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Abstract—End-user programming, particularly trigger-action
programming (TAP), is a popular method of letting users express
their intent for how smart devices and cloud services interact. Un-
fortunately, sometimes it can be challenging for users to correctly
express their desires through TAP. This paper presents AutoTap,
a system that lets novice users easily specify desired properties
for devices and services. AutoTap translates these properties to
linear temporal logic (LTL) and both automatically synthesizes
property-satisfying TAP rules from scratch and repairs existing
TAP rules. We designed AutoTap based on a user study about
properties users wish to express. Through a second user study,
we show that novice users made significantly fewer mistakes
when expressing desired behaviors using AutoTap than using
TAP rules. Our experiments show that AutoTap is a simple and
effective option for expressive end-user programming.

Keywords-End-user programming; trigger-action program-
ming; program synthesis; program repair

I. INTRODUCTION

End-user programming enables users without programming

experience to customize and automate systems. An approach

that is particularly popular for automating IoT smart devices

and online services is trigger-action programming (TAP),

which is supported by IFTTT [1], Mozilla’s Things Gate-

way [2], Samsung SmartThings [3], Microsoft Flow [1],

OpenHab [4], Home Assistant [5], Ripple [6], Zapier [1], and

others. Some of these TAP services are widely used [7], [8].

In TAP, users create event-driven rules of the form “IF

a trigger occurs, THEN perform an action.” For example,

“IF a sad song comes on THEN turn the lights blue.”

Unfortunately, while novice users are able to successfully

express many automation behaviors using TAP interfaces [9],

attempts to express more complex, yet commonly desired,

behaviors often contain bugs [10]–[14]. These bugs encompass

timing errors [10], issues with control flow [15], conflicting

behaviors [12], and incorrect user expectations [14]. As a

result, an important open question is how to help users

with no programming experience, and therefore no debugging

experience, correctly express their wide variety of desired

behaviors in TAP. Otherwise, users will encounter frustration

and experience safety threats [16] from buggy TAP rules.

For example, imagine the simple and sensible desire to keep

the window closed when it is raining. With current interfaces,

a user might create the straightforward TAP rule “IF it begins

to rain THEN close the window” (Figure 1a). Unfortunately,

this rule is insufficient. For example, while it is raining, a

different rule might be triggered and open the window, or an

(a) A (buggy) TAP rule. (b) A proposed TAP property.

Fig. 1: The TAP rule (a) cannot guarantee the property (b).

oblivious person might open the window manually. To fully

express this desire therefore requires a complex set of rules.

To address this open question, we present AutoTap, a system

that provides easy end-user programming for smart devices

and online services with fewer chances for human mistakes.

AutoTap expands TAP to allow users to specify through

graphical interfaces not only rules, but also properties about

the system that should always be satisfied. For example, from

the running example, one could express the desired property

that “it is currently raining” and “the window is open” should

never occur together (Figure 1b). In other words, instead of

requiring users to explicitly write event-driven rules defining

how devices should behave, we let them simply specify what

properties the system must satisfy.

If no relevant rules are provided, AutoTap automatically

synthesizes property-satisfying TAP rules from scratch. For

example, given the property in Figure 1b, AutoTap will

automatically synthesize two TAP rules to satisfy this property:

• IF it begins to rain WHILE the window is open THEN

close the window
• IF the window opens WHILE it is raining THEN close

the window
If initial rules are provided alongside the desired property,

AutoTap will automatically check these rules and, if necessary,

repair them to prevent the system from violating the property.

AutoTap thus minimizes the opportunity for TAP mistakes.

The following two key components of AutoTap work together

to achieve the above functionality:

1) A novel property-specification interface: The key goal of

TAP is to empower novice users without programming knowl-
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Fig. 2: An overview of AutoTap, which takes user-specified

properties and (optionally) user-specified TAP rules to auto-

matically generate a set of TAP rules that satisfy the properties.

edge to automate and customize their devices and services. Au-

toTap therefore needs an interface that is both (a) expressive,

allowing users to specify most of their desired properties for

smart-device systems, and (b) easy-to-use, requiring minimal

training for non-technical home users to use correctly.

To this end, we first conducted an online user study in

which 71 current users of smart devices each provided (in

free text) ten properties they would want their devices to

satisfy (Section III). We qualitatively coded their responses,

finding that nearly all the desired properties followed one of

seven templates. Subsequently, we implemented a graphical,

click-only interface that mirrors the design of popular TAP

rule-specification interfaces [1]. This interface enables users

to specify properties following these seven templates without

requiring any text input. AutoTap then directly translates

properties specified in this interface to formulas in linear

temporal logic (LTL) that can be used by AutoTap’s other

components (Section IV). While prior work has proposed

interfaces for property specification [17], no prior efforts fully

satisfy our requirements in the unique context of smart-device

systems (Section VIII).

2) Novel synthesis techniques for TAP rules: We want

all programs synthesized by AutoTap to be (a) property-
compliant, guaranteeing the programmed devices satisfy the

specified properties; (b) accommodating, not disabling any

device behaviors that originally satisfy the properties — cru-

cial for human-centric systems; and (c) valid, following the

syntax of TAP rules and physical constraints of smart devices.

For example, given the property in Figure 1b, generating only

one of the two TAP rules presented earlier is accommodating,

yet non-compliant. Generating TAP rules that prevent the

window from ever opening even in sunny weather is compliant,

yet not accommodating. Generating TAP rules that prevent rain

is impossible, and therefore not valid.

To achieve these goals, AutoTap takes three steps, as shown

in Figure 2. First, it automatically builds a Büchi Automaton to

formally model desired properties and the smart-device system

itself, including any existing TAP rules. At this step, the

novel techniques we introduce simplify models and properly

represent time-related properties (Section V-A).

Second, AutoTap leverages a unique feature shared by all

LTL safety properties to design a simple algorithm that iden-

tifies Büchi Automaton edges whose removal guarantees the

compliant and accommodating goals of synthesis (Sec. V-B).

Third, AutoTap designs an algorithm to systematically syn-

thesize valid new TAP rules or rule changes to remove Au-

tomaton edges identified above, while making a best effort to

keep rules simple and thus intelligible for users (Section V-C).

These techniques are general. They are not limited to any

specific patch template. They apply to any LTL safety property,

not just those that can be expressed using AutoTap’s current

property-creation interface. Furthermore, while our interface

design focuses on smart devices, the same techniques apply

to online services, such as the hundreds IFTTT supports [8].

These techniques are also novel. We cannot use previously

proposed synthesizers [18]–[20], which do not satisfy the

requirements discussed above in the unique context of smart-

device systems (Section VIII). A small but quickly growing

literature has begun to apply formal methods to TAP [21]–

[24]. Our techniques move beyond this work in both the

target and the solution. Some of this work only aims to detect

property violations [24], while others only repair existing rules

by editing or adding conditions [21], [22] or triggers [23].

Our techniques are the first to also synthesize new rules from

scratch and to provide the accommodating guarantees, not

disabling any device behaviors that originally satisfy the de-

sired properties — a crucial feature for human-centric systems

that fundamentally cannot be provided using the fixing-by-

counterexample approach of previous work [21], [25].

Our evaluation of AutoTap includes several parts (Sec-

tion VI). We conducted a second user study in which 78

participants were randomly assigned to use either a traditional

TAP rule interface or our AutoTap property interface. They

used their assigned interface to express 7 behaviors randomly

assigned from a larger set of 14. For all 14 behaviors, a larger

fraction of participants using the AutoTap property interface

correctly expressed the behavior than those using the tradi-

tional TAP rule interface. We also benchmarked AutoTap’s

performance, synthesizing TAP rules from scratch using the

sets of correct properties collected in our study. AutoTap

successfully generated patches for 157 of these 158 sets.

To encourage replication and adoption, we are open-

sourcing the code for both AutoTap and our rule- and property-

specification interfaces. We are also releasing the anonymized

data from our two user studies (with the permission of both our

IRB and participants) and our full survey instruments. All of

these are available at https://www.github.com/zlfben/autotap.

II. BACKGROUND

A. Trigger-Action Programming (TAP)

In recent years, TAP has received a great deal of academic

attention in multiple areas: usability [9]–[11], [13]; novel

interfaces [26]–[28]; measurement [7], [8]; deployment [6],

[29]; correctness [12], [21]–[24]; and security [15], [16],

[30]. Furthermore, TAP has been deployed by Microsoft [1],

Mozilla [2], IFTTT [1], Samsung [3], and others.
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Systems generally follow one of two TAP rule struc-

tures [14]. The simpler variant connects a single trigger to

a single action: “IF event THEN action.” Each such statement

is a TAP rule, and a collection of rules forms a TAP program.

Events include state changes for devices, services, and sensors

(e.g., “it begins to rain”). Actions are actuations of devices

(e.g., “open the window”) or services (e.g., “send an SMS”).

The more expressive variant differentiates events (actions

or state changes that occur in a moment, such as “it begins to

rain”) and states (conditions that remains true/false over time,

such as “it is raining”). In this variant, triggers are a single

event optionally conditioned on one or more states as follows:

“IF event occurs WHILE devices are in a given state, THEN

fire action,” shortened as “IF event WHILE state(s) THEN

action.” In this paper, we use this more expressive EVENT-

STATE-ACTION variant (also called EVENT-CONDITION-

ACTION), which balances usability and expressiveness. This

variant is used in Samsung SmartRules [3], Stringify [31],

Home Assistant [5], and academic studies [9], [10], [14], [32].

B. Transition Systems and Linear Temporal Logic (LTL)

AutoTap formally models smart devices and TAP programs

as transition systems [33]. Every transition system consists of

a set of states S; a set of events E (typically called actions

in TAP) that change the system from one state to another,

s1
e∈E−−−→ s2; and a set of atomic propositions AP that reflect

detailed properties of a state, with L(s) denoting the set of

atomic propositions associated with state s. A valid execution

is an infinite sequence of states s0s1..., sk ∈ S and every

transition from one state to the next is valid, si
ei∈E−−−→ si+1.

LTL formulas can represent a wide variety of execution

properties and are widely used in formal verification [34].

An LTL formula φ is constructed from atomic propositions

with some operators: φ ::= true|ap|¬φ|φ1 ∧ φ2|Xφ|φ1Uφ2.

Informally, ¬,∧,X and U represent not, and, neXt, and Until,
respectively. In addition to these basic operators, F, G and

W are common derived operators. Given an execution E =
s0s1... of a transition system, E satisfies atomic proposition

ap if and only if the initial state of E is associated with ap
(i.e., ap ∈ L(s0)). A transition system TS satisfies property

φ (TS |= φ) if all possible executions in TS satisfy φ.

III. USER STUDY 1: MAPPING DESIRED PROPERTIES

To understand what types of properties users commonly

desire for smart devices, we conducted an online user study.

Methodology: We designed a survey asking people who had

experience with IoT smart devices in their own homes to write

free-text properties they would want their devices and home to

satisfy. Specifically, we asked them to write “statements about

internet-connected household devices that you believe should

be effective at all times, with only occasional exceptions, if

any.” To encourage diversity, we asked participants to imagine

their house was filled with 27 smart devices we listed. We

asked for ten statements, preferably five that should always be

true and five that should never be true in their smart home.

We recruited participants on Amazon’s Mechanical Turk

who reported having an internet-connected household IoT

device and living in the USA. We compensated $5 for the

study, which also included a section on experiences with buggy

behaviors in smart homes that is outside this paper’s scope.

Through qualitative coding, we analyzed and grouped these

free-text desired properties into templates. Members of the

research team read through responses and iteratively proposed

templates. Two coders then independently categorized each

response (κ = 0.62) and met to resolve discrepancies.

To encourage complex and diverse properties, we randomly

assigned half of participants to see four example properties

(e.g., “The temperature in my bedroom should never be below

65 degrees”), while the other half did not see any examples.

While both participants who did and did not see examples

wrote properties following six of the seven templates, the

proportion of properties matching a given template differed

significantly between these two groups (χ2, p = .003). Thus,

we always first report the percentage among properties written

by participants who did not see examples, followed by the

percentage from those who did.

Results: We received 75 responses, discarding four who

gave off-topic responses or reported having no smart devices.

Of the resultant 71 participants, 64 % identified as male and

36 % as female. The median age range was 25–34 (53 %),

and 9 % were age 45+. Among participants, 24 % reported a

degree or job in CS or technology. Participants most frequently

reported having internet-connected cameras (55 % of partic-

ipants), lights (54 %), thermostats (52 %), cooking devices

(18 %), door locks (15 %), and outdoor devices (8 %).

We found that seven templates captured the vast majority

of desired properties participants expressed. We differentiate

them based on whether they are conditional (i.e., conditioned

on at least one other clause), whether they rely on a duration

(i.e. expressing temporal bounds), and whether they are de-

scribed based on states and/or events. The small number of

remaining properties were either out of scope (e.g., requesting

new features) or too ambiguous to analyze reliably.

Below are the seven templates, each with the proportion of

responses that fit that template from participants who did not

see examples and those who did, respectively. We also provide

a sample response from participants for each template.

a) One-State Unconditional (40.6%, 14.7%): “Smart refrig-

erator should always be on.”

b) One-Event Unconditional (24.1%, 14.5%): “My thermo-

stat should never go above 75 degrees.”

c) One-State Duration (0.9%, 7.5%): “My smart lights

should stay on for at least 30 seconds each time.”

d) Multi-State Unconditional (0.3%, 0.2%): “Never run the

washing machine and the dish washer at the same time.”

e) State-State Conditional (1.6%, 7.5%): “The stove should

always be off if no one is home.”

f) Event-State Conditional (26.3%, 40.7%): “My smart win-

dow should never be opened while the AC is on.”

g) Event-Event Conditional (5.3%, 13.8%): “My smart door

lock should always lock after I come in.”
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TABLE I: AutoTap’s property templates. G, F, X, and W are “always Globally”, “eventually in the Future”, “neXt”, and

“Weakly until” LTL operators. state is a user-specified atomic proposition or its negation. # and ∗ relate to timing (Sec. V-A).

Property Type Input Template LTL Formula

One-State Unconditional
[state] should [always] be active G(state)
[state] should [never] be active ¬F(state)

One-Event Unconditional [event] should [never] happen ¬F(@event)

One-State Duration
[state] should [always] be active for more than [time] G(state → (stateWtime ∗ state))
[state] should [never] be active for more than [time] ¬F(time ∗ state)

Multi-State Unconditional
[state1, ..., staten] should [always] occur together ¬F(!(state1 ↔ ... ↔ staten))
[state1, ..., staten] should [never] occur together ¬F(state1 ∧ ... ∧ staten)

State-State Conditional
[state] should [always] be active while [state1, ..., staten] G((state1 ∧ ... ∧ staten) → state)
[state] should [never] be active while [state1, ..., staten] ¬F(state1 ∧ ... ∧ staten ∧ state)

Event-State Conditional
[event] should [only] happen when [state1, ..., staten] G(X@event → (state1 ∧ ... ∧ staten))
[event] should [never] happen when [state1, ..., staten] ¬F(state1 ∧ ... ∧ staten ∧X@event)

Event-Event Conditional
[event1] should [always] happen within [time] after [event2] G(@event2 → (time#event2W@event1))
[event1] should [never] happen within [time] after [event2] ¬F(time#event2 ∧X@event1)

Interface Entry Property Type

• Multi-state Unconditional

• One-State Unconditional

• One-State Duration

• State-State Conditional

• One-Event Unconditional

• Event-State Conditional

• Event-Event Conditional

Fig. 3: Templates in AutoTap’s property-specification UI.

IV. AUTOTAP PROPERTY-SPECIFICATION INTERFACE

AutoTap aims to synthesize TAP programs satisfying user-

specified properties. This section discusses our design of a

property-specification user interface that aims to be expressive,

easy to use, and also compatible with LTL, allowing an easy

translation from every specified property into an LTL formula.

Property types: Table I summarizes the seven property

types we commonly observed in our first user study. They

differ along three dimensions: whether the subject was a state

or an event; whether something should or should not happen;

and whether the desire was conditional or unconditional.

We note that any state-state conditional property can be

written as an equivalent multi-state unconditional property.

Further, some one-state duration properties have equivalent

event-event conditional properties. However, to better match

users’ mental models, we chose not to merge these types.

Every type of property in our interface has a straightforward

translation to an LTL formula, as shown in Table I. The

example in Figure 1a corresponds to a state-state conditional

property: “The [window] should always be closed when

[weather] is raining”. It corresponds to an LTL formula

G(weather.raining → window.closed).

Interfaces for property specification: To not overwhelm

users, AutoTap lets them first pick from three template cate-

gories, as shown in Figure 3, and then customize that template

by selecting items from drop-down lists of devices, states, or

events. Users also select whether they desire certain situation

to always occur or never occur. This interface provides users

with the same vocabulary about devices, states, and events as

traditional TAP rule interfaces, as in Figure 1.

AutoTap’s user interface design focuses on common user

desires. It does not aim to cover all possible properties a

user might think of, or all properties AutoTap synthesis can

handle. As an alternative, AutoTap also allows expert users to

specify safety properties directly in LTL. For example, imagine

someone has a smart light bulb and wants the “red” color to

always be followed by “green” or “yellow.” This desire is not

supported by the user interface above, yet can be described in

LTL as G(color.red→ X(color.green ∨ color.yellow)) and

thus can be handled by AutoTap.

V. AUTOTAP TAP SYNTHESIS

Problem statement: Informally speaking, smart devices

continuously interact with unpredictable human users and

environments. Naturally, some interactions (sequences) might

cause undesirable device states or state sequences. AutoTap

aims to automatically synthesize TAP programs or program

patches so that all desirable situations remain intact (i.e.,

being accommodating) and all undesirable situations become

disabled or transient (i.e., being property-compliant).
Straw-man: One potential solution is to repeatedly attempt-

ing the following two steps, as illustrated by the dashed lines

in Figure 4: (1) propose a TAP program (patch); (2) try to

prove that this program guarantees satisfaction of the desired

properties, returning to Step 1 if not.

The second step can be done through model checking [21],

which typically uses a finite Büchi Automaton to represent

all possible executions of the system, checking if all these

executions satisfy a property φ by analyzing the automaton

graph. Unfortunately, given the large search space of potential

TAP programs, particularly when we synthesize programs

from scratch, how to conduct the first step is unclear.
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Fig. 4: AutoTap approach vs. straw-man approach

AutoTap approach: AutoTap takes a unique approach to

solving this problem in a general and systematic way. As

illustrated in Figure 4, it does not require iterative retries.

Step 1: Turn the given smart-device system, TAP rules (if

any), and the desired property φ into a Büchi Automaton A

accepting φ-violating executions, like what traditional model

checkers do internally.

Step 2: Figure out how to modify A so that all φ-satisfying

executions are kept, which guarantees being accommodating,

and all originally accepted (i.e., φ-violating) executions disap-

pear, which guarantees being property-compliant.
Step 3: Find valid TAP program(s) that can make the

automaton changes suggested at Step 2.

The first step is largely straightforward, but we need to care-

fully model timing-related properties and avoid unnecessarily

large automata. Section V-A explains how we do so.

The second step is very challenging at first glance. There

are innumerable ways to change an automaton A. It is hard to

know which changes are compliant, accommodating, and valid

(e.g., changes that require modifying property φ and device

specifications are invalid). Section V-B will present a simple

algorithm that identifies such compliant, accommodating, and

valid changes (i.e., a set of edges to cut in A), leveraging

a unique property of LTL safety properties. As Section IV

explained, the desired properties we commonly observed in

our first user study all map directly to LTL safety properties.

The third step, finding valid program changes1 that cor-

respond to a given automaton change, is challenging for

general programming languages. However, as we will explain

in Section V-C, it can be done in a systematic way for TAP.

A. Step 1: Model Construction

AutoTap’s inputs are: (1) safety properties φ in LTL, ob-

tained through the user interface presented in Section IV;

(2) TAP rules, if any; (3) specifications for every smart device

in the form of a transition system, as defined in Section II-B.

We expect device specifications to be provided once by device

manufacturers or tool developers like us, yet used by all device

users. Our experiments used the specifications from Samsung

SmartThings [35].

AutoTap’s baseline model construction follows traditional

model-checking techniques [36]. First, a transition system is

built for a set of devices together with their TAP rules, if

any (e.g., Figure 5). Some events in the transition system are

1AutoTap does not differentiate program synthesis from patch synthesis, as
the former is a special case of the latter when the original program is null.

Fig. 5: Transition system for RAIN and a Window. Statements

in parentheses are Atomic Propositions held in each state.

controllable (e.g. “turn on the light”), while others are not

(e.g. “stop raining”). This distinction is kept by AutoTap for

its synthesis phase.2 Then, this transition system is turned into

a Büchi Automaton As that accepts all executions allowed

in the smart-device system (e.g., Figure 6b). Next, AutoTap

applies Spot [37] to the LTL formula representing ¬φ to get

a Büchi Automaton A¬φ that accepts all executions violating

φ (e.g., Figure 6a). Finally, As and A¬φ are combined into a

Büchi Automaton A that accepts all φ-violating executions in

the smart-device system (e.g., Figure 7).

Our discussion below focuses on two techniques we devel-

oped for AutoTap beyond typical baseline modeling.

Device selection: To avoid unnecessary complexity, Auto-

Tap selects devices D related to the given property φ to model.

To do so, AutoTap first initializes D with all the devices that

appear in φ. AutoTap then iteratively expands D with devices

that can affect any device already in D until reaching a fixed

point. Here, AutoTap considers one device to affect another

device if these two both appear in a TAP rule r, with the

former in the trigger and the latter in the action.

Model timing information: AutoTap extends baseline

models to support timing-related propositions like “event e
happened within the past t (seconds)”, denoted as t#e, and

“ap has been true for at least t (seconds)”, denoted as t ∗ ap.

AutoTap’s property-specification interface supports both.

AutoTap first adds a count-down timer attribute timer(t#e)
or timer(t*ap) into the transition system. The countdown

starts at t, when e has just occurred, or when a system state

associated with ap has just appeared. It ends at 0, indicating

e has occurred or ap has been true for at least t seconds.

When the system reaches a state no longer associated with

ap, the t ∗ ap timer immediately flips to −1. Consequently, a

state is associated with a t#e proposition if the corresponding

timer is positive. It is associated with t*ap if the corresponding

timer is 0. Then, AutoTap introduces an environmental event

tick that counts down every positive timer uniformly. When

tick is applied to a state s, AutoTap finds the smallest value

of all the positive timers associated with s and counts down

every positive timer by that value. For example, if a state is

associated with three timers with values {0, 30, 100}, one tick
will direct the system to a state with these timers being {0,

0, 70}, and another tick will set all three timers to 0. This

count-down scheme helps AutoTap avoid unnecessary state-

2The device specification we used [35] contains such information: capabil-
ities with “commands” are controllable, while others can only be sensed.
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(a) LTL property:
¬G(RAIN.on →
Win.closed)

(b) Device system: Window + RAIN

Fig. 6: Büchi Automata of our running example.

space explosions without losing accuracy, as counting down

timers by smaller values will not change any timing related

propositions (e.g., {0, 30, 100} and {0, 25, 95} will have the

same set of time-related propositions).

Here, AutoTap uses its own design to handle timing-related

propositions for simplicity reasons: since AutoTap only cares

about two simple timed propositions t#e and t∗ap, using more

complicated timing logic like MTL [38] and more complicated

timed automata [39] will only add unnecessary complexity to

AutoTap property checking and rule synthesis.

B. Step 2: Patching the Automaton

The first step builds a Büchi Automaton A that accepts

all φ-violating executions on smart devices. If no execution

can be accepted by A, users’ desire φ is already guaranteed.

Otherwise, this second step figures out how to change A.

Task: We first clarify AutoTap’s task at this step by re-

viewing some related background on Büchi Automata. By

definition [36], an execution is accepted by a Büchi Automaton

if and only if its corresponding path on the automaton visits

every accepting-node set an infinite number of times. For

example, the automaton in Figure 6a has one accepting set

that consists of exactly one node, the double-circled one.

It accepts every execution with a prefix ending in a state

where RAIN.on and !Win.closed are true, which guarantees

visiting the double-circled node an infinite number of times.

Consequently, AutoTap must figure out how to change A

so that all (and only those) paths that infinitely visit A’s

accepting-node set disappear. There are several challenges.

First, the change has to be valid, doable through possible

additions or revisions of TAP rules. Naming accepting nodes as

un-accepting is invalid. Deleting an edge in A is usually valid,

as discussed in the next sub-section. Second, for arbitrary φ, it

is difficult to tell which edges we should cut. This edge-cutting

must not only eliminate every path that visits the accepting-

node set infinitely (i.e., property-compliant), but also keeps

intact every path that originally does not visit the accepting-

node set infinitely (i.e., accommodating).

Observation: AutoTap’s algorithm is based on a key ob-

servation: as long as φ is an LTL safety property, A has no

edge connecting an accepting node to an un-accepting node.

This observation holds because, as long as φ is an LTL safety

property, we can always find an A¬φ whose only accepting

node has a single edge pointing to itself with condition 1.

Fig. 7: Combined Büchi Automaton of the running example.

(The top is the original. The bottom is after adding a rule.)

Once a path reaches this node, it will be stuck in this node

infinitely,3 just like the double-circled node in Figure 6a.

This property of A¬φ then leads to the above observation

of A. The reason is that, by combining the smart-device

automaton As and the property automaton A¬φ, every node in

A is a cartesian product of two nodes, ns in As and nφ in A¬φ.

The accepting-node set of A consists of every node whose

corresponding node in A¬φ is an accepting node. Furthermore,

if there exists an edge from n1 to n2 in A, there must exist an

edge from n1¬φ to n2¬φ in A¬φ. Consequently, since there

is no edge connecting the accepting node back to any un-

accepting nodes in A¬φ, there must be no edge connecting

accepting nodes back to un-accepting nodes in A either.

Algorithm: AutoTap identifies all the edges that connect

an un-accepting node to an accepting node in A, informally

referred to as bridge edges, and suggests cutting all of them,

like the two edges in the middle of Figure 7.

This algorithm is simple, with complexity linear in the

number of edges in A.

This algorithm is compliant, preventing any property viola-

tions. The reason is that, after cutting all bridges, no execution

can ever touch accepting nodes, not to mention infinitely.

Consequently, all φ-violating executions are eliminated.

This algorithm is also accommodating, preserving all the

system behaviors that do not violate φ. Recalling Section V-B,

φ-satisfying executions will not go through any bridges. Since

our algorithm only removes or redirects bridges, yet not other

edges, those executions are untouched.

C. Step 3: TAP Synthesis

At this third step, AutoTap needs to identify additions of,

or revisions to, TAP rules that can delete the bridges in A

identified in Step 2. Mapping a Büchi Automaton change to

a program-code change is challenging for most imperative

programming languages, but is fortunately tractable for TAP.

Task: We first clarify AutoTap’s task by reviewing some

background on Büchi Automata.

In A, which is combined by the smart-device automaton

As and the property-negation automaton A¬φ, every edge e :

3Due to space constraints, we cannot include a complete formal proof.
Informally, given a Büchi Automaton of an LTL safety property, all nodes
corresponding to the last state of a violating prefix of the property can be
replaced with an accepting node with an edge 1 pointing to itself. Those
nodes can be combined, giving us the Büchi Automaton A¬φ we desire.
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Fig. 8: Device automaton (a) changed to (b) by adding a rule.

n1
ap−→ n2 is combined by an edge es : n1s

aps−−→ n2s in

As and an edge e¬φ : n1¬φ
ap¬φ−−−→ n2¬φ in A¬φ. ap is an

atomic proposition (AP) set describing what is accepted by

e, and e only accepts what is accepted by both es and e¬φ.

If aps conflicts with ap¬φ, edge e would disappear from A.

To ease the discussion, we will informally refer to ap as the

post-condition of n1 and the pre-condition of n2.

Since the property φ and the corresponding A¬φ cannot

be changed, AutoTap changes every bridge e’s corresponding

edge es in As, which we also refer to as a bridge, removing

es or changing its aps so that e can disappear from A.

Example: Before presenting AutoTap’s general algorithm,

we use a concrete example to demonstrate how adding a

TAP rule can change the smart-device automaton As and

correspondingly make some edges disappear in A.

Figure 8a is part of the automaton As in Figure 6b that

models the weather (RAIN) and a smart window (Win) with

no TAP rules. We can focus on node 1©. Its preceding edge

indicates a pre-condition when it was not raining and the

window was open. Its succeeding edge 1© @RAIN :ON−−−−−−−−−−−−→
{RAIN.on, Win.open}

2©
indicates that the rain starts (@RAIN:ON) with the post-

condition being raining and window staying open. Note that

this post-condition AP-set is the same as that of the bridge

in A¬φ, illustrated in Figure 6a. Consequently, 1©→ 2© is a

bridge in As that contributes to the red bridge edge in the

combined automaton A in Figure 7.

Figure 8b shows the effect of adding a TAP rule. As high-

lighted in the figure, this rule’s triggering state Rain.off
AND Win.open exactly matches the pre-condition of

node 1©. Its triggering event @RAIN.ON and rule action

@Win.OFF exactly match the events associated with edge 1©
→ 2© and edge 2©→ 4©, respectively. Consequently, immedi-

ately after 1©→ 2© takes place, this rule would automatically

push the system through the 2©→ 4© edge, essentially making

the 1©→ 2© edge transient, marked by “T ” in Figure 8. By

changing the nature of 1©→ 2©, its AP-set no longer matches

with that of the bridge edge in Figure 6a. Consequently, the

corresponding bridge edge in A (i.e., the red edge in Figure

7) will disappear.

1) AutoTap fixing algorithm: We first consider a simple

case where the bridge edge es in As has only one predecessor

and one successor, as in Figure 9a. To cut its corresponding

bridge e in the combined automaton A, we simply need to add

a TAP rule “IF e1 WHILE AP 1 THEN e2”, where e1 is the

event associated with the bridge, AP1 is the pre-condition of

Fig. 9: Generalization of adding TAP rules.

the bridge, and e2 is the event associated with the succeeding

edge. Like the example in Figure 8, this new rule will make

states associated with es transient, no longer able to combine

into e. That is, bridge e in A will be successfully cut.

Refine trigger state: The baseline algorithm uses AP1, the

bridge’s pre-condition, as the trigger state of the synthesized

rule. In fact, it does not have to be. We want the new rule

to be triggered (1) at an original bridge edge, but (2) not at

any non-bridge situations. The former implies that the rule’s

trigger-state condition should be weaker than the bridge’s

pre-condition. For example, since the bridge’s pre-condition

in Figure 8 is RAIN.off AND Win.on, the trigger state

can be RAIN.off, or Win.on, or TRUE. The latter implies

that, in other places where the trigger event could happen,

the pre-conditions should conflict with the rule’s trigger state,

preventing the rule from being unnecessarily triggered.

To achieve this goal, AutoTap processes not only the

bridge’s pre-condition AP1, but also pre-conditions AP ′
i as-

sociated with all other cases where the trigger event could

occur. When there are multiple expressions satisfying the

above requirements, we turn this into a hitting set problem.

We use a greedy algorithm to find the smallest one.

Refine the triggered action: The baseline algorithm uses

e2 as the action of the synthesized rule because the bridge

edge only has a single successor and hence e2 is the only

possible action taken in Figure 9. When the bridge has multiple

successors with multiple possible succeeding actions, AutoTap

filters out two types of actions: (1) actions that cannot be

initiated by smart devices (i.e., non-controllable events like

“stop raining” discussed in Section V-A), and (2) actions

causing other property violations. If multiple actions pass the

above filtering, the only ranking AutoTap does currently is

to downgrade an action that reverts the trigger event. For

example, if the trigger event is turning on the air conditioner

(AC), AutoTap will not suggest a rule that turns off the AC

unless there are no other choices.

Revise existing rule: When the bridge edge es is associated

with an event that is automatically triggered by an existing

TAP rule r, the baseline patch would immediately trigger one

TAP rule after another. A better solution is to revise r so

that r is no longer triggered in this bridge situation, yet is

still triggered in other situations. To achieve that, we split the

general rule r into many edge-specific TAP rules by narrowing

r’s triggering state to only accept the pre-condition of every

specific edge. Then, we simply delete the edge-specific rule

associated with the bridge edge and keep the remaining ones,
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assuring minimum impact to the system’s behavior.

Rule merging: AutoTap can merge TAP rules with the same

trigger event and rule action, or even similar trigger states,

to make the program easier to understand without changing

system behaviors. We omit the details due to space constraints.

VI. EVALUATION

A. User Study 2: Specifying Rules vs. Specifying Properties

To evaluate usability questions regarding whether AutoTap’s

property-driven approach enables novice users to express their

intent correctly and easily, we conducted a second online

user study. In this study, we compared participants’ ability

to express a series of reference tasks as TAP rules (using

a traditional rule-based interface) and participants’ ability to

express the same series of tasks as properties (using AutoTap’s

interface). We chose a rule-based TAP interface as our point

of comparison because such interfaces are widely used [8] and

prior usability studies have shown that even novice users can

create TAP rules successfully [9], [13], [28], [40].

Methodology: We again recruited participants from the

USA on Mechanical Turk, though for this study we did not

require that they had previously used a smart device. We

randomly assigned each participant to one of the following

interfaces, which they used for the duration of the study:

• Rules: Participants created TAP rules using a web inter-

face modeled closely after IFTTT (see Figure 1a).

• Properties: Participants created properties using Auto-

Tap’s interface (see Figure 1b)4.

The interfaces used identical events and states. In other words,

if the rule interface had an “it begins to rain” event grouped

under “weather,” so did the property interface.

Participants began the study by completing a short tuto-

rial on their assigned interface. The tutorial explained key

concepts (e.g., the difference between events and states) and

included attention-check questions. These questions automat-

ically pointed out the right answer for anything participants

answered incorrectly. We designed the two tutorials to have

parallel structure and share examples as much as possible.

Participants then used their assigned interface to complete 7

tasks randomly selected (and randomly ordered) from a larger

set of 14. We developed each of the 14 tasks based on desired

properties expressed in Study 1. However, we rewrote the tasks

so that the wording of the task would not make obvious which

property template should be used. An example task follows:

You have a Roomba robotic vacuum cleaner in your home, and

you’ve given it a schedule for when it should clean the floor.

However, when the curtains in your home are open, the drawstring

lays on the floor and often causes the Roomba to get stuck on

the string. You want to make sure this does not happen again.

4At the time of the study, our interface let users specify positive Event-State
Conditional properties through an “event E should always happen while state
S is true” template. Afterwards, we replaced “always” with “only” to avoid
ambiguity, as shown in Table I and Figure 3. For participant answers using
this “always” template, we interpret them as “E should be triggered while S
becomes true,” in this way judging three participants’ answers to be correct.

Fig. 10: Correctness of properties and rules by task. P-values

are from Holm-corrected χ2 tests comparing the proportion of

statements correct when written using rules versus properties.

This task could be completed successfully with the rules “IF

Roomba becomes on WHILE the curtain is open, THEN close
the curtain; IF curtain becomes open WHILE Roomba is on,

THEN turn off Roomba” or the property “Roomba is on should

NEVER be active WHILE curtain is open”. We constructed the

set of tasks so that at least two tasks could be completed with

each of the 7 property templates. Since many properties can

be expressed in multiple ways, though, most templates could

be used for more than two tasks.

After each task, participants rated their confidence in their

submission and perception of how difficult it was to complete

the task on five-point scales. They also had the opportunity to

explain, in free text, any corner cases they had considered.

After completing all 7 tasks, they filled out demographics

questions and the standardized System Usability Scale.

We analyzed our data as follows. Since many tasks could

be completed in multiple ways, two researchers indepen-

dently coded each response as “correct,” “partially correct,”

or “completely incorrect,” meeting to resolve discrepancies.

The “partially correct” category was used when a response did

not address a corner case. To compare categorical data (e.g.,

the distribution of correct/incorrect responses), we used the χ2

test. To compare ordinal data (e.g., confidence) we used the

Mann-Whitney U test. To correct p-values for multiple testing,

we used the Holm method within each family of tests.

A key limitation is that the 14 tasks were not intended to

be a representative sample of all desired behaviors in TAP

systems. Because the tasks were based in part on Study 1,

they likely over-represent behaviors that can be expressed as

properties. While our study can show whether some tasks are

easier to express as rules or safety properties, the proportion

of tasks for which this is the case is not generalizable.

Results: A total of 81 Mechanical Turk workers participated

in Study 2. Three gave nonsensical free-response answers,

leaving 78 valid participants.

For all 14 tasks, the percentage of correct responses was

higher for AutoTap’s property-creation interface than for the
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TAP rule interface. This difference was statistically significant

for five of these tasks (the bolded p-values in Figure 10). The

tasks for which we observed significant differences gener-

ally required multiple rules to capture all corner cases. For

example, in the aforementioned Roomba task (Task 11 in

Figure 10), only one property is needed: “the window curtains
are open SHOULD NEVER BE ACTIVE WHILE the Roomba
is on.” AutoTap automatically generates rules to satisfy this

property in all situations. However, two rules are required. One

possibility is a rule closing the curtains whenever the Roomba

turns on, and another turning off the Roomba whenever

the curtain is opened. Under 5% of participants wrote both

of these rules. While over 55% of participants who used

the property interface solved this task, one particular error

appeared commonly. The property “the curtain is open AND

the Roomba is on SHOULD ALWAYS OCCUR TOGETHER”

inadvertently binds the two states, causing the Roomba to start

anytime the curtain is opened, misinterpreting the intent.

Participants often performed similarly with the rule and

property interfaces when both a single rule and a single

property sufficed. For example, Task 3 (preventing a room

from getting too hot) required only one of each. Participants

performed similarly with either interface. AutoTap’s prop-

erty interface was more successful when multiple rules were

needed to capture corner cases. Two tasks caused participants

great difficulty, even for properties. Task 7 required either two

properties or six rules. All participants missed corner cases.

Task 13 dealt with delaying vacuuming when guests were over,

requiring either two properties or two rules. Most participants

neglected to start the vacuuming after a delay.

We compared the System Usability Scale scores provided

by users to the rule interface and AutoTap property interface.

We found both interfaces to be “usable”, with mean scores of

70.4 and 63.2 respectively. This difference was not statistically

significant (Mann-Whitney U = 590.5, p = .052).

B. TAP Program Synthesis

We further check if AutoTap can synthesize TAP rules from

scratch to accomplish all 14 tasks in this user study. In a less

challenging version, one of the authors (representing an expert

user) wrote properties for every task, and AutoTap successfully

synthesized TAP rules for all tasks.

In a more challenging version, we used all the correct prop-

erties written by user-study participants (158 sets of properties

in total, with each from one participant targeting one task).

Sets contain 1.83 properties on average. These properties were

transformed into LTL formulas following Table I. AutoTap

successfully generated TAP programs for 157 out of the 158

property sets, and all are guaranteed to satisfy corresponding

properties. The only set that AutoTap failed to synthesize is

for “When Bobbie is in the kitchen, the oven door should

be closed” and “When Bobbie is in the kitchen, the oven

door should be locked.” If Bobbie enters the kitchen when

the oven door is open, the system needs to trigger two actions

immediately, both closing and locking the oven door. AutoTap

fails to find a solution because it currently only considers

TABLE II: How AutoTap fixes buggy TAP programs. Sub-

scripts are the # of cases AutoTap patches revert the mutation.

Source #buggy TAP sets Successful Fixing

mutation: change trigger event 5 41
mutation: add condition 7 77
mutation: change condition 5 51
mutation: change action 4 30
mutation: delete rule 4 44

Total 25 2313

using a single action to redirect each bridge edge in the Büchi

Automaton. Future work can extend AutoTap to consider using

multiple actions to redirect a bridge, addressing this limitation.

We also checked how many TAP program candidates Au-

toTap generates for one property set. On average, AutoTap

generates 2.13 candidates for one set, with a median of 1. The

largest set contains 27 candidates. This is a special case as the

program consists of three rules. For every rule, the potential

action could be opening any one of three windows in a house.

Even in this case, end users will not face 27 candidates at

once. They will only need to make a one-out-of-three choice

three times. As all candidates satisfy users’ desires, AutoTap

can also randomly pick one candidate.

C. TAP Program Fixing

We randomly take 10 correct TAP program written by user-

study participants and apply a wide variety of mutations to

them, as shown in Table II. AutoTap successfully fixes the

buggy TAP program to satisfy the given property in 23 out

of 25 cases, showing its generality across different types of

TAP bugs. The two cases where AutoTap fails are like the

following. The task is “the thermostat should never be above

80◦F”, and the rule is “IF thermostat goes above 80◦F, THEN

set thermostat to 81◦F”, with the action randomly mutated

from “set thermostat to 75◦F”. Since the buggy rule triggers

itself recursively and AutoTap does not regard intermediate

triggering states as violating properties, AutoTap could not

identify the bridge edges and hence did not repair the program.

As also shown in Table II, AutoTap often generates a

patch to revert the add-condition mutation or the delete-rule

mutation, but not for all types of mutations. The reason is that

AutoTap only fixes the part of a TAP program that violates

the safety property. If a rule becomes a non-violating different

rule after mutation, AutoTap will not revert the mutation back.

D. Handling Multiple Properties

Properties that share the same capabilities of devices some-

times interfere with each other. We evaluated AutoTap on

7 scenarios where such things happened, with each scenario

combining different property sets in our user study together.

For example, one scenario could contain two properties “the

living room window, the bedroom window and the bathroom

window should never be closed together (φ)” and “the living

room window should always be closed while it is raining (ψ)”.

AutoTap simply combines different properties φ and ψ
together as φ ∧ ψ. It successfully handles all scenarios by
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generating TAP programs to satisfy every multi-property sce-

nario unless the properties conflict with each other. In the latter

case, AutoTap correctly reports that no TAP rules can possi-

bly guarantee all the properties. One example of conflicting

properties is “the window should always be open” and “the

window should never be open when the air conditioner is on.”

VII. THREATS TO AUTOTAP’S VALIDITY

AutoTap is not guaranteed to generate patches for every LTL

safety property. Patches are generated by the current prototype

of AutoTap when (1) bridge edges are found, and (2) the

bridge can be cut with a single TAP rule. The 1 out of 158

cases where AutoTap fails to synthesize a TAP program in

Section VI-B violates the second assumption. The 2 out of 25

cases where AutoTap fails to fix a TAP program in Section

VI-C violates the first assumption. Both limitations can be

fixed by future extensions to AutoTap. Furthermore, the first

assumption does not hold if every state is accepting, meaning

that no matter what actions we take in the system, we cannot

prevent it from triggering a violation. The second assumption

does not hold when there are no controllable actions to escape

from a property violation. That is, only events out of our

control (e.g, changing the weather) help. These scenarios occur

when the system lacks critical functionality or the property

itself is conflicting, which is out of scope for AutoTap.

We focus on TAP instead of other smart-device languages

mainly because TAP is widely used [8] and easy for end-

users to understand [9]. AutoTap is not limited to TAP.

Cutting bridge edges that cause property violations can be

accomplished in other automation languages, too. In fact, we

feel that some bridges might be better fixed by “disabling

rules” that can conditionally disable actions.

AutoTap currently does not consider issues like actions

failing to complete or not taking effect immediately [14].

Handling these issues requires device manufacturers to provide

a more accurate model of the system. Furthermore, users

can still make mistakes in writing properties. Their properties

might not reflect their real intent. Properties could even conflict

with each other, which AutoTap does not currently resolve.

VIII. RELATED WORK

TAP program bug-detection and fixing: AutoTap is in-

spired by previous work [21], [22] that applied formal methods

to detect violations to LTL or CTL policies in TAP programs.

Previous work searches potential TAP patches by changing

trigger-states of existing TAP rules in three ways: (1) deleting

a conjunction clause; (2) adding a conjunction clause that

appears in the LTL/CTL policy; or (3) modifying numerical

parameters. Consequently, they cannot synthesize patches that

change TAP rules’ trigger events or rule actions, not to mention

creating new TAP rules from scratch. The end-user property-

specification interface of previous work [22] only accepts

“[states] shall not happen”, missing many common desires.

TrigGen [23] detects a specific type of bug in OpenHAB

TAP programs [4] – missing triggers. It works by checking

what events not included in the trigger could possibly affect the

rule conditions. Researchers have also developed techniques

for either crowdsourcing TAP rules [28] or synthesizing TAP

rules from natural language [26], [27]. Our synthesis and repair

techniques are complementary to those techniques.

Program synthesis using formal methods: Synthesizing

a program from a formal specification, or LTL synthesis,

has been an open problem [34]. Most work in this area

synthesizes reactive systems based on formal specifications

[18]–[20], [34]. AutoTap is related to, but also fundamentally

different from, such work. AutoTap needs to synthesize TAP

rules, not just finite state models, and needs to accommodate

for an existing finite state model (i.e., the smart-device sys-

tem model). Degiovanni et al. proposed an algorithm that

synthesizes control-operation programs, which have similar

syntax as TAPs, to satisfy formal requirements [25]. Due to

the different usage contexts, their algorithm, which uses SAT

solvers to iteratively resolve counter-examples by changing

existing rules’ trigger states, cannot add new rules or preserve

existing property-compliant behaviors.

Property-specification interfaces: Past work in require-

ments engineering investigated how to let engineers specify

desired software properties. KAOS provided guidelines that

helped engineers gradually summarize or break down vague

requirements into deployable specifications [41]. PSPWizard

provided an interface where developers could choose from a

comprehensive list of templates, fill in the blanks of the chosen

template, and then have their inputs translated into formal

specifications [17]. In contrast with those efforts, we employed

a user study to identify commonly desired properties in smart-

home scenarios. We then designed property-specification tem-

plates for expressing those properties through a compact

graphical interface. AutoTap users specify properties through

only mouse clicks, which is suitable for non-technical users.

IX. CONCLUSIONS

With the wide adoption of smart devices, helping users

correctly express their intent for how these devices should

interact is crucial. AutoTap helps users by allowing them

to directly specify properties they wish to hold, rather than

writing rules for exactly how devices should behave in order

to satisfy those properties. To achieve this goal, we first

conducted a user study to map the properties users commonly

desire. We then designed an easy-to-use interface for property

specification and a technique supported by formal methods to

automatically synthesize TAP programs or program patches

that guarantee the system satisfies the specified properties.
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