
Practical Trigger-Action Programming in the Smart Home

Blase Ur†, Elyse McManus*, Melwyn Pak Yong Ho*, Michael L. Littman*
†Carnegie Mellon University *Brown University

bur@cmu.edu, elyse mcmanus@brown.edu, melwyn pak@brown.edu, mlittman@cs.brown.edu

ABSTRACT
We investigate the practicality of letting average users cus-
tomize smart-home devices using trigger-action (“if, then”)
programming. We find trigger-action programming can ex-
press most desired behaviors submitted by participants in an
online study. We identify a class of triggers requiring ma-
chine learning that has received little attention. We evaluate
the uniqueness of the 67,169 trigger-action programs shared
on IFTTT.com, finding that real users have written a large
number of unique trigger-action interactions. Finally, we
conduct a 226-participant usability test of trigger-action pro-
gramming, finding that inexperienced users can quickly learn
to create programs containing multiple triggers or actions.

Author Keywords
End-User Programming; Home Automation; Smart Home;
Internet of Things; Condition-Action Programming

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
While the technologies that enable home automation and
smart homes have been around for decades, they have been
expensive and complex [1]. As a result, smart homes have
mostly been embraced by a small community of affluent and
technically proficient early adopters [11]. In the last two
years, however, companies have begun to market “smart de-
vices” to average consumers at much lower price points, cre-
ating momentum toward mass-market pervasive computing.

As a result, the idea of giving an end user tools to pro-
gram their environment, long discussed in the academic lit-
erature [2, 3, 5, 10, 13, 18], is now becoming possible for a
larger population. This programming often takes the form “if
trigger, then action,” which we term trigger-action program-
ming. For instance, the website IFTTT (“If This Then That”)
enables average users to engage in trigger-action program-
ming with household devices, such as the Philips Hue [15]
lights and the Belkin WeMo family of outlets, switches,
and motion sensors (Figure 1). Crowd-funded devices from
Twine [17] to WigWag [19] have adopted similar paradigms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2014, April 26 - May 01, 2014, Toronto, ON, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04?$15.00.
http://dx.doi.org/10.1145/2556288.2557420

Figure 1. The IFTTT recipe “If I get less than 5 hours of sleep, put on a
pot o’ coffee” (by IFTTT user kev)

Despite the literature and nascent real-world implementations
of trigger-action programming for smart devices, key ques-
tions remain. Where should we strike the balance between
expressibility and ease of use? For example, IFTTT restricts
users to a single trigger and single actions. Do users need
more flexibility? Can they handle more flexibility? Does ad-
ditional programming experience change this equation? Are
important elements missing from the model? We investigate
these questions through three related studies.

To determine whether trigger-action programming captures
smart-home behaviors that users actually desire, we investi-
gate the following hypotheses about smart-home behaviors:

• H1: Many desired behaviors for a smart home are express-
ible using trigger-action programming.

• H2: Some behaviors require multiple triggers or actions.

We asked 318 workers on Mechanical Turk (MTurk) to tell us
five things they would want a hypothetical smart home to do.
Most behaviors they submitted could be expressed naturally
using trigger-action programming, confirming prior work [5]
with a larger sample. Surprisingly, users’ prior programming
experience was not significantly correlated with whether their
desired behaviors involved programming. Unlike the affor-
dances of IFTTT, 22% of programming behaviors required
more than one trigger or action. We highlight three novel lev-
els of abstraction in the triggers participants used, the highest
of which is a natural application of machine learning.

To test whether customizability is even necessary for smart-
home programming, we investigate the following hypothesis:

• H3: In practice, users will combine triggers and actions in
a large number of unique ways.

We found many unique combinations among MTurk users’
desired behaviors. We also scraped all 67,170 programs end
users shared on IFTTT, finding similarly high diversity.

Finally, we conducted a usability test of trigger-action pro-
gramming to investigate whether trigger-action programming
is simple enough for an average user to learn in minutes. We
mirrored the interaction design of IFTTT and enrolled a new

1

set of 226 MTurkers to solve 10 programming tasks. Partic-
ipants were randomly assigned to use either an interface that
supports only a single trigger and a single action (simple in-
terface) or one that supports multiple triggers and multiple
actions (complex interface). We investigate:

• H4: Participants perform with equivalent accuracy and
speed using either the simple or complex interface.

• H5: Prior programming experience and experience using
trigger-action programming increase speed and accuracy.

We found no significant differences in participants’ perfor-
mance or satisfaction between the simple and complex in-
terfaces, supporting H4. Furthermore, participants using the
complex interface were able to complete complex tasks at a
similar rate of success. H5 was only partially confirmed; pro-
gramming experience did not provide a significant advantage.
Participants were slower attempting their first task, yet ap-
proached steady-state performance by the second task.

Overall, we found evidence that trigger-action programming
with multiple triggers and multiple actions can be a prac-
tical approach for smart-home programming. We discuss
open questions about triggers requiring interactive machine-
learning approaches, as well as how triggers compose.

BACKGROUND AND RELATED WORK
To contextualize our research, we introduce trigger-action
programming and provide an overview of related work.

Trigger-action Programming
In trigger-action programming, end users specify the behavior
of a system as an event (trigger) and corresponding action to
be taken whenever that event occurs. Both the trigger and the
action can contain parameters that customize their behavior.
A concrete, instantiated example of trigger-action program-
ming is the website IFTTT, which stands for “if this, then
that”—one way of describing the trigger-action pair. In an
IFTTT recipe, the trigger and action are each selected from
a specified channel of related behaviors. Recipes can also be
shared with the IFTTT user community.

IFTTT has traditionally focused on recipes that link social
media sites. For example, the most popular shared recipe
notices when a user’s Facebook profile picture changes, up-
dating his or her Twitter picture to match. This recipe has
been activated by 25,200 other users. In this example, Face-
book is the trigger channel and Twitter is the action channel.
However, IFTTT supports an increasing number of smart-
device channels. Among these channels are blink(1) (USB-
controlled indicator light), Philips Hue (light bulbs), Up by
Jawbone (wrist-worn pedometer), WeMo Light Switch (wall-
mounted switch), WeMo Motion (motion sensor), WeMo
Switch (electrical outlet), and Withings (bathroom scale).

To study trigger-action programming in a controlled way, we
created our own prototype interface modeled after IFTTT.
Figure 2 shows an example of the recipe “Turn on the kitchen
lights every day at 6pm” in our interface. Here, Date/Time
is the trigger channel and Lights is the action channel. After

Figure 2. Recipe of “If it is 6pm, then turn the lights on.”

Figure 3. Complex interface with multiple triggers in the recipe

selecting a channel, the user chooses a specific event or ac-
tion built into that channel. Users can add, edit, and delete
channels from their recipe. Our prototype interface included
the following channels: Date/Time, Door, Dropbox, Email,
Facebook, Fan, Feed, Heater, Light, Motion Sensor, Phone,
Switch, Television, Text, Twitter, and Weather.

Although IFTTT offers 69 different channels, the program-
ming paradigm of having a single action triggered by a sin-
gle event is inherently limited. Therefore, we created two
versions of our prototype interface. Whereas our simple in-
terface (Figure 2) only allows for one trigger and one action
channel per recipe, our complex interface (Figure 3) allows
users to add multiple trigger and action channels. All triggers
are composed by the conjunction “and.” For instance, one
could trigger an action via “if it is 6:00pm and raining.”

Related Work
A number of researchers have investigated end-user program-
ming in smart homes. Newman [12] argues that end-user con-
figurability is key in smart-home applications and advocates
sharing insights across a community of users.

Most closely related to our work, Dey et al. [5] interviewed
20 participants about context-aware applications, finding the
most common mental model to be rule-based (if-then), as in
trigger-action programming. They tested a rule-based pro-
totyping system for context-aware applications, which non-
programmers found intuitive, accurate, and expressive. We
confirm that many desired behaviors can be expressed us-
ing trigger-action programming, and that about one-quarter
of these behaviors require the conjunction of multiple trig-
gers. We build upon their work by investigating how the
IFTTT community uses trigger-action programming in the
real world, as well as comparing the usability of simple and
complex trigger-action programming.

Many researchers have proposed smart-home interfaces that
share characteristics of trigger-action programming. Truong
et al. [18] devised CAMP, which uses a magnetic-poetry
metaphor for natural-language expression within a con-
strained vocabulary. They found that end users were able
to express their applications in CAMP, doing so in a way
that was people- or task-centric, rather than device-centric.
Litvinova and Vuorimaa [10] showed that this idea could be
applied successfully with a less constrained interface. Pane
et al. [14] also found that an event-based programming style

2

compatible with trigger-action programming is the most com-
mon way for end users to solve problems. Dahl and Svend-
sen [2] compared several proposals for end-user composi-
tion interfaces—a jig-saw interface, a wiring-diagram inter-
face, and a filtered list interface. Their participants found the
jigsaw-puzzle interface most fun and engaging, whereas the
filtered list interface was the most efficient.

Although these studies validated the concept of trigger-action
programming, we investigate open questions. We revisit the
premise that trigger-action programming is necessary because
of the great diversity of behaviors users will want, evaluate
the usability of having multiple triggers/actions versus single
triggers/actions, and investigate whether there are learning ef-
fects or benefits of prior programming experience.

Trigger-action programming introduces many subtleties.
Garcı́a-Herranz et al. [8] articulate considerations for end-
user programming, such as making the distinction between
triggers and conditions transparent. Newman et al. [13] built
and tested OSCAR, a trigger-action programming interface.
Their participants liked the interface and completed a num-
ber of tasks, yet had trouble reusing configurations and judg-
ing whether they had completed a task accurately. Davidoff
et al. [3] note the importance of exceptions and conflicts. In
separate work, Davidoff et al. [4] caution that the home is
collaborative and conflict resolution is complex.

In contrast, Brush et al. [1] argue that trigger-action program-
ming can be difficult for users to debug when problematic
behaviors inevitably occur. Rashidi and Cook [16] suggest
using machine learning over end-user programming, while
others [9] argue in favor of control using a mobile phone.

STUDY 1
To investigate the practicalities of using trigger-action pro-
gramming for controlling physical devices, we conducted
three related studies. In the first study, we asked workers on
Amazon’s Mechanical Turk (MTurk) to list five things they
would want a smart home to do. As a first-order approxima-
tion of trigger-action programming’s viability, we analyzed
whether these tasks could be expressed through trigger-action
programming. In addition, we analyzed the semantics used
for triggers and actions. We also counted the number of ways
in which different triggers and actions were combined. If
the diversity of combinations is high, trigger-action program-
ming or some other approach involving end-user program-
ming could be beneficial. In contrast, if diversity is low, an
enumerated list or “app store” might be preferrable to end-
user programming.

Methodology
We recruited MTurk workers for a “survey about smart homes
and home automation.” We asked them to “imagine that you
have a home with devices that are Internet-connected and can
therefore be given instructions on how to behave. What are
five things you would want your home to do?”

On the one hand, we were curious whether participants who
were not given further direction would suggest behaviors that

could naturally be expressed with trigger-action program-
ming. On the other hand, we feared that participants might
suggest very futuristic behaviors, such as flying robot butlers,
and were curious whether participants could generate unique
and interesting tasks for their home that followed a particular
programming paradigm. Therefore, we randomly assigned
half of participants to receive no further instructions, and the
other half to be primed for trigger-action programming with
the following examples based on a promotional video from
a home-automation startup [19]: “If I walk down the hall at
night, my path should light up. If I leave my house, things
should shut down. When I am walking by a sprinkler, I don’t
want to get wet (and the sprinkler turns back on when I leave).
When the mail gets delivered, notify me.”

We were also interested in whether the behaviors participants
submitted would vary by demographics. Therefore, we col-
lected their age, gender, and whether they have “no experi-
ence,” “some experience,” or “experience with computer pro-
gramming,” or if they are an “advanced computer program-
mer.” We restricted the survey to U.S. workers with a 95%
approval rating. We compensated participants $0.45.

Two independent coders first coded each response as unclear
what the subject’s intent was, or into one of the following
categories developed collaboratively from pilot-study data:

• Programming: A combination of primitive functions that
an end user might consider combining in other ways. (e.g.,
automatically turning on the lights when it is dark outside)

• Self-regulation: A house automatically determines a sub-
ject’s preference and takes action. (e.g., adjust the house to
my preferred temperature at all times)

• Remote control: End user wants to be able to control de-
vices immediately, not based on a schedule. (e.g., hitting a
button on my phone to turn on the lights)

• Specialized functionality: Could perhaps be built or pro-
grammed, but the behavior is specific to the hardware in-
volved and therefore not amenable to end-user repurpos-
ing. (e.g., a breakfast-making machine)

The percentage agreement between the two coders was 89.1%
(Cohen’s κ = 0.79). The two coders discussed the disagree-
ments and came to consensus on the code for all items.

The two coders then independently coded each rule’s struc-
ture. In particular, they coded whether the behavior could be
expressed in trigger-action programming with either a single
or multiple triggers, as well as a single or multiple actions,
or whether the behavior required a traditional programming
language like Python. Notably, many existing instantiations
of trigger-action programming, such as IFTTT, only support
a single trigger and a single action.

Using data from the pilot study and from the real study, we
collaboratively and iteratively developed a codebook of 21
trigger channels, which we defined to include all triggers re-
lated to a particular concept (e.g., “weather,” “door”). We
also developed 46 action channels (e.g., “door”). Within each

3

trigger and action channel, our codebook included the partic-
ular triggers or actions (e.g., “door: open,” “door: close”).
The 21 trigger channels encompassed 71 particular triggers,
while the 46 action channels encompassed 99 particular ac-
tions. Note that our codebook includes sensors that do not
currently exist, yet were conceivable (e.g., “food: cooked?”).

The coders first determined whether each programming ex-
ample could be represented using trigger-action program-
ming. Then, for all examples of trigger-action programming,
they independently proposed a trigger-action program using
this codebook. They coded the number of triggers as ei-
ther single (e.g., “If it is 7:00PM”) or multiple (e.g., “If it
is 7:00PM and raining’)). Similarly, they coded the action
as single or multiple. The two coders agreed on the overall
structure of 88% of programs (Cohen’s κ = 0.87); they then
met to reach consensus and agree on a final program.

We ran regressions to investigate whether age, gender, or pro-
gramming experience impacted the type of behaviors partic-
ipants desired for their smart homes. These data were not
independent since each participant specified five different be-
haviors. Therefore, we used mixed models to nest the five
behaviors under a particular user. In particular, we created a
cumulative-link (logit) mixed model in which the binary de-
pendent variable represented whether or not a particular be-
havior was coded as programming.

We also analyzed the extent to which different triggers were
combined with different actions. We were also interested in
estimating the extent to which users might want to combine
the given triggers and actions in ways that were not repre-
sented by the data. That is, how much of the space of ex-
pected combinations is not represented in our current data? In
a sense, this question is unanswerable—how can we use the
collection of programs to estimate the likelihood of a combi-
nation that is missing from the collection? Fortunately, this
problem has been studied previously in situations like esti-
mating the probability mass of missing words from a corpus
of language. The Good-Turing estimate [7] uses the number
of singletons in a sample to estimate the probability mass on
unseen examples. Roughly, we assume that the trigger-action
programs that appear among our data are independently sam-
pled according to user interest in the corresponding behavior.

Participants
We collected five desired smart-home behaviors from 318
MTurk participants, for a total of 1,590 desired behaviors.
While our participants ranged in age from 18 to 70, 62.9%
of our participants were between 20 and 29 years old. The
median age was 25, while the mean age was 28.2 (σ = 9.1).
Our sample was 69.2% male and 30.0% female; 1.3% of par-
ticipants declined to state their gender.

Our sample was also biased towards individuals with
computer-programming experience, possibly because MTurk
workers with interest in technology would be more interested
in completing a task about “smart homes.” Whereas 117 par-
ticipants (36.9%) had no computer-programming experience,
103 (32.5%) had some programming experience, 84 (26.5%)
had programming experience, and 13 (4.1%) were advanced.

0 20 40 60 80 100
Percentage of behaviors

? Specialized Remote Auto Programming

Figure 4. The percentage of behaviors submitted by our MTurk partic-
ipants that were unclear (?) in intent, required specialized functionality
unavailable in current homes, used a smartphone or similar device as a
remote control for household devices, involved automatic self-regulation,
or required programming.

Results
Overall, we found that the majority of the five smart-home be-
haviors desired by each of our MTurk workers involved pro-
gramming. Furthermore, all of these programming behaviors
could be expressed using trigger-action programming as long
as the paradigm supports multiple triggers and actions.

Requests often involve programming
We found that programming does indeed capture most of
what participants immediately thought of when asked what
they wanted a hypothetical smart home to do. As described
in the methodology, we coded each behavior submitted by
our participants as “programming,” “remote control,” “spe-
cialized feature,” automatic “self-regulation,” or “unclear.”
Figure 4 depicts the proportion of behaviors in each category.

A total of 62.6% of the behaviors our participants submit-
ted centered on programming, highlighting the importance of
providing average users with the tools they need to program
their smart home. Note that we viewed programming as the
notion of specifying behaviors that, given triggers and actions
that could be specified at the appropriate level of abstraction,
could occur now or in the future. For example, we coded all
of the following examples as programming:

• “I want the fan in my room to turn on when it is hot.”
• “Notify me if my pet gets out of the backyard.”
• “Start brewing coffee 15 minutes before my alarm.”
• “Lights...dim according to the level of outside light.”
• “I would like my home to automatically clean the floors on

a daily basis while no one is in the room.”

The most popular non-programming request, representing
13.5% of the behaviors submitted by our participants, was
“remote control” functionality. This type of request involved
using a smartphone, computer, voice, or a gesture to control
a household device at the current moment. In particular, the
primary distinction between the “remote control” and “pro-
gramming” categories is that “programming” involves speci-
fying a behavior that could be activated in the future, rather
than right now. “Remote control” requests included “start the
coffee pot from my bedroom,” “lock and unlock the doors on
command with your voice,” and “change [the] temperature of
each individual room via phone.”

Another 10.8% of responses required “specialized function-
ality” that does not currently exist. Examples in this category
included “pet my cat for me,” “YouTube on bathroom mir-
ror,” “do my hair for me,” and “I want my mail to be delivered

4

0 20 40 60 80 100
Percentage of programming behaviors

(1,1) (1,2+) (2+,1) (2+,2+)

Figure 5. The distribution of programming structures required to ex-
press the programming behaviors our participants submitted. Each of
the four categories can be expressed using a variant of trigger-action
programming. Category names refer to the number of triggers and
number of actions, respectively. For example, the conjunction of mul-
tiple (2+) triggers causing a single action is coded as (2+,1).

by a robot.” Neither an average user nor an experienced pro-
grammer would be able to program these tasks except through
an extraordinary investment of time. A further 10.1% of re-
sponses involved “self-regulation,” such as temperatures that
adjust automatically to the perfect temperature. We coded the
final 2.8% of behaviors, like “smart lights,” as “unclear.” We
were unable to determine the intent of those submissions.

Trigger-action programming structure
Surprisingly, none of the desired behaviors would require a
full programming language to implement as long as suffi-
ciently expressive triggers and action exist. To understand
whether multiple triggers and multiple actions should be sup-
ported in trigger-action programming, we coded the structure
of a trigger-action program using the triggers and actions in
our codebook. We excluded the 37.4% of behaviors identified
in the previous analysis as non-programming.

A total of 77.9% of the programming behaviors fit into the
single trigger, single action construct used by IFTTT. Exam-
ples of this type included “close the blinds when the sun is too
bright” and “call to let me know when the kids get home.”

Although 77.9% of programming behaviors could conceiv-
ably be expressed with a single trigger and single action if
given appropriate triggers and actions, the remaining 22.1%
required either multiple triggers or multiple actions. While
5.2% of behaviors required only a single trigger with multi-
ple actions, 8.5% required multiple triggers for a single ac-
tion. The latter type often captured things that should occur
only in particular circumstances. For example, “If there is a
package delivered and I’m away, I’d like to be notified via
email.” Finally, 8.4% of behaviors required both multiple
triggers and multiple actions. For instance, one participant
specified, “When I get up at night, I would want my lights to
turn on and off as I enter and exit the room.”

Expressiveness by demographic
Although we expected participants with programming expe-
rience would be more likely to submit programming behav-
iors, this was not the case (p = .226). Furthermore, neither
the participant’s gender (p = .487) nor age (p = .407) was a
significant predictor of whether a behavior was programming.

As described earlier, half of the participants were primed with
examples of trigger-action programming behaviors. Whether
the participant saw these examples was a significant factor
(p < .001) in whether the submitted behavior was program-
ming. Whereas 51.0% of behaviors submitted in the absence

of examples represented programming, 68.9% of the submis-
sions from participants who saw the examples were program-
ming. This result suggests users can be primed to some de-
gree to think of programming behaviors for smart homes.
However, even without examples, the majority of behaviors
were still programming, suggesting that end-user program-
ming can implement many behaviors desired of smart homes.

Triggers’ level of abstraction
To understand the types of triggers that trigger-action pro-
gramming should support, we examined the level of abstrac-
tion at which participants articulated, or directly implied, trig-
gers. We collaboratively identified three distinct levels of ab-
stractions among the 71 different triggers in our codebook.

As in prior work [5, 18], we found that participants tended
not to mention sensors directly. For instance, instead of dis-
cussing a motion sensor being activated, participants would
specify that an action occur when someone walks into a room.
Nonetheless, 31 different triggers were indeed sensors in the
engineering sense, which we identified as the lowest level of
abstraction. Common triggers in this category included the
state of a device changing (e.g., a doorbell ringing, a device
being turned off), dates/times, moisture, sound, and light.

The second category represented activities, locations, and
states similarly abstracted from physical sensors. For ex-
ample, one participant explained, “I want the sink to turn
on when I pick up my toothbrush.” While one cannot pur-
chase a “picked-up-ness” sensor, the activity of picking up
an object could be inferred from an accelerometer. Overall,
our codebook contained 26 different triggers at this abstract
level. Triggers related to occupancy and location were the
most common. For example, one participant stated, “I would
like my home to automatically clean the floors on a daily basis
while no one is in the room.” Current and forecasted weather
conditions were also very common. Additional triggers in
this category included individuals waking up, mail being de-
livered, and objects not being used for a period of time.

The third category, which we term fuzzy triggers, comprises
14 triggers whose implementation would require a number
of questions to be answered. These triggers require com-
plex decision making. One such trigger centers on anomalous
events or other deviations from normalcy, such as, “I would
like to be notified when my pool chemicals drop lower than
normal.” This trigger would require a sense of what is nor-
mal, which may vary by person, time, or other factors. Other
fuzzy triggers involved detecting when a person or pet was
hungry, when food had cooked sufficiently, when an area had
become dirty, or when someone was uncomfortable.

Fuzzy triggers likely involve machine learning. For instance,
interactive reinforcement learning could be used to determine
what household conditions a particular person deems uncom-
fortable. Given that participants commonly used semantics
at this level of abstraction, a successful interface for trigger-
action programming should likely support fuzzy triggers.

Diversity of behaviors
End-user programming in the home would be primarily ad-
vantageous if users want to define a large number of unique

5

A
la

rm

B
ri

g
h

tn
e

s
s

C
le

a
n

lin
e

s
s

C
lim

a
te

 c
o

n
tr

o
l

D
a

te
/t

im
e

D
o

o
r

F
o

o
d

G
a

ra
g

e

E
m

e
rg

e
n

c
y

L
o

c
a

ti
o

n

M
a

il

N
o

ti
c
e

P
e

rs
o

n

P
la

n
t

S
m

o
k
e ID

W
e

a
th

e
r

W
in

d
o
w

O
th

e
r

Other

Window

Shower

Notice

Light

Lawn

Garage

Food

Dryer/washer

Door

Dishwasher

Computer

Climate control

Cleanliness

Car

Bed

Bathroom

Audio

Alarm

Figure 6. A heatmap showing how participants’ desired smart-home be-
haviors combined trigger channels (x axis) and action channels (y axis).

behaviors. We analyzed the diversity of the 995 behaviors
classified as programming. We first explore how triggers
were combined and separately how actions were combined.
Then, we examine diversity among the complete behaviors.

Participants used the 21 different trigger channels we coded
(e.g., “location,” “weather”) in 47 distinct combinations. For
example, the single trigger “location” represented one com-
bination, while using “date/time” and “weather” together to
trigger a behavior represents another distinct combination.
Using the Good-Turing method, we estimate a missing prob-
ability mass of 2% of possible trigger combinations. In other
words, if another MTurker submitted a behavior, with 98%
probability we would expect it to be one of the 47 combi-
nations we saw in our previous data. With 2% probability,
however, we would expect it to be a trigger channel or com-
bination of trigger channels we did not observe in our data.

Similarly, participants used the 46 action channels in 77 dis-
tinct combinations among the 995 programming behaviors.
Using Good-Turing, with 4% probability we expect an ad-
ditional behavior that is submitted to use a hitherto unseen
action channel or combination of action channels.

Among the 995 programming behaviors were 236 distinct
combinations of trigger channels and action channels. Fig-
ure 6 shows the frequencies of these combinations; for visual
clarity, the heatmap combines related channels. The Good-
Turing estimate suggests that 13% of the probability mass is
missing from our data. In other words, with 13% probabil-
ity, the next behavior submitted would be a combination of
trigger channel(s) and action channel(s) we had not yet seen.

We also looked beyond the channels (e.g., “Weather”) to
the triggers and actions themselves (e.g., “Weather: Starts
to Rain”). Among the 995 programming behaviors, we ob-
served 464 distinct programs based on our codes. Notably,
316 of the programs appeared only once in our data. The

diversity of programming behaviors among the first five de-
sired behaviors our MTurkers submitted suggests that end-
user programming in smart homes could be useful.

STUDY 2
Although end-user programming for home automation is not
yet widespread, early adopters on the website IFTTT already
use trigger-action programming in the real world. We scraped
all programs shared publicly on IFTTT to better understand
the combinatorics of trigger-action programming in practice.

Methodology
We downloaded all 67,169 recipes (trigger-action programs)
that had been shared publicly on IFTTT.com as of June 20th,
2013. Our scrape does not include recipes users created but
did not actively choose to share publicly. Each recipe con-
sists of an “if channel” and its trigger condition and any pa-
rameters, as well as a “then channel” and its selected action
and any parameters. Each recipe includes a recipe id, an au-
thor id, and statistics on when it was shared and how many
other users have activated it. Although some recipes shared
on IFTTT involve physical devices, many do not. We down-
loaded all public recipes, yet focused on the six channels for
controlling physical devices: blink(1), Philips Hue, Up by
Jawbone, WeMo Motion, WeMo Switch, and Withings.1

We analyzed which triggers were associated with which ac-
tions. As in Study 1, we used Good-Turing estimation to
quantify the probability of combinations not represented in
the sample. In the case of IFTTT, the Good-Turing assump-
tion of independence of samples is not valid. A recipe that
is shared on IFTTT is less likely to be added again by an-
other user; that user could simply activate the existing recipe.
Nevertheless, duplicate recipes appear frequently among our
data, so we feel the independence assumption is sufficiently
accurate to serve as the basis of a useful measure.

Results
Although IFTTT recipes can be created by average users,
shared recipes can be treated as an “app store” that allows
users to browse and activate other users’ recipes. Our scrape
includes 67,169 shared recipes written by 35,295 different
authors. Individual authors contributed between 1 and 126
recipes (32% contributed 2+). Individual recipes had been
activated by between 0 and 25,200 other users (median 1).

We focus on recipes involving the aforementioned six phys-
ical devices. These six devices support 16 different trigger
events and 18 different actions. Among the shared recipes in
our scrape, the device channels were paired with 44 different
other channels. For example, one recipe paired “Date/Time”
with the Philips Hue to create a recipe its author described as
“turn off lights mid day.” However, only 513 recipes in our
scrape (0.8%) use physical devices as triggers, while only 858
(1.3%) use physical devices as actions. In 92 cases, the recipe
combined a device-oriented trigger with a device-oriented ac-
tion, creating a “pure” device recipe. Figure 7 shows the fre-
quency of each of these combinations as a heatmap.
1IFTTT has since added support for additional physical devices,
most notably SmartThings (motion and presence sensors, windows,
locks, and outlets), Google Glass, and the WeMo Light Switch.

6

IFTTT.com

U
P

:
N

o
 n

e
w

 w
o
rk

o
u
ts

U
P

:
N

e
w

 b
lo

o
d
 p

re
s
s
u
re

U
P

:
N

e
w

 m
e
a
l

U
P

:
N

e
w

 m
o
o
d

U
P

:
N

e
w

 w
o
rk

o
u
t

U
P

:
N

e
w

 s
le

e
p

U
P

:
S

le
e
p
 d

u
ra

ti
o
n
 a

b
o
ve

U
P

:
S

le
e
p
 d

u
ra

ti
o
n
 b

e
lo

w

U
P

:
S

te
p
s
 a

b
o
ve

U
P

:
N

e
w

 m
o
ve

m
e
n
t

W
e
M

o
:

A
n
y
 n

e
w

 m
o
ti
o
n

W
e
M

o
:

N
e
w

 m
o
ti
o
n
 a

ft
e
r

q
u
ie

t

W
e
M

o
:
S

w
it
c
h
e
d
 o

ff

W
e
M

o
:
S

w
it
c
h
e
d
 o

n

W
it
h
in

g
s
:
W

e
ig

h
t
b
e
lo

w

W
it
h
in

g
s
:
N

e
w

 w
e
ig

h
t

WeMo: Turn on then off

WeMo: Turn on

WeMo: Turn off then on

WeMo: Turn off

WeMo: Toggle on/off

UP: Log weight

UP: Log a mood

UP: Log a meal

UP: Log event

Hue: Turn on

Hue: Color loop

Hue: Turn off

Hue: Dim

Hue: Random color

Hue: Color from image

Hue: Change color

Hue: Blink lights

blink(1): Send event

Figure 7. A heatmap showing the frequency of IFTTT recipes combining
physical triggers with physical actions.

A total of 513 recipes used a physical device as a trigger. Of
368 possible pairings of these 16 physical triggers with 23
different physical or virtual action channels, 147 unique com-
binations appeared (40%). A total of 858 recipes in the recipe
database used a physical device as an action. Of the 594 pos-
sible pairings of these 18 physical actions with 33 distinct
trigger channels, 176 unique combinations appeared (30%).

Among recipes with physical triggers or physical actions, the
most popular dozen channels were liberally combined with
other channels, suggesting that users might find it easier to
specify a meaningful combination than search for the one
they want in a long list. Good-Turing estimation predicts the
probability of generating a combination that did not appear in
this sample is approximately 11% for the device triggers and
approximately 9% for the device actions. This result implies
that roughly 1 in 10 searches would come up empty if users
were constrained to only use recipes in this scrape, suggest-
ing that even treating the vast set of existing IFTTT recipes as
an “app store” would not cover all desirable combinations.

STUDY 3
Our final study investigated the usability of trigger-action pro-
gramming, as well as how demographic factors and support
for multiple triggers/actions correlate with usability.

Methodology
We recruited MTurk workers for a “research study on tech-
nology for the home.” Participants were compensated $2.00
for the study, which took about 30 minutes. We randomly
assigned each participant to use either an interface that sup-
ported a single trigger and single action (simple interface) or
an interface that was identical except for supporting multiple
triggers and multiple actions (complex interface), as described

in the background section. We measured the time a partici-
pant spent on a task and whether their program was correct.

Participants answered demographic questions, used the as-
signed interface to attempt the ten tasks listed in Table 1 (as-
signed in random order), and completed a final Likert-scale
satisfaction survey. Either interface could be used to solve
Tasks A–F, while only the complex interface could be used
to solve Tasks I–J. Task G and Task H were impossible to
solve within the constraints provided. We informed partici-
pants that they should click a “skip task” button if they were
unsure how to solve a task or believed it impossible.

We ran regressions to analyze participant’s success rates and
timing. As these data were not independent, we used mixed
models. For success solving the task, which is a binary out-
come, we created a cumulative-link (logit) mixed model. For
the time it took to solve a task, which is continuous, we cre-
ated a linear mixed model. We used six explanatory variables:
the task that was being attempted, the number of tasks already
attempted, and the interface (simple vs. complex), as well as
the participant’s gender, programming experience, and age.
We also included four hypothesized interaction terms.

We analyzed participants’ Likert-scale responses to satisfac-
tion questions using ordinal logit regression, corrected for
multiple testing using the Bonferroni method. Our indepen-
dent variables were the interface the participant saw, as well
as the participant’s gender, age, and programming experience.

Instruction
A When my Facebook profile picture changes, update

my Twitter profile picture.
B Get all updates from the website www.xkcd.com via

email.
C If I receive an email from JohnDoe@gmail.com then

blink lights to notify me.
D Turn on the lights when the sun sets.
E If it is 7:00PM then turn on the lights in my bedroom.
F Blink the lights if someone is at my front door.
G The lighting in my bedroom should be on when I am

there and off when I am not there.
H If it begins to rain then change the light colors to blue.
I If it is 10:00pm and my bedroom door is closed and

the lights are off, turn the television off.
J When I close the kitchen door, lock the door and turn

off the kitchen light.
Table 1. The ten tasks in our usability study, which were assigned in
random order. Tasks G and H were impossible to solve, while Task I and
J could only be solved using the complex interface.

Participants
We had 226 participants; 107 were male (47.4%), 118 were
female (52.2%), and one declined to answer (0.4%). Par-
ticipants hailed from 45 different U.S. states and ranged in
age from 18 to 67 (median = 30, mean = 32.6, σ = 10.9).
Whereas 163 participants (72.1%) did not have any program-
ming experience, 31 (13.7%) had some programming experi-
ence, 23 (10.2%) had programming experience, and 9 (4.0%)
considered themselves advanced programmers.

7

A B C D E F G H I J

0

20

40

60

80

100

Task

Pe
rc

en
ta

ge
of

pa
rt

ic
ip

an
ts

Simple Interface Complex Interface

Figure 8. The percentage of participants who successfully completed
each task. Tasks G and H were impossible to solve using either interface,
as were Tasks I and J for participants using the simple interface. Success
in these cases is defined as a participant skipping the task.

Only five participants (2.2%) had previously used IFTTT
(two rarely and three occasionally). Participants were rela-
tively tech-savvy; 89% own a smartphone, 63% own a tablet,
10% own a “smart thermostat,” 9% own a “robotic vacuum
cleaner,” and 3% own a “home-automation device.”

Results
Overall, participants successfully used either the simple or
complex interface to create programs. We observed a learning
effect in which participants’ performance quickly improved
as they completed successive tasks. Some tasks were more
difficult than others, and older participants performed worse.

Task completion
Participants successfully completed most tasks. As shown in
Figure 8, most tasks were solved by 80% or more of par-
ticipants. Relative to Task A, the control in our cumulative-
link (logit) mixed model, participants were significantly less
likely (p < .001) to solve Task B: “get all updates from the
website www.xkcd.com via email.” This task required partic-
ipants locate the “Feed” channel (RSS logo) and then enter
the site’s URL. We hypothesize that participants’ unfamiliar-
ity with RSS caused difficulty. In contrast, participants were
more likely (p = .048) to successfully solve Task E: “If it is
7:00PM then turn on the lights in my bedroom.”

Participants were also less likely to solve Task G (p < .001)
and Task H (p < .001) than Task A. Both tasks were im-
possible, and we had instructed participants to skip impossi-
ble tasks. Only 26% of participants overall correctly skipped
Task G, yet 64% of participants skipped Task H. Task G, “The
lighting in my bedroom should be on when I am there and off
when I am not there,” was impossible because it required ei-
ther the existence of an occupancy sensor or the use of two
programs (triggered, respectively, on entry and exit), which
neither interface supported. Task H, “If it begins to rain then
change the light colors to blue,” was impossible because there
was no option to change the color of a light, which we hypoth-
esize was more obvious to participants.

0 1 2 3 4 5 6 7 8 9

40

60

80

Number of tasks previously completed

Su
cc

es
s

pe
rc

en
ta

ge

Figure 9. The percentage of participants who successfully completed
a task versus the number of tasks they had previously completed. We
found a learning effect; participants got better at solving tasks over the
ten tasks they completed.

Tasks I and J could only be solved using the complex inter-
face. Success for the simple interface reflects the proportion
of participants who skipped the task as instructed. Unsurpris-
ingly, participants who used the simple interface were signif-
icantly less likely to correctly solve Tasks I and J (p < .001).

Across all tasks, we observed a learning effect, partially sup-
porting H5. The number of tasks previously attempted was
significantly correlated with success solving the current task
(p < .001), as shown in Figure 9.

Older participants less success overall (p = .040). In con-
trast, participants’ gender (p = .931), prior programming ex-
perience (p = .497), and whether they used the simple or
complex interface (p = .794) were not significantly corre-
lated with success at solving tasks that could be solved with
both interfaces (Tasks A–F) or realizing that certain tasks
could not be solved (Tasks G–H). Furthermore, we did not ob-
serve any significant interaction effects between the task and
prior programming experience, between the number of tasks
completed and prior programming experience, or between the
number of tasks completed and the interface participants saw.

Time to complete a task
We also investigated how long it took the participant to solve
Tasks A–F, solvable using either interface. We created a lin-
ear mixed model with the time (in ms) from loading the in-
terface to submitting the solution as the dependent variable.
We excluded data from incorrect solutions and tasks that were
impossible with the assigned interface.

The participant’s age and the number of tasks they had al-
ready attempted impacted the completion time. Older partic-
ipants took longer to complete these tasks (p < .001). As
shown in Figure 10, participants got faster as they completed
more tasks (p = .003), yet seemed to reach a steady state by
their second task. Relative to Task A, participants took signif-
icantly longer to complete Task B (p < .001). Notably, prior
programming experience (p = .214), gender (p = .756), and
the interface (p = .905) were not significant factors.

Satisfaction
Overall, participants appeared satisfied with the usability of
both the simple and complex interfaces. At the end of the

8

www.xkcd.com

0
5

0
1

0
0

1
5

0
2

0
0

0 1 2 3 4 5 6 7 8 9

●

● ●

● ●
●

●

● ● ●

Number of tasks previously attempted

T
im

e
 f
o

r
s
u

c
c
e

s
s
fu

l
c
o

m
p

le
ti
o

n
 (

s
)

Figure 10. A violin plot (combination box plot and kernel density plot)
of the time it took participants to solve a task versus the number of tasks
they had previously attempted. We exclude unsuccessful solutions.

0 20 40 60 80 100
Complex

Daily Life

Intuitive

Percentage of participants
Strongly Disagree Neutral Strongly Agree

Figure 11. Participants’ responses on a 7-point Likert scale to the fol-
lowing statements: “Overall, it was easy and intuitive to create recipes”;
“I would be interested in creating recipes of this sort in my daily life”; “I
believe I could handle a more complex programming interface.”

study, participants responded on a 7-point Likert scale to three
statements about the interface. As shown in Figure 11, over
three-quarters of the participants agreed that “it was easy and
intuitive to create recipes,” that they would be “interested in
creating recipes of this sort in daily life,” and that they thought
they “could handle a more complex programming interface.”

For each statement, we performed ordinal logistic regres-
sion with participants’ Likert-scale responses as the depen-
dent variable. Unsurprisingly, participants with prior pro-
gramming experience were significantly more likely to agree
that they could handle a more complex programming inter-
face (p < .001). Neither the interface used nor the partici-
pant’s age and gender were significant factors.

DISCUSSION
We have provided evidence that average users can success-
fully engage in trigger-action programming with multiple
triggers and actions. Furthermore, this paradigm can express
many of the smart-home behaviors that immediately came to
our participants’ minds, and both hypothetical and real-world
examples of trigger-action programming exhibit substantial
diversity. However, scaling trigger-action programming for
use in practical settings introduces a number of challenges.

While coding participants’ desired behaviors and designing
the usability study, we found that the semantics of how mul-
tiple triggers compose with each other are complicated. Trig-
gers could conceivably contain an event, a condition, or some
combination. Some objects, like a door, would need to sup-
port an event (“the moment the door closes”), a condition (“is
the door closed?”), and an action (“close the door”). Notably,
two events do not compose well. For example, the exact mo-
ment the temperature drops below freezing is unlikely to be
the exact moment the window is opened.

Instead, we found that a trigger generally should contain ex-
actly one event, optionally alongside multiple conditions. For
instance, “heat the floors [action] during the winter [condi-
tion] down the path I’m walking [event].” Triggers that seem
to contain only conditions, like “notify me if my windows
are open past 10pm,” could be expressed as checking every X
minutes between 10:00pm and the morning (event) whether
the window is open (condition). However, one could imag-
ine many subtly incorrect ways to write this program, such
as to check at precisely 10:00pm (event) if any windows are
open (condition), which would miss when someone opens a
window after 10:00pm. The usability of these distinctions re-
quires substantial future investigation as part of a field study.

The level of abstraction participants used to express triggers
also suggests substantial future work. A handful of partici-
pants used triggers that were direct sensors (e.g., “motion is
detected”), which are the simplest to implement. As in past
work [5], many participants expressed triggers one level of
abstraction higher (e.g., “when I am in the room”), which sug-
gests that the HCI community and sensor network commu-
nities could collaborate to enable interface affordances that
match users’ mental models. The third level of abstraction
(e.g., “the water is too hot,” where “hot” is ambiguous or
person-dependent) suggests research opportunities for study-
ing how to create sensors that tailor themselves to the prefer-
ences of users based on interactive machine learning.

In the smart home, machine learning could potentially also re-
solve conflicts more intelligently. Proposals in the literature
include giving precedence to more recently created rules or
even recipes created by more authoritative users [3]. Instead,
given an appropriate metric, one might want to prefer more
specific recipes to more general ones. Perhaps better, the sys-
tem could preemptively identify conflicts and ask the user for
resolution either at the time of conflict or when the rule is
created. Machine-learning approaches could also interpolate
between conflicting actions, mediating conflicts internally.

The place of trigger-action programming within end-user pro-
gramming for the home deserves consideration. On the one
hand, very common or very complex behaviors might best
be captured by an “app store,” as others have proposed [6].
On the other hand, we found great diversity in the relatively
straightforward compositions specified in MTurkers’ desired
behaviors and IFTTT users’ recipes. If an app store becomes
too vast, users might find it more efficient to use trigger-action
programming than to determine what combination of search
terms, if any, leads them to the desired program. Further-
more, advanced users may desire additional concepts from

9

programming language theory; these features could be hid-
den from average users. For instance, trigger-action program-
ming does not make it easy to specify that the artificial light
in a home adjust to be inversely proportional to the natural
light outside. Most likely, a hybrid of all of these approaches
will best support both beginner and expert users.

Limitations
While our three studies provide evidence that trigger-action
programming can be useful and usable, they had a number of
limitations. Most notably, we did not investigate any compet-
ing approaches to end-user programming. As a result, we are
unable to evaluate the relative strengths and weaknesses of
trigger-action programming, nor can we make strong claims
that trigger-action programming is the best way forward.

Our data is not necessarily representative of all users. The
IFTTT community is a self-selected pool of early adopters.
IFTTT and MTurk users are likely more technical than the av-
erage person. Neither group is a sample of people who would
consider living in a smart home. Furthermore, the things a
novice user expects to want a hypothetical smart home to do
in the future is far from a perfect proxy of reality.

In addition, we only asked MTurkers to write the first five be-
haviors that came to mind, rather than all desired behaviors.
Actually living in a smart home might further influence users’
desires, potentially in unexpected directions. As a result, we
cannot claim that trigger-action programming captures a par-
ticular fraction of all desirable smart-home behaviors. We
plan to conduct a field study that investigates trigger-action
programming in a more ecologically valid setting. The role of
triggers and sensors based on machine learning (e.g., “com-
fort” sensors) will be particularly interesting in the field.

A field study can elucidate the impact of subtle issues we have
discussed. For instance, conflicts and exceptions are best in-
vestigated in the field. Similarly, users’ mental models of how
to construct a program deserve further study. While a trigger
implicitly containing an “or” relationship can be captured by
two independent programs with single triggers, average users
may not realize how to do so. We also hope to investigate the
natural level of abstraction for each type of trigger.

ACKNOWLEDGMENTS
We are grateful to the Rutgers UPOD group, especially
Phillip Quiza, and the Brown UPOD group, especially Steve
Reiss, for helping us work toward end-user programming of
devices. We thank Brown University and the National Sci-
ence Foundation for financial support.

REFERENCES
1. Brush, A. B., Lee, B., Mahajan, R., Agarwal, S., Saroiu,

S., and Dixon, C. Home automation in the wild:
Challenges and opportunities. In Proc. CHI (2011).

2. Dahl, Y., and Svendsen, R.-M. End-user composition
interfaces for smart environments: A preliminary study
of usability factors. In Design, User Experience, and
Usability. Theory, Methods, Tools and Practice. 2011,
118–127.

3. Davidoff, S., Lee, M. K., Yiu, C., Zimmerman, J., and
Dey, A. K. Principles of smart home control. In Proc.
Ubicomp (2006).

4. Davidoff, S., Lee, M. K., Zimmerman, J., and Dey, A.
Socially-aware requirements for a smart home. In Proc.
ISIE (2006).

5. Dey, A. K., Sohn, T., Streng, S., and Kodama, J. iCAP:
Interactive prototyping of context-aware applications. In
Proc. Pervasive (2006).

6. Dixon, C., Mahajan, R., Agarwal, S., Brush, A., Lee, B.,
Saroiu, S., and Bahl, P. An operating system for the
home. In Proc. NSDI (2012).

7. Gale, W. A., and Sampson, G. Good-turing frequency
estimation without tears. Journal of Quantitative
Linguistics 2 (1995), 217–237.

8. Garcı́a-Herranz, M., Haya, P., and Alamn, X. Towards a
ubiquitous end-user programming system for smart
spaces. Journal of Universal Computer Science 16, 12
(2010), 1633–1649.

9. Koskela, T., and Väänänen-Vainio-Mattila, K. Evolution
towards smart home environments: Empirical evaluation
of three user interfaces. Personal Ubiquitous Comput. 8,
3–4 (July 2004), 234–240.

10. Litvinova, E., and Vuorimaa, P. Engaging end users in
real smart space programming. In Proc. Ubicomp
(2012).

11. Mennicken, S., and Huang, E. M. Hacking the natural
habitat: An in-the-wild study of smart homes, their
development, and the people who live in them. In Proc.
Pervasive (2012).

12. Newman, M. W. Now we’re cooking: Recipes for
end-user service composition in the digital home.
Position Paper– CHI 2006 Workshop IT@Home, 2006.

13. Newman, M. W., Elliott, A., and Smith, T. F. Providing
an integrated user experience of networked media,
devices, and services through end-user composition. In
Proc. Pervasive (2008).

14. Pane, J. F., Ratanamahatana, C. A., and Myers, B. A.
Studying the language and structure in
non-programmers’ solutions to programming problems.
Int. J. Human-Computer Studies 54, 2 (2001), 237–264.

15. Philips. Hue. https://www.meethue.com, 2013.

16. Rashidi, P., and Cook, D. J. Keeping the resident in the
loop: Adapting the smart home to the user. IEEE
Transactions on Systems, Man, and Cybernetics—Part A
39, 5 (2009), 949–959.

17. Supermechanical. Twine.
http://supermechanical.com/twine/, 2013.

18. Truong, K. N., Huang, E. M., and Abowd, G. D. CAMP:
A magnetic poetry interface for end-user programming
of capture applications for the home. In Proc. Ubicomp
(2004).

19. Wigwag. Wigwag. http://www.wigwag.com/, 2013.

10

https://www.meethue.com
http://supermechanical.com/twine/
http://www.wigwag.com/

	Introduction
	Background and related work
	Trigger-action Programming
	Related Work

	Study 1
	Methodology
	Participants
	Results
	Requests often involve programming
	Trigger-action programming structure
	Expressiveness by demographic
	Triggers' level of abstraction
	Diversity of behaviors

	Study 2
	Methodology
	Results

	Study 3
	Methodology
	Participants
	Results
	Task completion
	Time to complete a task
	Satisfaction

	Discussion
	Limitations

	Acknowledgments
	REFERENCES

