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(a) Differences in text. (b) Differences in outcomes. (c) Differences in abstract properties.

Figure 1: These snippets of TAP diff interfaces we designed illustrate the traditional approach of showing differences in pro-
gram text (left) and our more novel approaches of showing differences in program outcomes (center) and properties (right).

ABSTRACT
Trigger-action programming (if-this-then-that rules) empowers
non-technical users to automate services and smart devices. As a
user’s set of trigger-action programs evolves, the user must rea-
son about behavior differences between similar programs, such
as between an original program and several modification candi-
dates, to select programs that meet their goals. To facilitate this
process, we co-designed user interfaces and underlying algorithms
to highlight differences between trigger-action programs. Our novel
approaches leverage formal methods to efficiently identify and vi-
sualize differences in program outcomes or abstract properties. We
also implemented a traditional interface that shows only syntax
differences in the rules themselves. In a between-subjects online ex-
periment with 107 participants, the novel interfaces better enabled
participants to select trigger-action programs matching intended
goals in complex, yet realistic, situations that proved very difficult
when using traditional interfaces showing syntax differences.
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1 INTRODUCTION
Trigger-action programming (TAP) is a paradigm for end-user de-
velopment and composition in which users create rules of the form
“IF [trigger] WHILE [conditions] THEN [action]” using a graphi-
cal interface. For example, the rule “IF Alice falls asleep WHILE
it is nighttime AND the front door is unlocked THEN lock the
front door” instructs the home to lock the front door when Alice
falls asleep at night. We term a set of TAP rules a TAP program.
TAP has shown promise in empowering non-technical users to
connect and automate Internet-of-Things devices and online ser-
vices [46]. It underpins end-user automation in domains including
social media [44], business [49], scientific research [7, 8], and smart
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homes [30, 43, 47]. Services that support TAP include IFTTT [19],
Microsoft Flow [32], Zapier [49], and Mozilla WebThings [13, 31].

TAP is intuitive and easy to use [14, 46], but it is also vulnerable
to reasoning errors [4, 17, 48]. Complex interactions between rules
and device states can hinder users from knowing precisely when
the TAP system would initiate an action [4, 48]. Increasingly large
deployments will exacerbate TAP complexity by requiring many
rules to satisfy potentially conflicting requirements. This complex-
ity makes it challenging for users to write rules that match their
intent or to debug programs, leading to problems ranging from
discomfort to wasted resources to security risks.

During the development and maintenance of TAP programs,
comparing similar TAP programs is a common and crucial task. We
use the term variants to refer to highly similar programs being
compared. When a user is iteratively tweaking or debugging their
program either to add new behaviors or to fix bugs, the original
program and the tweaked programs the user creates are variants.
Because TAP programs can be long (contain many rules) or be
complex in the degree to which different rules act on the same
device, users might modify a program and struggle to determine
whether they have achieved their goal. Similarly, taking advantage
of ecosystems of shared TAP programs [19], users might merge
programs created by others into their own existing programs, won-
dering how the variant reflecting the combined programs compares
to the original. Furthermore, researchers have recently created tools
for automatically synthesizing TAP programs [25, 50, 51]. These
methods often output multiple candidate variants from a single
input, leaving the user wondering which variant to choose.

We further illustrate instances where users may wish to compare
TAP programs with the following vignette. Suppose Alice uses Pro-
gram A (Figure 2) for her home. She expects the door to be locked
whenever she is asleep or whenever it is nighttime. However, she
sometimes notices that the door is unlocked at night, making her
concerned about the safety of her home. Alice decides to fix this
problem by modifying Program A into Program B (Figure 2). With
our tool, she can now compare the two programs to determine
whether Program B resolves the issue Program A had. Her visiting
mother distrusts Program B and instead proposes Program C (Fig-
ure 2). Alice can again compare Program B with Program C to see
that both programs behave identically.

Tohelp end-users correctly reason aboutTAP,we designed
and evaluated a set of novel user interfaces, powered by for-
mal analysis of TAP programs, that compare TAP programs
not just syntactically, but semantically. Although our methods
can be applied to any arbitrary set of programs, we focus on highly
similar variants because the number of differences will be relatively
small and therefore tractable to surface to users. While previous
work sought to improve TAP understanding by visualizing previous
and potential smart home behaviors [9, 28] or explaining certain
types of programming errors [10, 11, 26], our interfaces helps users
more broadly understand the effects of changes while modifying
programs or while selecting among variants to meet their goals.

Traditional diff1 interfaces like those on GitHub or Google Docs
compare program text [2, 24, 36, 42]. Our semantic-diff interfaces

1Many tools for comparing differences use the name “diff,” by analogy to the Unix diff
utility [18]. We call any comparison interface a “diff” interface.

differentiate programs based on situational outcomes, general prop-
erties, or user selection of desired outcomes. Figure 1 highlights these
different ways of reasoning about the differences between example
Programs A and B (Figure 2). Furthermore, whereas a traditional
text-diff interface would highlight syntax differences between Pro-
grams B and C (Figure 2), our outcome-diff interface would show
that the programs actually behave identically. Because these novel
semantic-diff interfaces are driven by our formal analysis approach
that leverages the relatively small state space of TAP programs,
they are specific to TAP, although the concepts can perhaps be
adapted to other constrained applications.

To evaluate the effectiveness of these interfaces, we conducted
a 107-participant online experiment. We randomly assigned each
participant to an interface—either one of our diff interfaces or a
control interface showing just the programs themselves. While the
control interface and traditional text-diff interface enabled partici-
pants to identify differences in short and straightforward programs,
our novel semantic-diff interfaces significantly outperformed those
interfaces when participants aimed to identify differences between
long and complex programs. Notably, our novel interfaces focused
on outcomes helped participants accurately complete a wide variety
of tasks, and our interface focused on high-level properties helped
participants overlook low-level details when appropriate. While
(compared to our controls) our novel interfaces helped a signifi-
cantly larger fraction of participants correctly identify differences
between long, complex programs, the time it took to complete tasks
did not differ significantly across interfaces.

The paper proceeds as follows. Section 2 defines our terminology
and assumptions, while Section 3 presents related work. We moti-
vate and describe the interaction design of our user interfaces in
Section 4, and we then describe our formal model of TAP systems
and novel algorithms underpinning and enabling these interfaces
in Section 5. We present the methodology of our user study in
Section 6 and the results in Section 7. In Section 8, we discuss
implications and deployment considerations for TAP systems.

2 TERMINOLOGY AND DEFINITIONS
To facilitate our presentation of this work, we define the following
terms and note the following assumptions. As mentioned in Sec-
tion 1, we term a set of TAP rules a program. We term the related
programs being compared with our interface variants.

A factor is any element relevant to the smart home system, in-
cluding smart devices, the users, and the environment (e.g., weather,
time of day). An attribute is an aspect of a factor. Example at-
tributes of a user are whether they are asleep and whether they are
at home. We will refer to the pair of a factor and an attribute as a
variable (e.g., “whether the front door is locked” and “whether Al-
ice is asleep”). A state is a statement that is true about the variable
over some period of time (e.g., “Alice is asleep”), while an event
is an instantaneous change in the variable’s state (e.g., “Alice falls
asleep”). A smart home system state is the set of all variable
states in an environment at that point in time.

In its simplest form, a TAP rule takes the form “IF [trigger] THEN
[action].” The action is an event that can be automated, such as
locking a smart door lock. The trigger activates the action. Out
of several trigger types, we use event-state triggers in this work
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Program A:
(1) IF Alice falls asleep THEN lock the

front door.
(2) IF it becomes nighttime THEN lock

the front door.
(3) IF the front door unlocks WHILE

Alice is asleep AND it is nighttime
THEN lock the front door.

Program B:
(1) IF Alice falls asleep THEN lock the front

door.
(2) IF it becomes nighttimeTHEN lock the front

door.
(3) IF the front door unlocks WHILE Alice is

asleep THEN lock the front door.
(4) IF the front door unlocksWHILE it is night-

time THEN lock the front door.

Program C:
(1) IF Alice falls asleep WHILE it is daytime

THEN lock the front door.
(2) IF it becomes nighttimeTHEN lock the front

door.
(3) IF the front door unlocks WHILE Alice is

asleep THEN lock the front door.
(4) IF the front door unlocks WHILE Alice is

awake AND it is nighttime THEN lock the
front door.

Figure 2: A running example. Programs A, B, and C all have different rules, but only Program A behaves differently from the
others. ProgramA allows the front door to unlock and stay unlockedwhenAlice is awake at night or when she is asleep during
the day. Meanwhile, Programs B and C both ensure the front door remains locked while Alice is asleep and/or it is nighttime.

because prior work [4, 17, 38] found this type to be most intuitive
for TAP. Event-state triggers consist of an event and zero or more
states that must all be true to trigger the action. Note that we refer
to just the event part of an event-state trigger as the trigger and
the states (if any) as the set of conditions, such that a rule may
have the form “IF [trigger] WHILE [conditions] THEN [action].” We
refer to the trigger, the conditions, and the action as rule subparts.

For rules whose action reverses the trigger (e.g., “IF the front
door unlocks THEN lock the front door,” as in Figure 2), we assume
the rule prevents the trigger from occurring, rather than allowing
the trigger to proceed and then immediately reversing it. We made
this decision to minimize confusion about whether an action occurs.

3 RELATEDWORK
Reasoning Errors in TAP. Although users find TAP easy to use,

they are susceptible to errors in reasoning. Yarosh and Zave [48]
found users struggle to reason about smart home feature interac-
tions and determine rule outcomes, partially inspiring our outcome-
based interface. Huang and Cakmak [17] identified errors in users’
mental models of different types of TAP triggers and behaviors,
including in reasoning about the temporality of different behav-
iors. Brackenbury et al. [4] identified additional errors, such as
misconceptions about actions automatically reverting. In visits to
households with smart home systems, Brush et al. [5] noted some
users find TAP difficult to debug and had stopped using such rules or
resigned themselves to living with the bugs. More recently, Palekar
et al. [38] concluded many current TAP interfaces are not foolproof
against bugs. Some of these bugs result frommisalignment between
a user’s intent and the program they write; these gaps cannot be
automatically inferred. Users might omit triggers, conditions, or
actions they had in mind, motivating our approach to co-design diff
interfaces and underlying algorithms to highlight TAP outcomes.

End-User Programming Support. Prior work has developed
tools to support various end-user programming paradigms [21, 33].
Well-known examples include Whyline for the Alice language [22],
which anticipates users asking “why a bug has occurred” by offering
explanations upon the appearance of bugs. Even though end-user
program variants are the natural products of program evolution and
modification, comparatively less work has focused on them. Kuttal
et al. [23] investigated end-user programming variant management
practices. They focused on managing multiple variants, whereas
we identify and present differences between variants.

Some recent interfaces help users reason about TAP and smart
home automation, though we are the first to highlight differences in
outcomes or properties across TAP variants. EUDebug [10] and My
IoT Puzzle [11] identify TAP bugs—specifically inconsistent rules,
redundant rules, and rules that cause loops. ITAD [26] aids end-user
TAP debugging by simulating program behavior and identifying
rule conflicts. We instead leverage algorithms and visualizations
to identify and explain variations and differences across programs.
Doing so is critical to minimizing gaps between a user’s intent and
their TAP programs. Our interfaces support debugging, as well as
modifying or selecting between candidate programs. EUDebug [10],
My IoT Puzzle [11], and our work all incorporate flowcharts in some
cases. The prior work focuses on illustrating the events at each step,
whereas our flowcharts focus on the effects of the rules in diverging
outcomes among program variants.

Other work helps users better understand aspects of their smart
home’s rules. Casalendar [28] visualizes past events caused by the
user’s TAP programs in a calendar interface, contextualizing pro-
grams’ effects relative to the user’s schedule. Castelli et al. [6]
developed a dashboard system that helps users interpret logged
sensor readings to better understand energy consumption. FORT-
NIoT [9] uses simulations to predict when the rules of a TAP pro-
gram might execute in the future under certain assumptions, but
does not support comparing programs. We instead help users com-
pare TAP variants in terms of their diverging future behaviors.
Although FORTNIoT and our Outcome-Diff: Flowcharts interface
both visualize system behavior under a concrete situation, we ana-
lyze state machines representing multiple TAP variants and com-
prehensively identify all situations leading to different behaviors.
Common software engineering activities, namely requirements def-
inition, specification, code reuse, verification, and debugging, also
occur (sometimes implicitly) in end-user programming [21]. Our
interfaces assist TAP users in the latter three activities.

Diffs in Other Domains. Tools in other domains, often mod-
eled after the Unix diff utility [18], also present text differences for
program versioning or collaborative writing [34]. Interface exam-
ples include the “split diff” and “unified diff” views on GitHub [36],
the version history interface on Google Docs [42], and the online
tool Mergely [39]. These tools typically either present variants
side-by-side with differences aligned (an example is shown in our
supplementary materials [53]) or superimposed. Surprisingly little
work has evaluated these approaches’ usability. Other work ana-
lyzes software similarity for non-user-facing applications, such as
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detecting code reuse [16, 20], plagiarism [35], or clustering similar
student programs for large classes [15]. Some work uses neural
networks to measure functional similarity [52].

Work on supporting student programmers has extracted and
visualized semantic differences as well, although it has not been
applied to TAP. TraceDiff [45] dynamically extracts trace differ-
ences between an incorrect student program and a similar, correct
solution. Although its theme of visualizing behavior difference
is similar to our Outcome-Diff: Flowcharts, TraceDiff relies on a
predetermined suite of test cases as program inputs to check for
behavioral differences. We instead automatically identify inputs
(system state and events) from the transition systems that would re-
sult in behavioral differences. We also visualize outcome differences
as isolated steps, one per discrete situation, as opposed to a series of
steps over a period of time as a trace. AutomataTutor [12] provides
high-level hints for, among other aspects, syntactic mistakes in
deterministic finite automaton (DFA) construction by identifying
the DFA edit distance [1] from the student’s incorrect solution to a
correct solution. It provides counterexamples to demonstrate errors
in the incorrect solution. Our Property-Diff algorithm also extracts
high-level information about transition systems, but we focus on
unreachable nodes and self-transitions to identify statements about
what can always or never happen in the system. We do not leverage
all differences between the graphs, nor make statements about what
the system can accept.

4 DIFF-BASED USER INTERFACES
In this section, we present our interfaces and describe their goals
and interaction design. Section 5 complements this section by de-
scribing the algorithms underpinning these interfaces. We first
discuss our control conditions, Rules and Text-Diff . The former
shows just the programs themselves, while the latter highlights
syntax differences. We then describe our semantic-diff interfaces
that emphasize TAP differences beyond syntax. We present two
interfaces that visualize differences in behavior outcomes between
variants (Outcome-Diff: Flowcharts and Outcome-Diff: Questions)
and one that compares abstract properties guaranteed by variants
(Property-Diff ). For each interface, we show how it compares Pro-
grams A and B from our running example (Figure 2).

4.1 Control Conditions
The Rules interface displays each program individually (Fig-
ure 3). Existing systems show trigger-action programs to users
individually, so this approach serves as a control condition against
diff interfaces. We expected this traditional interface to be sufficient
for short, simple variants. A dropdownmenu at the top allows users
to toggle which program they see. Each row lists a rule with its
subparts (trigger, conditions, and action) separated into columns.

The Text-Diff interface displays programs side-by-side. It
highlights rules that differ, as in traditional diff interfaces
(Figure 4). We expected Text-Diff to help contrast TAP variants
that have a small number of key differences. For example, if the
differences are simple and independent from the other rules (e.g., if
the differences concern the TV and lights, while all other rules relate
to the front door lock and whether Alice is asleep), we expected

Figure 3: Rules of Program A (left) and Program B (right)
from Figure 2. Dropdownmenus toggle the program shown.

Text-Diff to be sufficient. Unfortunately, for realistic and practical
TAP applications, the text of programs can differ substantially.

We chose Text-Diff as a control condition to represent existing
diff tools. We piloted several implementations representative of
popular tools like GitHub’s “split diff” and “unified diff” [36], as
well as Google Docs version history changes [42]. Pilot participants
preferred the “split diff” design, so we adopted it as our final design.

Like GitHub’s “split diff,” our Text-Diff describes how one can
modify the first variant to become the second. Rules unique to the
first variant are “deleted” (shown with a minus sign and red back-
ground). Rules unique to the second variant are “added” (with a plus
sign and green background). The plus and minus signs mitigate the
potential inaccessibility of a red/green color scheme to colorblind
users. We also bold the text differences. A rule in the first variant is
instead “modified” into a rule in the second if they are similar. We
align such rules on the same row and show precise differences with
a darker red/green background. In Figure 4, the third rule on the
left is “modified” to become the third rule on the right by removing
“AND it is nighttime.” Another rule, “IF front door unlocksWHILE it
is nighttime THEN lock the front door,” is “added” as the fourth rule
on the right. When there are more than two variants, dropdown
menus let users select which two to compare.

We redesigned parts of GitHub’s “split diff” approach to suit TAP.
For a rule to be considered “modified,” we defined that they must
differ in exactly one subpart. To reduce confusion from misaligned
rules, we also sorted the rules of the second variant relative to
the first. Unlike traditional software or text documents, trigger-
action programs are sets of rules in which the order is flexible. If
two variants have identical rules in different orders, a traditional
code-diff interface would thus highlight them as different.

4.2 Outcome Differences
A shortcoming of traditional diff interfaces is that they do not help
users directly discern when a system would take specific actions,
nor how the variants cause these actions to differ. By seeing or
comparing just the text of Programs A and B from Figure 2, a user
might fail to recognize that when someone attempts to unlock the
front door while Alice is asleep during the day, the smart home
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Figure 4: Text-Diff comparing Programs A and B from Figure 2. Similar to GitHub’s “split diff” [36], rules unique to a variant
have a color background and are preceded by a symbol (red and “-” on the left, green and “+” on the right). When a pair of
rules from the two variants is similar, they are aligned on the same row with differences highlighted in darker red or green.

will prevent them from doing so with Program B, but not A. It is
critical to identify the situations in which the variants differ in
behavior, but examining only the rules themselves can obscure this
information. Here, the situation is the context of Alice being asleep
while it is daytime and someone is trying to unlock the front door.
The outcome of Program A is that the front door is unlocked, while
with Program B it is locked. Variants produce different outcomes
when they take different actions under identical situations.

To help users reason about program differences when they have
in mind desired outcomes under specific situations, we present
two interfaces that visualize outcome differences. Outcome-Diff:
Flowcharts uses flowcharts to display all situations in which out-
comes differ. Outcome-Diff: Questions asks the user to select their
desired outcome(s) for these situations through checkboxes, and
then summarizes how many, and which, selected outcomes occur
under each program variant. To avoid overloading the user, neither
interface shows situations with identical outcomes.

Outcome-Diff: Flowcharts shows all situations in which
two variants produce different outcomes (Figure 5). Via drop-
down menus, a user chooses two variants to compare and sees
a series of flowcharts highlighting differences in outcomes. The
interface also states the number of situations in which outcomes
differ between those variants. Each flowchart shows a situation.
For Programs A and B, Outcome-Diff: Flowcharts shows two sit-
uations in which the two programs produce different outcomes.
The first situation (Figure 5) starts with Alice asleep during the
day while the front door is locked. Then, a hypothetical event—the
front door unlocking—occurs. Program A results in the front door
being unlocked, while Program B results in it being locked. Variable
state differences use the same color scheme as text differences in
Text-Diff, and we took the same steps to enhance accessibility.

Outcome-Diff: Questions instead asks the user to indicate
what outcomes, if any, are desirable in particular situations,
as shown in Figure 6. It shows the same situations as Outcome-
Diff: Flowcharts, albeit in this revised question format. Whereas
Outcome-Diff: Flowcharts, Text-Diff , and Property-Diff all compare
exactly two variants at a time, pairwise comparisons are tedious and
overwhelming if there are many variants to compare. The approach
of Outcome-Diff: Questions enables the user to quickly identify
variants with the desired behaviors among a large set of variants.

For each specific situation, the interface lists all of the different
outcomes caused by at least one of the variants under that situation.
The user selects their desired choice(s), or specifies that they have
no preference. Figure 6a shows an example of the same situation in
Figure 5 for Programs A and B. Below the situation are the outcome
choices. Differences between outcomes have orange backgrounds
in selected outcomes and blue backgrounds in unselected outcomes.

For each program variant, Outcome-Diff: Questions tracks the
number of situations in which the user-selected outcome matches
what would occur in that variant. Once the user has responded
to all of the given situations, Outcome-Diff: Questions presents the
percentage of situations for which each variant would have an
acceptable outcome. A variant that satisfies more situations is more
likely to match the user’s intent. In the case of Figure 6, the interface
shows that Program B matches a selected outcome in all situations
where outcomes differ, while Program A matches none of them.

4.3 Property Differences
Sometimes, the user might care mainly about general trends or
guarantees, such as whether the door will always be locked when
Alice is asleep, as opposed to specific behaviors in specific situations.
It is difficult for users to extract high-level trends from any interface
presented so far, especially when variants have many differences.

Property-Diff helps users reason about broader behaviors
in their automated systems by contrasting high-level prop-
erties held by the two variants (Figure 7). In particular, our in-
terface highlights safety properties, which are informally defined as
statements indicating that “nothing bad happens in the system’s
execution” [3]. For instance, all three programs in Figure 2 have
the safety property that “the front door will always be locked when
Alice is asleep and it is nighttime.” We designed this interface to be
useful when differences in low-level rules or outcomes are unim-
portant and may even be burdensome to users.

The properties Property-Diff presents are based on templates
from Zhang et al. [50] and are listed in Table 1. We excluded tem-
plates they found to confuse users, such as “[𝑠𝑡𝑎𝑡𝑒1, ..., 𝑠𝑡𝑎𝑡𝑒𝑛] will
[𝑎𝑙𝑤𝑎𝑦𝑠] be active together.” We also condensed equivalent tem-
plates and separated those whose meaning can differ based on the
number of device variables. Finally, we excluded timing-related
properties, such as “[𝑠𝑡𝑎𝑡𝑒] will [𝑛𝑒𝑣𝑒𝑟 ] be active for more than
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Figure 5: Outcome-Diff: Flowcharts showing a situation in which Programs A and B from Figure 2 produce different outcomes.

(a) The first situation Outcome-Diff: Questions shows with Programs A and B
from Figure 2 as the variants. Users select zero or more desired outcomes.

(b) The results ofOutcome-Diff: Questions appears
when the user has made a choice for every sit-
uation. Note that for Programs A and B, there
are two such situations. These example results oc-
cur when the user chooses to have the front door
locked in both the first situation (Figure 6a) and
the second situation.

Figure 6: Snippet of Outcome-Diff: Questions with Programs A and B from Figure 2 as variants.

Figure 7: Property-Diff comparing the safety properties of Programs A and B from Figure 2.
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[𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛],” because they require different transition-system anal-
yses than properties unrelated to timing (see Section 5 and [50]).

To maximize consistency across interfaces, we followed the lay-
out and visual elements of Text-Diff for contrasting properties. Pilot
participants did not understand the phrase “safety property,” so we
listed them as “patterns that are always or never true about the
smart home.” In addition to the properties that differ, Property-Diff
also shows properties held by both variants. Pilot study partici-
pants preferred seeing all properties to gauge more comprehen-
sively whether any variant satisfied the user study tasks. Unlike
Text-Diff , we did not define how two different properties can be
similar. Doing so requires more careful consideration of what makes
two properties “similar,” which we leave to future work.

5 ALGORITHMS FOR COMPUTING DIFFS
In this section, we present the algorithms underpinning the inter-
faces that we presented in Section 4. Section 5.1 shows how we
compare text differences across variants for Text-Diff. Section 5.2
introduces transitions systems, which we use to represent TAP
variants in a home. They serve as the basis for our algorithms
for semantic-diff interfaces. Section 5.3 explains our algorithms
to identify outcome differences across variants for Outcome-Diff:
Flowcharts and Outcome-Diff: Questions. Section 5.4 introduces how
we generate property differences across variants for Property-Diff.

5.1 Text-Diff
The main task in populating the Text-Diff interface algorithmically
is to identify potential “modified” rules, which are pairs of rules
from the two variants that are most similar to each other. The set of
candidates is the Cartesian product of the two sets of rules from the
two variants. Per our definition of “modified” rules in Section 4, we
eliminate all candidates in which the rules differ by more than one
subpart. We calculate the differences within each remaining pair of
rules to be the number of conditions in which the pair differs, or 1
if the pair differs in their triggers or their actions (never both). We
then choose the largest unique set of rule pairs with the smallest
differences to be the set of “modified” rules.

5.2 Modeling the Home as a Transition System
All of our semantic-diff interfaces require reasoning about how
particular TAP variants differ in behavior. To this end, we model
each TAP variant and the smart home as a transition system [3, 50].
Each transition system incorporates rules of the variant as well
as the subset of the home’s devices (and their possible states) and
environmental factors (e.g., weather, light levels, time of day) that
affect or are triggered by these rules.

A node in the transition system represents every device and
every environmental factor from the variant being in a particular
state. Recall that each device or environmental factor in the home
is represented by a variable. The set of states (nodes) in a given
transition system is thus the Cartesian product of the set of states
for each variable. For example, a system with 𝑛 binary variables
would have 2𝑛 states. While a home with many devices and relevant
environmental factors would seemingly require a huge transition
system to model, the transition system actually only needs to in-
clude the devices and environmental factors directly related to the

rules in the TAP variants being compared. For instance, if no rule in
the TAP variants being compared is triggered by, nor acts upon, the
home’s thermostat, the thermostat can be excluded entirely from
the transition system. Furthermore, a variable with a large number
of possible states (e.g., the home’s temperature) can be discretized.
For instance, if the only aspect of temperature relevant to any rule
in the variants being compared is whether or not the home is under
65°F, temperature can be treated as a binary variable. As a result,
even for a home with many devices, the transition system typically
remains small. For our user study (Section 6), the largest system—
Task 6 (Abstraction)—had 7 binary variables and thus 128 states
(nodes).

Transitions (edges) in the transition system reflect events that
change one or more variables, which intuitively means that one
or more devices or environmental factors has changed its state.
Initially, these edges will represent manual transitions (e.g., a light
can change state if someone manually turns it on) and natural
environmental transitions (e.g., day will turn to night). When there
are no automation rules, every pair of smart home states that differ
in the state of exactly one variable will typically be connected by
two transitions, one from each state to the other. However, this
pattern does not hold true if not all transitions for a device are valid.
For instance, in modeling a device that must always temporarily be
in a “warming up” state before it reaches the “on” state, there will
not be an edge from “off” to “on” nodes. As with Zhang et al. [50],
we require that the valid transitions for a given type of variable be
pre-specified as part of an overall model of a smart home.

Rules redirect transitions in the graph. Specifically, the in-transition
of a state representing a particular rule’s triggering event and condi-
tions will be redirected to the state reflecting the eventual outcome
of the action specified by the rule.

To further illustrate transition systems, we partially model our
running example from Section 1. The states of this transition system
will be the Cartesian product of whether Alice is asleep and whether
the front door is locked (Figure 8), resulting in four states:

• (Aliceawake, doorunlocked)
• (Aliceawake, doorlocked)
• (Aliceasleep, doorunlocked)
• (Aliceasleep, doorlocked)

If Alice wakes up, which is a variable state change, the system tran-
sitions from Aliceasleep to Aliceawake. If someone manually locks
the door, the system transitions from doorunlocked to doorlocked.

Again, rules redirect these transitions. For instance, if Alice is
awake with the door unlocked and then falls asleep, without any
rules the system would move from state 𝑛3 to state 𝑛4 of Figure 8a.
However, the rule “IF Alice falls asleep WHILE the front door is
unlocked THEN lock the front door” instead redirects this edge to
node 𝑛2 because the rule’s action is to lock the front door.

Our analyses for Outcome-Diff and Property-Diff rely on reacha-
bility analysis, using breadth-first search to identify reachable states
in the system. This search process requires an initial state from
which to start. Inadvertently choosing an invalid (unreachable)
state as the starting point would result in the reachability analysis
being incorrect, mistaking some unreachable states as reachable
and vice versa. Most intuitively, real-world systems can choose the
current state of the home as this initial state. In our user study,
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Table 1: Properties that Property-Diff supports. The terms [device_state] and [device_event] refer to a device variable’s state or
event, while [external_state] refers to the state of a variable that cannot be controlled, like attributes of users and environmental
factors. A [state] can be the state of any variable.

Property Template Based on AutoTap [50] Example Phrasing in the Property-Diff Interface

[𝑑𝑒𝑣𝑖𝑐𝑒_𝑠𝑡𝑎𝑡𝑒] will [𝑎𝑙𝑤𝑎𝑦𝑠/𝑛𝑒𝑣𝑒𝑟 ] be active. [𝑇ℎ𝑒 𝑙𝑖𝑔ℎ𝑡𝑠] will [𝑎𝑙𝑤𝑎𝑦𝑠] be [𝑜𝑛].
[𝑑𝑒𝑣𝑖𝑐𝑒_𝑠𝑡𝑎𝑡𝑒] will [𝑎𝑙𝑤𝑎𝑦𝑠/𝑛𝑒𝑣𝑒𝑟 ] be active while

[𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑠𝑡𝑎𝑡𝑒1, · · · , 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑠𝑡𝑎𝑡𝑒𝑛].
[𝑇ℎ𝑒 𝑙𝑖𝑔ℎ𝑡𝑠] will [𝑎𝑙𝑤𝑎𝑦𝑠] be [𝑜𝑛] when [𝑖𝑡 𝑖𝑠 𝑛𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒] and [𝐴𝑙𝑖𝑐𝑒 𝑖𝑠 𝑎𝑤𝑎𝑘𝑒].

[𝑠𝑡𝑎𝑡𝑒1, · · · , 𝑠𝑡𝑎𝑡𝑒𝑛] will [𝑛𝑒𝑣𝑒𝑟 ] be active together. The smart home will [𝑛𝑒𝑣𝑒𝑟 ] have [𝑡ℎ𝑒 𝑙𝑖𝑔ℎ𝑡𝑠 𝑜𝑛]
and [𝑡ℎ𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑐𝑢𝑟𝑡𝑎𝑖𝑛𝑠 𝑜𝑝𝑒𝑛] at the same time.

[𝑑𝑒𝑣𝑖𝑐𝑒_𝑒𝑣𝑒𝑛𝑡] will [𝑜𝑛𝑙𝑦/𝑛𝑒𝑣𝑒𝑟 ] happen when [𝑠𝑡𝑎𝑡𝑒1, ..., 𝑠𝑡𝑎𝑡𝑒𝑛]. [𝑇ℎ𝑒 𝑙𝑖𝑔ℎ𝑡𝑠] will [𝑜𝑛𝑙𝑦] [𝑡𝑢𝑟𝑛 𝑜𝑛] when [𝑖𝑡 𝑖𝑠 𝑛𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒].
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Alice falls asleep
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IF the front door unlocks
WHILE Alice is asleep
THEN lock the front door 

Lock the 
front door

Unlock the 
front door

IF Alice falls asleep
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(a) 𝑇𝑆1, a transition system for a trigger-action program consisting
of two rules: “IF Alice falls asleepWHILE the front door is unlocked
THEN lock the front door” and “IF the front door unlocks WHILE
Alice is asleep THEN lock the front door.” The first rule redirects
transition 𝑛3 → 𝑛4 to 𝑛3 → 𝑛2. The second rule redirects the tran-
sition 𝑛2 → 𝑛4 to 𝑛2 → 𝑛2 (a self-transition). Assuming 𝑛1 is the
initial state, this program ensures that 𝑛4 is unreachable.

n1 n2
z z z

n4
z z z

n3

IF the front door unlocks
WHILE Alice is awake
THEN lock the front door 

IF the front door unlocks
WHILE Alice is asleep
THEN lock the front door 

Alice falls asleep

Alice wakes up

(b) 𝑇𝑆2, a transition system for a trigger-action program consisting
of two rules: “IF the front door unlocks WHILE Alice is awake
THEN lock the front door” and “IF the front door unlocks WHILE
Alice is asleep THEN lock the front door.” Assuming𝑛1 is the initial
state, this program ensures both 𝑛3 and 𝑛4 are unreachable.

Figure 8: Transition systems (𝑇𝑆1 and𝑇𝑆2) of two TAP variants, both focusing onwhether Alice is awake and whether the front
door is locked. The system states are labeled 𝑛1 through 𝑛4. Arrows represent valid transitions. Alice is awake in 𝑛1 and 𝑛3, and
asleep in 𝑛2 and 𝑛4. The front door is locked in 𝑛1 and 𝑛2, and unlocked in 𝑛3 and 𝑛4. If a rule triggers (redirects) a transition,
we label the corresponding transition arrow with the rule. Unreachable nodes are colored gray and crossed out.

we choose a state that satisfies the goal of the task as the initial
state. For example, if the goal is to make sure the door is always
locked while Alice is asleep, we define the initial state to be any
state except for the door being unlocked while Alice is asleep.

5.3 Outcome-Diffs
To identify all situations in which variants produce different out-
comes, we compare their transition systems. Each variant is repre-
sented by its own transition system. The key intuition for detecting
differences in outcomes is to compare the out-transitions for a given
(corresponding) state across variants. If a given (corresponding)
transition from this state differs across program variants, in that its
destination state does not correspond across variants, that means
the outcome of that event is different.

The Outcome-Diff interfaces share similar algorithms, so we
detail only the Questions algorithm for 𝑛 variants, presenting its
pseudocode as Algorithm 1. Flowcharts uses this algorithm for𝑛 = 2.

First, we generate the transition systems 𝑇𝑆1 · · ·𝑇𝑆𝑛 for the
𝑛 variants. We then find the nodes that are reachable in every

transition system, which are the system states that are possible with
all of the variants. For all outgoing edges of these nodes (i.e., every
possible event happening from these states), we identify the actions
they would trigger with Variant1 · · ·Variant𝑛 . For each situation,
we group the variants based on the actions they take, combining
groups for which the actions lead to identical outcomes. We also
merge the situations to minimize redundancy. We then convert
the remaining situations to multiple-choice questions, each asking
“what should the program do when event happens in state,” with
the choices being all possible outcomes from Variant1 · · ·Variant𝑛 .

We present an example for 𝑛 = 2 (identical to Outcome-Diff:
Flowcharts) with Figure 8. The first program consists of two rules:
“IF Alice falls asleep WHILE the front door is unlocked THEN lock
the front door” and “IF the front door unlocksWHILE Alice is asleep
THEN lock the front door.” The second program consists of two rules
as well: “IF the front door unlocksWHILE Alice is awake THEN lock
the front door” and “IF the front door unlocksWHILE Alice is asleep
THEN lock the front door.” Assuming 𝑛1 is the initial state, the two
respective transition systems share two possible states: 𝑛1 and 𝑛2.
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Input :Variant1, · · · , Variant𝑛
Output : situationDiffs, a list of (startState, event,

behaviorMap) where variants behave differently by
taking different actions. behaviorMap is a map
from behaviors to variant ids.

Function findSituationDiffs(Variant1, · · · , Variant𝑛)
𝑇𝑆1 · · ·𝑇𝑆𝑛 := transition systems of smart home
implementing Variant1 · · ·Variant𝑛 ;

𝑅1 · · ·𝑅𝑛 := sets of reachable states in 𝑇𝑆1 · · ·𝑇𝑆𝑛 ;
𝑅 := 𝑅1 ∩ · · · ∩ 𝑅𝑛 ;
situationDiffs := ∅;
for Every state in 𝑅 do

for Every event that can happen from state do
beh1 · · · beh𝑛 := Actions triggered by
Variant1 · · ·Variant𝑛 when event happens
under state;
if beh1, · · · beh𝑛 are not all the same then

behaviorMap := {} (empty map);
for 𝑖 in 1 · · ·𝑛 do

if beh𝑖 is not in behaviorMap then
behaviorMap[beh𝑖 ] := ∅;

behaviorMap[beh𝑖 ] :=
𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑝 [beh𝑖 ] ∪ {𝑖};

situationDiffs := situationDiffs ∪
{(state, event, behaviorMap)};

return situationDiffs

Algorithm 1: Pseudocode for the Outcome-Diff: Questions algo-
rithm. We identify situations (a system state and an event) that
result in any of the 𝑛 variants producing different outcomes.
Outcome-Diff: Flowcharts uses this algorithm for 𝑛 = 2.

From state 𝑛1, the possible events are Alice falling asleep and the
door becoming unlocked (by someone or another rule). In the left
transition system, when the front door becomes unlocked while
Alice is awake at 𝑛1, the system allows this transition to 𝑛3. In the
right transition system, the system would instead transition back
to 𝑛1 with Alice awake and the door still locked. For Outcome-Diff:
Questions, the algorithm would generate this question (in flowchart
form): “The situation starts off with Alice awake and the front door
locked. Now the front door unlocks. What should the outcome of
this situation be?” The choices would be “have Alice awake and
the front door unlocked” and “have Alice awake and the front door
locked.” In Outcome-Diff: Flowcharts, a flowchart would show this
situation with the two choices as diverging outcomes (Section 4.2).

When there are multiple conditions or actions, we combine situ-
ations that only differ in conditions that do not affect the outcome.
For example, if two situations are identical in conditions and in the
set of outcomes, except that Alice is asleep in one situation and
awake in the other, we combine them into a single situation and do
not show whether Alice is asleep on the interface.

5.4 Property-Diff
Our algorithm underlying Property-Diff centers on analyzing the
unreachable nodes in variants’ transition systems. The key intu-
ition is that the states of a given variable or given combination of

variables that are always unreachable can be directly mapped to
human-intelligible safety properties for the Property-Diff interface.

We first extract safety properties from each variant. We then
separate the safety properties shared by both variants. The safety
properties we consider (Table 1) consist of properties based on states
(S-properties, such as “the door will never be unlocked when Alice
is asleep”) and properties based on events (E-properties, such as
“the door will never unlock when Alice is asleep”). Algorithm 2
presents our pseudocode. We find S- and E-properties separately.

Our algorithm considers that safety properties can be stated as
logical expressions, and therefore multiple logical expressions are
equivalent. For example, the S-property “the front door will always
be locked” implies other S-properties, such as “the front door will
always be locked while Alice is awake” and “the front door will
always be locked while Alice is asleep.” These latter two properties
can combine to yield the first by plugging the variable states into a
Boolean expression in disjunctive normal form—“(Front door being
locked AND Alice being awake) | (Front door being locked AND Alice
being asleep)”—and simplifying this expression. This approach has
been used in related applications, such as simplifying smart building
rulesets [41]. Note that variables with more than two states (e.g.,
light hue color) and range variables (e.g., temperature) require a few
more steps, but can also be simplified in this manner. E-properties
can also be written in the form of other E-properties and combined
with logic minimization. Assuming that the front door is locked
in the initial state, the first S-property can also be stated as the
E-property “the front door will never unlock” and (implicitly) the
E-property “the front door will never lock” as it is already locked.

Displaying a large number of properties would likely overwhelm
users. Therefore, our algorithm extracts properties in their most
simplified form, which in this case is the first S-property. In addition,
because positive statements are typically easier to understand than
negative ones, when possible we convert properties about states or
events that can never occur into properties about states or events
that will always occur. For example, “the front door will never be
unlocked” is restated as “the front door will always be locked.”

We first extract S-properties by identifying unreachable nodes
in each system. An unreachable node indicates a corresponding
state that can never hold true in that system. For example, if the
node corresponding to (Aliceasleep, doorunlocked) is unreachable,
then the property “the front door will never be unlocked while
Alice is asleep” is true for the system. Instead of converting each
node into a property in this manner, we perform logic minimiza-
tion over the set of such nodes to merge them based on common
variable states, and then generate corresponding S-properties. For
example, if the node corresponding to (Aliceawake, doorunlocked) is
unreachable in addition to the node we just mentioned, then we
merge these two nodes to be (doorunlocked), yielding the property
“the front door will never be unlocked.” This approach lets us gen-
erate one general property, as opposed to two specific properties.
Our implementation uses the SymPy library [29] for minimization,
which relies on the Quine-McCluskey algorithm [27]. Other logic
minimization algorithms would be valid as well. We then identify
nodes unreachable in both systems and repeat the same process on
them to identify S-properties shared by both systems. This step not
only helps with the next step, in which we determine S-properties
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unique to one variant but not the other, but it also outputs the
shared S-properties that our interface shows in addition to unique
S-properties. Finally, we subtract the shared S-properties from the
S-properties of each transition system. Each system’s remaining
S-properties are unique to that system, and thus that variant.

As an example, we run our analysis on 𝑇𝑆1 and 𝑇𝑆2 in Figure 8.
With𝑛1 as the initial state, we find that𝑛4 (Aliceasleep, doorunlocked)
is unreachable in both 𝑇𝑆1 and 𝑇𝑆2. Therefore, the two systems
both have the property “the front door will never be unlocked while
Alice is asleep.” This is also the only S-property held by 𝑇𝑆1. We
find that both 𝑛3 (Aliceawake, doorunlocked) and 𝑛4 are unreachable
in 𝑇𝑆2, which produces the property “the front door will always
be locked.” The shared S-property cannot be subtracted from this
property. Therefore, we will tell the user that this property is unique
to 𝑇𝑆2. Alternatively we could say that the property unique to 𝑇𝑆2
is “the front door will always be locked while Alice is awake,” but
we designed the algorithm to quickly deduce properties at the most
abstract level and avoid outputting too many properties when a
few would be equivalent or imply them.

For E-properties, we identify self-transitions and repeat the same
algorithm as for S-properties. A self-transition indicates that an
event can never occur, possibly under some situation (e.g., “the
front door will never unlock when Alice is awake” based on the
self-transition from 𝑛1 in 𝑇𝑆2, but not 𝑇𝑆1). Some E-properties are
implied by S-properties because their corresponding self-transitions
contribute to an unreachable node. Therefore, we ignore these self-
transitions. This is the case for all self-transitions in 𝑇𝑆1 and 𝑇𝑆2
of Figure 8. Therefore, we do not show any E-properties for them.

5.5 Scalability
Although real-world systems may have large programs and tran-
sition systems, we expect users will want to compare subsets of
rules related to a specific task (e.g., controlling the door lock) to
related sets of rules, as described in Section 1. While our algo-
rithms could become computationally intractable for a sufficiently
large transition system, we believe transition systems for realistic
tasks will generally be small from designing the study tasks. For
example, in a realistic TAP diff task—Task 6 (Abstraction) with 7
binary attributes—it took only 8 seconds on a commodity laptop to
generate results from scratch (showing 19 situations) for Outcome-
Diff: Flowcharts, and 5 seconds for Property-Diff . Precomputation
and caching would further reduce the time required to run the
algorithms and help the approach scale further.

6 USER STUDY METHODOLOGY
To evaluate whether our interfaces could help users understand
TAP variants, we performed a 107-participant online user study.
We studied the following research questions:

• RQ1: Compared to Rules or Text-Diff , do semantic-diff in-
terfaces equip users to more accurately choose the correct
program variant(s) out of a set of prospective variants to
match a motivating goal?

• RQ2: How does the relative performance of these interfaces
compare across programs with different characteristics (e.g.,
length, complexity, number of prospective variants)?

Input :𝑇𝑆1, 𝑇𝑆2: transition systems of smart home
implementing Variant1, Variant2

Output :𝑎𝑙𝑙𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠: 3-tuple of properties unique to
Variant1, properties unique to Variant2, and
properties held by both variants

Function findAllProperties(𝑇𝑆1, 𝑇𝑆2)
𝑈1 := set of nodes unreachable in 𝑇𝑆1;
𝑈2 := set of nodes unreachable in 𝑇𝑆2;
𝑈both := 𝑈1 ∩𝑈2;
// 𝑆both: S-properties shared by both variants
𝑆both := toSproperties(minimizeLogic(𝑈both));
// 𝑆1, 𝑆2: unique S-properties of each variant
𝑆1 := toSproperties(minimizeLogic(𝑈1)) −𝑆both;
𝑆2 := toSproperties(minimizeLogic(𝑈2)) −𝑆both;

𝑇1 := set of self-transitions from reachable nodes that do
not contribute to𝑈1 in 𝑇𝑆1;

𝑇2 := set of self-transitions from reachable nodes that do
not contribute to𝑈2 in 𝑇𝑆2;

𝑇both := 𝑇1 ∩𝑇2;
// 𝐸both: E-properties shared by both variants
𝐸both := toEproperties(minimizeLogic(𝑇both));
// 𝐸1, 𝐸2: unique E-properties of each variant
𝐸1 := toEproperties(minimizeLogic(𝑇1)) −𝑇both;
𝐸2 := toEproperties(minimizeLogic(𝑇2)) −𝑇both;

𝑢𝑛𝑖𝑞𝑢𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠1 := 𝑆1 ∪ 𝐸1;
𝑢𝑛𝑖𝑞𝑢𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠2 := 𝑆2 ∪ 𝐸2;
𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠both := 𝑆both ∪ 𝐸both;
return
(𝑢𝑛𝑖𝑞𝑢𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠1, 𝑢𝑛𝑖𝑞𝑢𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠2, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠both)

Algorithm 2: Pseudocode for the Property-Diff algorithm. We
identify properties that are unique to each variant, as well as
properties shared by both variants. “minimizeLogic()” plugs
nodes or edges into a logic expression in disjunctive normal
form, simplifying this expression. Self-transitions that con-
tribute to unreachable nodes are those that, due to their redirec-
tion, helped make the original destination node unreachable.

• RQ3: Do specific interfaces help users reason about TAP
program differences more (a) confidently and (b) quickly?

To address these questions, we designed six program-comparison
tasksmodeled after potential scenarios inwhich the user encounters
variants (Section 6.3). Each participant would complete these tasks
in a randomized order using a randomly assigned interface. For
each task, participants could choose to see the programs themselves
(listed in prose) by clicking on a “program button.” Our tutorial
encouraged participants to focus on the interface, briefly mention-
ing that this “program button” feature was available. As described
in Section 4, we piloted interface designs on users with various
technical backgrounds before the study to refine our designs.
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6.1 Recruitment
We recruited participants with Prolific Academic [37], a recom-
mended alternative [40] to other recruitment platforms like Ama-
zon Mechanical Turk. Participants had to be 18 years or older with
US nationality to take part in the study. We also required them to
have a 90% or higher approval rate from at least 10 previous submis-
sions. As we expected our interfaces to be particularly helpful for
non-technical users, our recruitment description emphasized that
we did not require experience with programming or smart homes.
We asked participants to take the study on a computer, not a phone.

6.2 Study Overview
We first eased the participants into TAP and their randomly as-
signed interface. After consenting to the study, participants read a
one-page description of trigger-action programs. They then com-
pleted an interactive tutorial of their assigned interface on a sample
task. If a participant failed two of the three simple attention check
items, the study terminated early. Otherwise, participants continued
onto the main portion of the study for their interface.

In the main portion, participants completed the six program-
comparison tasks in a randomized order. For each task, we recorded
participants’ responses and durations. After each task, we asked
participants to rate on a 7-point Likert scale how much they agreed
with the following three statements: “I am confident that my answer
is correct”; “I found the task mentally demanding”; and “I found
the interface helpful in completing the task.” We also asked them
to briefly describe their approach to completing the task and how
the interface helped or hindered.

Following the six tasks, we collected more in-depth information
about participants’ experiences using the interfaces, as well as rel-
evant background that could have influenced their performance
and experience. We asked participants to describe their general
approach more specifically, including the parts of the interface that
were most helpful, least helpful, and most confusing. To illustrate
the level of detail we were looking for in their descriptions, we pro-
vided an example describing a hypothetical approach for accepting
Facebook friend requests. We also asked them whether they relied
mostly on the interface itself, the programs, or both. We quanti-
tatively gauged interface usability with the 7-point version of the
System Usability Scale (SUS). The study concluded with questions
about the participant’s demographics and technology background.

This study was approved by the UChicago IRB. We compensated
each participant $10.00. The average completion time was slightly
over an hour. We include the full survey instrument and the text of
the tasks in our online supplementary materials [53].

6.3 Task Design
To understand how our interfaces can help users, we designed the
tasks to emulate scenarios in which users need to compare variants
(Table 2 and Table 3).We included at least one task for each interface,
including the controls, that we expected to highlight the unique
advantages of the interface. Each task asked the participant to
compare between two or more programs. In all tasks, we evaluated
whether participants could identify differences across variants that
the task requested. Our tasks followed these hypothetical scenarios:

Table 2: Overview of the complexities of the tasks.

Situations with
Complex Different Differ in Many

Task Programs Outcomes Properties Variants

1 - Straightforward ✓
2 - Simple Logic ✓
3 - Redundant Programs ✓ ✓ ✓
4 - Hidden Similarity ✓ ✓ ✓
5 - 27 Variants ✓ ✓ ✓
6 - Abstraction ✓ ✓ ✓

(1) Task 1 (Straightforward): Given an original program, a de-
sired behavior extension, and modified versions of this pro-
gram, could the participant determine which of the modified
versions maintained the original program behaviors, but
extended them as specified?

(2) Task 2 (Simple Logic) and Task 6 (Abstraction): Given an
original program, some observations about its undesirable
behaviors, and modified versions of this program, could the
participant determine which of the modified versions would
exhibit the desirable behaviors instead?

(3) Task 3 (Redundant Programs) and Task 4 (Hidden Similarity):
Given an original program, its goal, and modified versions of
this program, could the participant determine which of the
modified versions met the same goal as the original program?

(4) Task 5 (27 Variants): Given multiple programs and a set of
goals, could the participant determine which of the programs
meet all of the goals?

We designed the tasks with the following characteristics to best
highlight each interface. In general, we expected Outcome-Diff in-
terfaces to outperform the controls on tasks with complex programs.
We defined complex programs to be long programs with many rules
affecting the same variables, which may hinder participants from
tracking all behavior differences. We arbitrarily decided that a long
program would contain at least six rules, with some rules contain-
ing three or more conditions. Meanwhile, we expected participants
using the control interfaces to do well on tasks with variants that
were not complex. Therefore, we designed Tasks 3 (Redundant
Programs), 4 (Hidden Similarity), and 6 (Abstraction) to have com-
plex programs, and Tasks 1 (Straightforward) and 2 (Simple Logic)
to have simple programs. Variants in the former three tasks also
differed in properties, for which Property-Diff should help. To see
whether participants would benefit from the form-based interaction
ofOutcome-Diff: Questions, we designed Task 5 (27 Variants) to have
many variants. In all tasks, variants had situations with different
outcomes, for which we expected Outcome-Diff participants to do
well even if the variants were not long enough to be complex.

6.4 Statistical Analyses
Our statistical analysis approach depended on whether our vari-
ables of interest were categorical or numeric. For both cases, we
first conducted an omnibus test to determine whether the variable
of interest varied by interface. For significant omnibus results (us-
ing 𝛼 = 0.05), we then conducted pairwise comparisons across all
interfaces to determine which interfaces varied significantly from
which other interfaces. We were particularly interested in how our
Outcome-Diff and Property-Diff interfaces compared to the two
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Table 3: Detailed summary of the tasks.

1 - Straightforward Given an original program and a modified version, the participant decides whether the modified version does exactly what the
original program does, except it also turns off the faucet when Alice leaves the bathroom.

2 - Simple Logic Given an original program and two modified versions, the participant decides which of the two versions (if any) would turn off the
AC when neither Alice nor Bobbie is at home, but does not affect the AC if either one of them is home.

3 - Redundant Programs Given an original program that meets a specified goal and a modified version, the participant decides whether the modified version
also meets the specified goal. The goal is to secure the home by keeping the security camera on when the front door is unlocked or
Alice is asleep. Both programs contain redundant rules.

4 - Hidden Similarity Given an original program that meets a specified goal and two modified versions, the participant decides which of the two versions
(if any) would meet the specified goal. The goal is to keep exactly one of three windows open in the house at any given time.

5 - 27 Variants Given 27 programs that meet the same goal, the participant decides which of the programs (if any) would meet a second goal. The first
goal is to ensure that the living roomwindow being open, the TV being on, and the Roomba being on will never occur simultaneously.
The second goal is to ensure that Alice gets to enjoy fresh air from the living room window without disruption to her TV time.

6 - Abstraction Given an original program that fails to meet a specified goal and two modified versions, the participant decides which of the two
versions (if any) can meet the goal. The goal is to save electricity by ensuring that only one of eight smart devices (AC, coffee pot,
lights, TV, speakers, and the Roomba) is on at any given time.

control conditions, which reflected existing interfaces. Thus, we
report the results of these comparisons most prominently. To min-
imize the possibility of Type I errors due to multiple testing, we
corrected p-values within each family of omnibus tests and within
each set of pairwise comparisons using the Holm method.

For both omnibus and pairwise comparisons between interfaces
for categorical data, we used Fisher’s Exact Test. We chose Fisher’s
Exact Test instead of the more familiar Pearson’s 𝜒2 test because the
latter is considered unreliable when expected cell counts are smaller
than 5, which was often the case in our data. These categorical
comparisons analyzed how the correctness of participants’ answers
differed across interfaces for each of the six tasks, as well as how
the use of the program button varied across interfaces for each of
the six tasks. Thus, each instance of Fisher’s Exact Test was run on
a 2 × 5 contingency table (binary outcomes across five interfaces).

For omnibus comparisons of numeric data, we used the Kruskal-
Wallis H test. For pairwise comparisons, we used its analogue for 2
groups, the unpaired Wilcoxon rank-sum test, also known as the
Mann-Whitney U test. These non-parametric tests are appropriate
for data that is not normally distributed and for ordinal data, which
was the case for our quantitative data. In particular, we analyzed
how the number of tasks participants answered correctly, the num-
ber of tasks for which participants used the program button, System
Usability Scale scores, and total time taken (summed across tasks)
varied by interface. We also tested whether participants’ Likert-
scale responses to the following three prompts (averaged across
tasks) varied by interface: their confidence in their answers to the
tasks, whether they considered the tasks demanding, and whether
they considered the interface helpful in completing the tasks.

We also created regression models to understand how both the
assigned interface and numerous demographic characteristics cor-
related with the number of tasks each participant answered cor-
rectly and the number of tasks for which they used the program
button. Because both factors are counts, we created Poisson regres-
sion models. The independent variables (IVs) were the assigned
interface, number of tutorial questions answered correctly, and
the participant’s age, gender, education level, computer science
background, familiarity with IFTTT, and ownership of IoT devices.
For categorical variables with many categories, we binned similar
categories. Using the same IVs, we also created generalized linear
models for the total time a participant took across the six tasks

and their average confidence rating across tasks, both of which we
treated as continuous. For all regressions, we created (and report)
a parsimonious model developed through backward selection by
Akaike Information Criterion (AIC). Our supplementary materi-
als [53] provides the full regression tables. For brevity, we report
only p-values in the body of the paper.

6.5 Limitations
Our study required about an hour of our participants’ time, with
no expectation of smart home programming experience. There-
fore, we cannot make conclusions about these interfaces regarding
long-term smart home use. As we mention in Section 7, although
we emphasized that no experiences with programming nor smart
homes was required, many of our participants had programmed
before and/or owned IoT devices. Experimenter bias is also possible,
but we mitigate this concern by measuring whether participants
completed the tasks correctly.

7 USER STUDY RESULTS
In this section, we report the results of our user study. Overall, Rules
worked well for the simple tasks, as did most other interfaces. For
the complex tasks, however, Rules participants performed poorly
while participants using semantic-diff interfaces performed signifi-
cantly better. The latter participants also found the complex tasks
significantly less demanding than participants using Rules.

7.1 Participants
We received 124 complete responses. We excluded both responses
from one participant who did the study twice (and also failed the
attention check), seven who gave low-effort or nonsensical answers
to the text responses, four who copied and pasted their answers
throughout the study, and four who did not complete the tutorial.
After applying these criteria, 107 responses remained for analysis.

All participants were between 18 and 74 years old, with 50.5% in
the 25–34 range and 28.0% in the 18–24 range. 51.4% of participants
identified as women, 46.7% as men, and 1.9% as non-binary. Regard-
ing education, 33.3% held a 4-year college degree, 20.6% had some
college background, 15.9% were high school graduates, 11.2% held
a 2-year college degree, and 0.9% held a graduate degree. 56.1% of
participants had some technical background; they had programmed
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before, completed a CS-related class, and/or had a CS-related de-
gree or job. 81.3% of participants were not familiar with the IFTTT
service [19], but 66.4% of participants owned at least one IoT device.

7.2 Correctness
On tasks requiring comparisons of complex variants, we found
that participants using the novel semantic-diff interfaces generally
outperformed those using Rules and Text-Diff interfaces (Figure 9).
Even though participants assigned our novel interfaces completed
more tasks correctly than those assigned the control interfaces, the
time participants took to complete the tasks did not differ signif-
icantly across interfaces. In other words, in the same amount of
time, participants were more successful completing the tasks using
the semantic-diff interfaces than the control interfaces.

Table 4 compares the semantic interfaces and control interfaces
by task. In general, Outcome-Diff: Flowcharts helped participants
identify differences in outcomes when comparing between a few
variants and when the variants differed in only a few situations,
as in Task 3 (Redundant Programs) and Task 4 (Hidden Similar-
ity). When the number of variants or situations became large, as
in Task 5 (27 Variants) and Task 6 (Abstraction), Outcome-Diff:
Flowcharts was less successful. Outcome-Diff: Questions was helpful
when choosing between few variants, as in Task 3 (Redundant
Programs) and Task 4 (Hidden Similarity). It was also helpful even
when the variants differed in many situations with many variables,
as in Task 6 (Abstraction). For that task, all variables had the same
attributes (being on/off) and the goal was abstract enough that it
did not matter exactly which variables’ state differed. Property-Diff
was helpful when there were abstract differences across a few vari-
ants, as in Task 3 (Redundant Programs) and Task 6 (Abstraction),
but not if there were many variants, as in Task 5 (27 Variants), or if
the variants had many properties, as in Task 4 (Hidden Similarity).

Compared to the other interfaces, we expected that Rules would
only work well for Task 1 (Straightforward) and Task 2 (Simple
Logic) because they involve short and simple variants. Rules par-
ticipants were significantly more likely to complete the first task
correctly than Property-Diff participants. As Table 4 shows, though,
Rules did not outperform the semantic-diff interfaces in any other
task. Rules participants found this first task easy, including P52:
“. . . it made it easy to notice the different modification that was being
added to the program.” A few, however, mentioned that it would
be more convenient to see the variants side-by-side. Property-Diff
participants mostly relied on the “program button” feature (viewing
the rules themselves) rather than their assigned interface. This de-
cision is logical because there were no safety properties that could
be derived from either variant for the interface to show. While
the interface explicitly stated that there were no patterns to show,
some participants nonetheless thought the interface was buggy or
“unavailable” (P61). A few others, such as P43, mistakenly believed
that the lack of comparison meant “the programs were the same.”

For Task 2 (Simple Logic), we did not find significant differences
in correctness between any semantic-diff interface and any control
interface. Rules participants liked the interface because “the layout
was clear and easy to understand” (P93). Text-Diff participants, like
P51, appreciated having the differences highlighted: “It’s great help-
ing me compare programs because it is color coordinated and they

are side by side.” While some Outcome-Diff: Flowcharts participants
found the interface useful, a few felt ambivalent, like P30: “The in-
terface allowed me to see the outcomes combined together. Its design
did not really help nor hinder my ability.” Some thought it needed
more information, such as for “separating out what the original pro-
gram does entirely from what the modified program does” (P89). On
the other hand, Outcome-Diff: Questions participants largely found
the interface straightforward and felt it “helped [them] visualize
the scenario” (P72). Property-Diff participants found the interface
simple, although a few mistook the properties for the actual rules.

In Task 3 (Redundant Programs), with the exception of Property-
Diff against Text-Diff , participants using the novel interfaces sig-
nificantly outperformed those using the control interfaces (Table 4).
Most Outcome-Diff: Flowcharts participants found their interface
helpful. P26 stated, “The interface helped, as there were less variables.
I could focus on the one situation and identify faults with the second
program as there were only two to compare.” Outcome-Diff: Questions
participants mostly found their interface straightforward as well,
such as P7: “I think visually showing all the combination was helpful,
so I could see easily if the program met them.” Property-Diff par-
ticipants felt similarly. P48 wrote, “The interface made it clear that
the rules that were desired were only partially met and the interface
made this fairly simple to determine.” A few Rules and Text-Diff
participants found the large number of rules in this task frustrating,
but most still found their interface straightforward. P99 found Rules
“well structured with a good layout which makes it easy and possible
to determine the comparison between both programs.” For Text-Diff ,
P3 wrote, “There were a lot of steps to sort through, but the color
coding that told me when something was different helped.”

For Task 4 (Hidden Similarity), Outcome-Diff: Flowcharts per-
formed significantly better than the controls, and Outcome-Diff:
Questions performed significantly better than Rules, as shown in
Table 4. Outcome-Diff: Flowcharts participants found the interface
mostly straightforward, albeit with a few hurdles. P5 wrote, “I was
able to refer to final configuration of open and closed windows though
I had trouble following the "if this situation happens" aspect of it.” P21
said, “It was a bit technical but I think I was able to get it.” Outcome-
Diff: Questions participants felt confident, such as P6: “The interface
helped significantly, having % match from previous situations let me
quickly look to the options and see if any fit the suggested change.”
Rules participants found the interface “a little overloaded” (P27) or
“cluttered” (P31). P24 explained, “I couldn’t see all options at the exact
same time to compare them all. I had to memorize and try to figure
out the differences.” Text-Diff participants liked the diff highlights,
but thought the tasks made the interface confusing. P14 explained,
“It made it very difficult to concentrate and be able to determine the
correct answer. Having three windows’ statuses being repeated over
and over also made it confusing to read.”

We did not observe significant differences between semantic-diff
participants and control participants for Task 5 (27 Variants). How-
ever, we found that Outcome-Diff: Questions participants outper-
formed Outcome-Diff: Flowcharts participants. Many Outcome-Diff:
Questions participants, like P7, found the task relatively easy: “It
made it very quick to eliminate options that didn’t meet the require-
ments.” On the other hand, Outcome-Diff: Flowcharts did not reduce
the mental load of the task for its participants. P17 stated, “I had
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Figure 9: Participants’ correctness per interface and task. Dashed lines represent chance of random guessing.

Table 4: Differences in task correctness between novel interfaces (columns) and controls (rows). The table shows whether a
significantly larger (✓) or smaller (×) fraction of participants who used a novel interface answered the task correctly compared
to those who used a control. P-values below task names are omnibus tests (Fisher’s Exact Test) across all interfaces, while those
in table cells are pairwise comparisons. All p-values were corrected for multiple testing using the Holm method.

Outcome-Diff: Flowcharts Outcome-Diff: Questions Property-Diff
1 - Straightforward Rules × 𝑝 = 0.028
(p = 0.001) Text-Diff
2 - Simple Logic Rules
(p = 0.001) Text-Diff
3 - Redundant Programs Rules ✓ 𝑝 < 0.001 ✓ 𝑝 = 0.040 ✓ 𝑝 = 0.049
(p < 0.001) Text-Diff ✓ 𝑝 < 0.001 ✓ 𝑝 = 0.049
4 - Hidden Similarity Rules ✓ 𝑝 < 0.001 ✓ 𝑝 = 0.009
(p < 0.001) Text-Diff ✓ 𝑝 = 0.029
5 - 27 Variants Rules
(p = 0.001) Text-Diff
6 - Abstraction Rules ✓ 𝑝 < 0.001 ✓ 𝑝 < 0.001
(p < 0.001) Text-Diff ✓ 𝑝 = 0.004 ✓ 𝑝 = 0.001

difficulty aligning how the interface views aligned with the require-
ments. It was not obvious or intuitive to me.” Rules participants, like
P27, felt ambivalent about the interface: “The interface was fine, but
it didn’t really help to find the result quickly, since I had to click on
each program in the dropdown.” Text-Diff participants felt similarly,
like P14: “It was hard to scroll through all 27 programs, and it was
a tedious and long process, but simple to understand and visually
evaluate.” The same was true for Property-Diff participants, with
P96 explaining, “This one was fairly easy to figure out and the design
of the interface did help explain things. You did however have to be
careful and watch for what was stated.”

For Task 6 (Abstraction), Property-Diff and Outcome-Diff: Ques-
tions participants performed significantly better than the control
groups (Table 4). Property-Diff participants mostly thought the in-
terface made the task easy, such as P90: “It told me exactly yes or
no if the program would do what was needed.” Similar to Task 1
(Straightforward), however, a few participants were frustrated
when Property-Diff did not show properties for a variant (as it
lacked properties by our definition), like P69: “It’s frustrating to see
that lack of the always or never rules and makes it feel like there’s no
program.” Due to an experimental error, Outcome-Diff: Questions
only showed participants 7 out of 21 questions. Nonetheless, the
fact that they outperformed the control group raises interesting

questions about the design ofOutcome-Diff: Questions, as we discuss
in Section 8. Some Outcome-Diff: Questions participants, like P7, felt
that “not having to keep track of which options were on and off in each
situation made it very easy to quickly determine which combinations
met the requirements.” Some others, however, were overwhelmed:
“There were so many choices that it became cumbersome to figure
out” (P65). Most Rules participants found the interface “okay” (P76)
or “not very user friendly” (P35). P24 explained, “It was hard because
of all the information that was presented and the only way to tell
the difference between the programs was to either switch back and
forth or memorize.”Many Text-Diff participants found the layout to
be overwhelming, such as P63: “When there are too many require-
ments listed out separately in the "while" section, it can get a little
overwhelming to keep it straight.”

The tasks in this study were not randomly chosen. However,
because they cover a variety of different comparison scenarios, we
also compared howmany tasks each group of participants answered
correctly. On average, participants correctly answered 2.9 of the 6
tasks. Overall performance varied significantly between interfaces
(𝜒2(4) = 30.604, 𝑝 < 0.001), as shown in Figure 10. Participants
using the two interfaces with low-level information, Outcome-Diff:
Flowcharts and Outcome-Diff: Questions, completed significantly
more tasks correctly than those with other interfaces (vs. Rules: p <
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Figure 11: The distribution of the number of tasks for which
a given participant used the program button.

0.001 and p = 0.010, respectively; vs. Text-Diff : p = 0.006 for both;
vs. Property-Diff : p = 0.014 and p = 0.011, respectively).

7.3 Reliance on Seeing Programs
On average, participants used the “program button” feature to see
the rules themselves for 1.6 of the 6 tasks. The number of tasks for
which participants chose to look at the programs differed signifi-
cantly between interfaces (𝜒2(4) = 12.024, p = 0.017), but we did not
find any significant pairwise differences (Figure 11). In our Poisson
regression, we observed that Property-Diff participants were more
likely to consult this feature than our baseline Rules participants
(p = 0.004), while women were more likely to do so than men (p
= 0.007). Furthermore, participants without any college education
were more likely to consult this feature than participants with a
graduate degree (p = 0.049).

Half of the Rules participants, who already saw the rules them-
selves in their interface, did not rely on this feature. Unexpectedly,
though, some relied on both this feature and the interface to com-
pare variants more easily or to show long programs on the same
screen. A few relied only on this feature; one found its text easier
to read than the three-column layout. Many Text-Diff participants
relied on the interface alone because it was easier to use, but some
found both the interface and the program button helpful.

Almost all Outcome-Diff: Flowcharts participants relied on the in-
terface for the most part because they preferred seeing the outcome
differences. P30 stated, “It’s easier to just focus on the outcomes that
way and see whether it meets the conditions or not. Also, the inter-
face is a visual compared to the ’Programs’ which is just text.” Three

participants used both to give a more complete picture of the task,
while one participant relied mostly on the programs because it gave
more information. Most Outcome-Diff: Questions participants stated
that they generally did not rely on seeing programs because the
interface was easier to use. A handful relied on both the programs
and the interface in order to get a more complete picture, while
two relied mostly on the programs.

Most Property-Diff participants relied on the interface alone or
with the programs. They found the interface easier to grasp while
the programs had unnecessary information. Some mentioned that
this preference varied between tasks.

7.4 Perception of Interface Usability
SUS scores did not differ significantly across interfaces. The mean
score per interface ranged from 53.8 to 69.9, while the median
ranged from 54.2 to 73.3. An SUS score of 68 is often considered
average. Some interfaces’ mean and median scores were at or below
68, though the difficulty of our tasks could have biased participants’
perceptions negatively. We designed the tasks to highlight both
benefits and drawbacks of each interface, so all participants had to
complete tasks for which their interface was unhelpful. Outcome-
Diff: Flowcharts participants were also significantly more likely to
complete some of the complicated tasks correctly than control par-
ticipants (Section 7.2), despite the low SUS rating of this interface.

7.5 Study Experiences
In total, participant perception of how demanding the tasks were
differed significantly (𝜒2(4) = 12.319, p = 0.015), with Outcome-Diff:
Questions participants finding tasks significantly less demanding
compared to Rules participants (p = 0.014). This perception differed
significantly between interfaces for Task 3 (Redundant Programs)
(𝜒2(4) = 18.987, p = 0.005), where Text-Diff (p = 0.033), Outcome-Diff:
Flowcharts (p = 0.001), andOutcome-Diff: Questions (p = 0.001) partic-
ipants all found the tasks less demanding than Rules. For Task 5 (27
Variants) (𝜒2(4) = 18.375, p = 0.005), Outcome-Diff: Questions partici-
pants found the task less demanding than Outcome-Diff: Flowcharts
participants (p = 0.002). For Task 6 (Abstraction) (𝜒2(4) = 18.834,
p = 0.005), Outcome-Diff: Questions (p = 0.015) and Property-Diff
(p = 0.003) participants found the task less demanding than Rules.
Figure 12 shows participant ratings of how demanding tasks were.

Although participants were more likely to answer tasks correctly
using the novel interfaces than the control interfaces, participants’
confidence in their answers did not vary across tasks, either for any
individual task or in aggregate across tasks. While they were not
significantlymore likely to answer tasks correctly, male participants
were significantly more confident in their answers than female
participants (p = 0.044) in our regression model.

Similarly, user perception of interface helpfulness did not differ
significantly overall or for any task. Emphasizing the potential
benefit of user interfaces that support TAP, participants without
a technical background found the interfaces more helpful than
those with such a background (p = 0.017) in our regression model.
Furthermore, participants who did not own IoT devices found the
interfaces more helpful than those who did (p < 0.001).
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8 DISCUSSION AND CONCLUSION
To help users reason about differences in TAP programs, we de-
signed a set of complementary interfaces that contrast TAP variants
at different levels of semantic abstraction. We conducted an on-
line user study to compare semantic-diff interfaces (Outcome-Diff:
Flowcharts, Outcome-Diff: Questions, and Property-Diff ) to two tra-
ditional interfaces (Rules and Text-Diff ) in helping users complete
TAP tasks with different characteristics. In our online user study,
we found that participants could correctly reason about differences
between variants of short, simple programs by examining only the
rules themselves. However, when comparing variants of long, com-
plex programs, participants using semantic-diff interfaces signifi-
cantly outperformed those using Rules or Text-Diff . Outcome-Diff:
Flowcharts participants performed better when the task required
identifying a manageable number of situation-specific differences
in complex programs, while Property-Diff participants performed
better when reasoning about more abstract differences. Partici-
pants using the low-level interfaces, Outcome-Diff: Flowcharts and
Outcome-Diff: Questions, were able to identify program differences
correctly across a wider variety of tasks than other users. Outcome-
Diff: Questions participants often found tasks less demanding than
others and significantly outperformed Outcome-Diff: Flowcharts
participants when comparing many variants.

Our work advances intuitive methods of surfacing smart-system
behaviors to users. We show that TAP interfaces should visualize
information at multiple levels of granularity. By having automated
reasoning using formal methods underpin user interfaces for end-
user programming, the community can help TAP users better match
a system’s behaviors to their intent. To facilitate future work,
our open-source code for the interfaces, survey instrument,
and regression tables are available online [53].

8.1 Deployment Recommendations
Our interfaces have complementary strengths and weaknesses
based on the characteristics of the TAP variants being compared.
We believe that real-world deployments should take these trade-
offs into account, showing the user a diff interface appropriate for

particular situation and set of variants they are comparing. Fully
understanding how to approximate user intent and identify the
relevant characteristics of the TAP variants in order to automati-
cally select a contextually appropriate diff interface requires future
research, as does better understanding the potential usability con-
founds of showing a single user different interfaces based on the
situation. Nonetheless, our results provide initial suggestions for
contextually appropriate interfaces. When a user is comparing vari-
ants of short programs (each with a few rules and each rule with a
few conditions), they should simply view the rules themselves. As
programs becomes longer and more complex during the modifica-
tion process, the system should present semantic-diff interfaces to
help users understand the effects of their modifications. Because
Outcome-Diff: Questions helped participants in our study reason
about a wider variety of tasks and made the tasks less demanding, it
could perhaps be presented by default. If the user is choosing from
many variants, an interactive form-based interface like Outcome-
Diff: Questions will help them eliminate undesirable choices faster.

Rather than trying to automate the selection of an appropriate
interface, the system could instead ask the user whether they want
to see differences in situation outcomes or high-level trends (proper-
ties). To account for Property-Diff participants’ reliance on viewing
the rules via the program button in our study, Property-Diff inter-
faces should also provide prominent access to the rules themselves,
perhaps even displaying them by default. More broadly, we found
that participants sometimes struggled to understand how the prop-
erties and situations the semantic interfaces displayed related to the
trigger-action rules. We recommend that real-world deployments
further clarify this connection, perhaps in an expanded tutorial
introduction before walking the user through concrete interfaces.

Our interfaces could also perhaps be useful during program
creation. To minimize repeated computation and facilitate just-in-
time diffs after each change, future work should incrementally build
transition systems rather than producing a new one from scratch
each time. Future work can also consider applying these interfaces
outside of trigger-action programming, such as to outcome-based
program synthesis or constraint-based programming.
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