, http://mww\W¥ave.com/modules/AboutZ-Wave/.

