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Abstract
Trigger-action programming lets end-users automate and
connect IoT devices and online services through if-this-then-
that rules. Early research demonstrated this paradigm’s
usability, but more recent work has highlighted complexities
that arise in realistic scenarios. As users manually modify
or debug their programs, or as they use recently proposed
automated tools to the same end, they may struggle to un-
derstand how modifying a trigger-action program changes
its ultimate behavior. To aid in this understanding, we pro-
totype user interfaces that visualize differences between
trigger-action programs in syntax, behavior, and properties.

Author Keywords
trigger-action programming; smart homes; IoT; automation

CCS Concepts
•Human-centered computing → User interface program-
ming;

Introduction
Advances in end-user programming have enabled people,
regardless of their technical background, to express logic to
computer systems [24,31]. For example, trigger-action pro-
gramming (TAP) is an end-user programming paradigm cen-
tered on if-this-then-that rules that has become widespread
in recent years [38]. In TAP, a program consists of one or

CHI 2020 Late-Breaking Work CHI 2020, April 25–30, 2020, Honolulu, HI, USA

LBW333, Page 1



more rules in the form of “If trigger While conditions Then
action.” Thus, in each rule the user specifies a triggering
event, all conditions (if any) that must be true when that
event occurs, and the action that should be carried out. For
example, a user who wishes to turn on the lights when they
enter the living room at night may write, “If I enter the liv-
ing room While it is nighttime Then turn on the living room
lights.” TAP rules empower end-users to automate smart
homes [29, 39], online social media [37, 43], and scientific
research [8, 9]. TAP is supported by services such as Mi-
crosoft Flow [30], Zapier [43], Mozilla WebThings [14], and
IFTTT [21]—with the latter boasting 11 million users and 54
million applets as of July 2019 [22].

Program 1:

• If the AC turns on while the
window is open then turn off
the AC.

• If I leave the bathroom while
the smart faucet is on then
turn off the smart faucet.

Program 2:

• If the AC turns on while the
window is open then close
the window.

• If I leave the bathroom while
the smart faucet is on and
it is nighttime then turn off
the smart faucet.

Figure 1: Variants of a TAP
program. Text differences are
bolded. Neither program contains a
rule that affects the other rule in
the same program.

TAP is ubiquitous and intuitive in straightforward situa-
tions [15, 38], yet its event-driven nature can cause chal-
lenges and result in buggy programs in common scenar-
ios [4,18,42]. Debugging, modifying, or even understanding
TAP programs can be complicated for many reasons. First,
satisfying multiple goals at once requires numerous TAP
rules [17], resulting in crowded user interfaces and complex
interactions between rules. Furthermore, when TAP is de-
ployed in smart homes—typically shared spaces—multiple
users may contribute rules. They may not understand how
each other’s rules impact their home or why certain events
have occurred [28]. Users might be reluctant to adjust a
program due to fear of messing up the system [16]. Finally,
a number of recent efforts have sought to use techniques
based on formal methods [7, 26, 40, 44] to analyze and, in
some cases, modify TAP programs automatically.

Collectively, the resulting errors can lead to discomfort,
wasted resources, monetary and time costs, friction be-
tween users, and security risks. Users currently have little
support for identifying and fixing such errors in the wild. In
smart homes, users typically must rely on trial-and-error to

debug programs [27,41], and some bugs may only surface
occasionally. To eliminate bugs or introduce new features,
end-users adapt existing code [5,24] and modify software in
an iterative process [6,27,41].

We observe that TAP rules in the above scenarios—those
created by tools, by other members of a household, or
through tweaks by the users themselves—result in changes
to existing programs. Our key insight is that users must un-
derstand differences between the pre- and post-modified
versions of a program, in both implementation details (the
rules) and in their effect on the system. Minimal research
on TAP has focused on these differences between TAP
program variants despite its importance in the end-user
experience. Automated tools and actions by others impair a
user’s ability to understand the system’s behavior. Making
system behaviors more transparent and intelligible would
aid trust [3] and comfort with the system [23]. It could also
better aid in the reuse of TAP programs [5].

In this extended abstract, we present a series of prototype
interfaces that visualize various nuances of the differences
between variants of a TAP program. Our interfaces com-
pare and contrast TAP variants to help end-users under-
stand their differences. Regardless of experience, users
can utilize these interfaces to understand changes made
to a program by themselves or others. Our prototype inter-
faces cover three levels of granularity: low-level changes
in the programs’ text, slightly higher-level differences in
actions taken by the system in specific scenarios, and high-
level properties. These interfaces complement each other
to provide a holistic view of the variants and the resulting
system. We developed the concepts for these interfaces
based on scenarios from the TAP literature [4,11,12,18,42]
where understanding the differences between variants of
a program could aid in debugging. We further based the
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visual designs on “diff” utilities for code [20, 32] and collab-
orative word-processing tools [1, 35]. We hypothesize that
these interfaces will help users identify differences in the
behaviors of a single smart device, interactions between
devices, and a full TAP system’s long-term guarantees.

1. If I wake up while my room-
mate is awake then turn the
lights on.

2. If my roommate wakes up
while the lights are off and
I am awake then turn the
lights on.

3. If the lights turn off while
I am awake then turn the
lights on.

4. If I wake up while my room-
mate is asleep and the lights
are off then turn the lights
on.

5. If the lights turn off while
my roommate is awake and
I am awake then turn the
lights on.

6. If the lights turn off while I
am asleep and my room-
mate is awake then turn the
lights on.

7. If my roommate wakes up
then turn the lights on.

Figure 2: A redundant TAP
program that ensures the lights are
always on when “I am asleep,” “my
roommate is asleep,” or both.

Interface Design and Implementation
In this section, we describe our interfaces for comparing
and contrasting TAP program variants. First, we present
a pair of interfaces that visualize text differences to com-
pare low-level implementation details (with respect to the
paradigm syntax itself). They may help the user compre-
hend simple behaviors of individual smart devices. Next, we
present a pair of interfaces for contrasting system behavior,
specifically the actions triggered under identical scenar-
ios, to help users reason about more complex interactions
between devices. Namely, we present a flowchart-based
interface that visualizes behavior differences between two
variants, and a form-based interface that enables users to
directly define desired behaviors among multiple variants.
Finally, we present an interface that highlights differences
in properties held by each variant, which can help the user
understand long-term guarantees of the resulting system.

Our goals were informed by observations of end-user
practices [6, 27, 41] and common bugs [4, 18, 42] in TAP.
When applicable, we reviewed existing ideas in software
engineering—namely visualizations for code and text dif-
ferences [32, 34, 35] and execution traces [13, 33]—and
applied them to our designs. We then iteratively improved
our designs through informal pilot studies in person and on
crowdsourced online platforms. For interfaces that highlight
differences beyond text, we model devices and programs
as transition systems [2,44], then conduct graph analysis to
deduce differences.

Figure 3: Side-by-side (top) and integrated (bottom) text
differences modeled after Github [32], which uses red to represent
removed or modified rule clauses on the first program, and green
for added or modified rule clauses on the second program.

Text Difference
Sometimes users may simply wish to compare code based
on text. Figure 1 illustrates an example where, not only are
the programs almost identical, but the rules within a pro-
gram do not interact with each other. In this case, because
the difference between the rules are straightforward—
neither program contains rules that interact with each
other—an interface that simply highlights text differences
between programs may be most helpful. Therefore, we de-
signed two interfaces (Figure 3) modeled after Github’s diff
views [32] to compare TAP programs based on syntax.

For every pair of programs, we treat the second program
as the result of modifying the first regardless of the actual
provenance. This is similar to the idea of edit distance [25],
which is well-established in analyzing how a text string has
changed. However, based on participant feedback during
the pilot, nontechnical users were unaccustomed to this
way of thinking. Thus, we minimized mentioning these ideas
in the actual interfaces. We first determine the rules shared
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by programs using simple set operations. If one program
is a complete subset of another, we highlight the unshared
rules as “removed” (if belonging to the first program) or
“added” (if in the second). However, if a pair of similar yet
distinct rules exist, such as two rules that share the same
trigger but differ in the action, we determine whether we can
categorize them as “modified.” Our criteria for “modified”
rules is that the two rules differ in only one clause: only the
trigger, the list of conditions, or the action is different.

1. If I wake up while the lights
are off then turn the lights
on. (1, 4)

2. If my roommate wakes up
while the lights are off then
turn the lights on. (7)

3. If the lights turn off while
I am awake then turn the
lights on. (3)

4. If the lights turn off while my
roommate is awake then
turn the lights on. (5, 6)

Figure 4: A succinct program that,
like the redundant program in
Figure 2, also ensures the lights
are always on when “I am asleep,”
“my roommate is asleep,” or both.
In this case, each rule is equivalent
to one or a combination of multiple
rules in the redundant program.
Numbers in parentheses map to
the redundant program rules in
Figure 2.

Behavior Difference: Flowchart-Based Interface
Under identical scenarios, different TAP programs may trig-
ger different actions. For example, if it becomes nighttime
while someone is home, one program might turn on the
lights while another might not. A user may wish to choose
between these two behaviors. However, in complex, realis-
tic systems where there can be many trigger-action rules
and complex interactions between them, tracking variables
like “is it nighttime” or “whether someone is at home” can be
difficult. In particular, two programs may result in the same
system states in all scenarios, despite redundant rules or
different actions (e.g. the programs in Figures 2 and 4).
To help users with this, we designed a flowchart-based in-
terface (Figure 5) to describe the scenarios in which the
system will take different actions.

For each pair of programs, we walk the user through sce-
narios in which the programs would take different actions.
From left to right, we first show a state of the system before
any rules are triggered. This system state is a set of the
states of the individual devices at that point in time, such
as whether it is nighttime and whether someone is at home.
We then show that a triggering event occurs, such as the
day becoming nighttime. This event can come from the en-
vironment (“it starts raining”) or people (“someone opens
the window”). We also show the resulting state of the sys-

Figure 5: A flowchart-based difference interface. State 1, State 2,
and Event 1 describe the scenario setup that triggers different
actions based on the two programs. Devices whose states have
been affected by the previous event are highlighted in orange with
a dotted line around them. The device states at the end that differ
based on the two programs are highlighted in yellow.

tem. Finally, the flowchart diverges. For each program, we
show the action it takes and the consequent system state,
while highlighting all device states that differ from those of
the other program. While the interface will only show sce-
narios in which the two programs take different actions, it
is possible for the actions to result in the same final system
state. In this case, the flowchart will not diverge.

Behavior Difference: Form-Based Interface
Users may sometimes wish to compare more than two pro-
grams. Suppose that a user specifies the following goal to
a TAP program synthesizer: the living room lights should
never be on while it is daytime and the window curtains are
open. That is, at most two of the following can be true si-
multaneously: living room lights on, daytime, and window
curtains open. Without any other constraints, the synthe-
sizer should produce eight possible programs by permutat-
ing over whether the system turn off the lights or close the
window curtains for each rule, e.g. Program 1 in Figure 6.
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Figure 7: A sample question on the form-based interface. The
options “Turn off the AC” and “Do nothing” correspond to actions
that the two programs would take. Choosing “Any of the above”
will discard this particular scenario from further consideration.

In cases where users want to compare more than two pro-
grams, such as the example above, it is tiresome and te-
dious for the user to compare every pair of the programs.
Users may also have goals that they failed to articulate
to automated tools to further constrain their options [24].
We address this issue by utilizing a multiple-choice form
(Figure 7) that compares the programs and elicits user-
desired, scenario-specific goals. Each question on the form
describes a scenario in which at least two programs un-
der consideration would take different actions. For each
question, the user can choose between the actions (one of
which could be “do nothing”), or indicate that they do not
care about the action to take. The user answers the ques-
tions until there are no more differences left. The interface
calculates the program(s) that satisfy the most answers
from the user, and present those program(s) to the user.

Program 1:

1. If the window curtains open
while the lights are on and
it is daytime then turn the
lights off.

2. If the lights turn on while it
is daytime and the window
curtains are open then turn
the lights off.

3. If it becomes daytime while
the lights are on and the
window curtains are open
then turn the lights off.

Program 2:

1. If the window curtains open
while the lights are on and
it is daytime then turn the
lights off.

2. If the lights turn on while it
is daytime and the window
curtains are open then turn
the lights off.

Figure 6: A pair of programs for
which the properties differ.
Program 1 ensures the lights are
never on while it is daytime and the
window curtains are open.
Program 2 does not ensure this
because it is missing the last rule.

Currently, the interface does not attempt to minimize the
number of questions asked, which can be done by showing
one question at a time and then eliminating programs that
do not behave according to the answer for the previous
question. However, we chose not to do so in case users

Figure 8: A property-based difference interface. The top half lists
shared and different properties between the two programs. The
bottom half shows the side-by-side text differences. If a rule has a
black circle label to its left, it is a rule that contributed to the
property marked with the same label.

implicitly prefer certain scenarios over others. We leave
scenario prioritization to future work.

Property Difference
Finally, sometimes users may want to know about long-term
patterns or guarantees in the system. For example, a user
who has to choose between the two programs in Figure 6
may wish that the lights are never on while it is daytime
and the window curtains are open. However, current TAP
interfaces do not empower users to specify such long-term
goals. Furthermore, manually going through the programs
and the possible scenarios to determine which program
satisfies some goal can be difficult and error-prone. Zhang
et al. [44] found that many smart home user requirements
can be expressed in the form of a safety property, such as,
“The lights should never be on while it is daytime and the
window curtains are open.” With these factors in mind, we
developed an interface to compare and contrast the safety
properties held by a pair of programs (Figure 8). The safety
property templates we support come from Zhang et al. [44].
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This interface builds off of the side-by-side text difference
interface (see top of Figure 3). We chose to do so based
on participant feedback from our pilots, which suggested
that users preferred seeing the rules rather than only the
properties. In isolation, properties abstract too much in-
formation away from what the system actually does. We
further address this concern by indicating which rules con-
tribute to which properties, demonstrating to users that the
properties shown are correct. We deduce the shared and
unshared properties of each pair of programs by conducting
reachability analysis on the underlying transition systems.

Future Work

Acknowledgments: This
material is based upon work
supported by the National Sci-
ence Foundation under Grants
1837120 and 1835890, as well
as a gift from the CERES Cen-
ter for Unstoppable Computing.
We thank Olivia Morkved for
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We will validate the utility of these interfaces through an
online user study. We will give users tasks that mimic user
experiences with smart home automation, asking them to
debug, extend, or shorten programs to meet given require-
ments. Some scenarios will be based on common bugs
identified in the literature [4, 18, 42]. The tasks will range
in complexity and nuance of differences, and a standalone
view of each TAP program will serve as the control. To de-
termine whether the interfaces are helpful and for which
scenarios they are most helpful, we will analyze the comple-
tion time and accuracy for participants using each interface.

Related Work
Widely used interfaces visualize differences in text code
(e.g., on Github [32]). Other work tries to visualize auto-
mated system behaviors, as described below. To the best of
our knowledge, however, little work exists in the intersection
of these two fields. Such an intersection attempts to visu-
alize end-user program differences beyond text to aid user
comprehension of TAP programs. The simplicity of TAP
programs relative to general programs makes it feasible to
identify and visualize their differences beyond text.

Existing tools for mitigating TAP issues mostly leverage tra-
ditional software engineering techniques. They also mostly
focus on translating end-users’ automation goals into TAP
programs and identifying and fixing bugs in TAP programs.
To understand and translate what users want to achieve
with the TAP programs, some prior work has leveraged nat-
ural language processing [10,36], crowdsourcing [19], and
formal methods [44]. For debugging TAP programs, mul-
tiple tools [7, 17, 26, 37, 40, 44] leverage formal methods
or information flow analysis to check a given program for
vulnerabilities and adherence to user requirements.

As some users are still reluctant to use TAP out of a fear
of breaking the system [16], methods of surfacing informa-
tion about the system’s internal state will be helpful. Some
work has been done to help end-users understand TAP
programs by displaying their effect on the smart home on a
calendar [28], displaying rules as a jigsaw [12], and offering
step-by-step explanations of automatically identifiable TAP
bugs [11,12]. Our work builds upon this literature to support
user understanding by contrasting TAP program variants.

Conclusion
Smart home devices can be shared among users who auto-
mate them in ways that conflict. Rules in TAP programs can
interact in complex ways. Recently proposed debugging
tools try to automatically fix TAP programs, yet users may
not trust these fixes. As a result, users often need to com-
pare highly related variants of a TAP program, yet receive
little support from current interfaces. We facilitate end-user
understanding of TAP differences by introducing interfaces
that help users compare and contrast TAP program vari-
ants. Our interfaces help users reason about syntax differ-
ences, differences in actions under identical scenarios, and
property differences. We plan to improve and validate the
usability of these interfaces through user studies.
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