JupyterLab in Retrograde: Contextual Notifications That
Highlight Fairness and Bias Issues for Data Scientists

Galen Harrison*
gh7vp@virginia.edu
University of Virginia
Charlottesville, VA, USA

Luca Dovichi
lucadovichi@uchicago.edu
University of Chicago
Chicago, IL, USA

Kevin Bryson
kbryson@uchicago.edu
University of Chicago
Chicago, IL, USA

Aleksander Herrmann Binion
biniona@uchicago.edu
University of Chicago

Chicago, IL, USA

Ahmad Emmanuel Balla Bamba
aebbamba@uchicago.edu
University of Chicago
Chicago, IL, USA

Arthur Borem
arthurborem@uchicago.edu
University of Chicago
Chicago, IL, USA

Blase Ur
blase@uchicago.edu
University of Chicago
Chicago, IL, USA

ABSTRACT

Current algorithmic fairness tools focus on auditing completed
models, neglecting the potential downstream impacts of iterative
decisions about cleaning data and training machine learning models.
In response, we developed Retrograde, a JupyterLab environment
extension for Python that generates real-time, contextual notifica-
tions for data scientists about decisions they are making regarding
protected classes, proxy variables, missing data, and demographic
differences in model performance. Our novel framework uses au-
tomated code analysis to trace data provenance in JupyterLab, en-
abling these notifications. In a between-subjects online experiment,
51 data scientists constructed loan-decision models with Retrograde
providing notifications continuously throughout the process, only
at the end, or never. Retrograde’s notifications successfully nudged
participants to account for missing data, avoid using protected
classes as predictors, minimize demographic differences in model
performance, and exhibit healthy skepticism about their models.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI.

KEYWORDS
fairness, data science, computational notebooks, Jupyter Notebook

ACM Reference Format:

Galen Harrison, Kevin Bryson, Ahmad Emmanuel Balla Bamba, Luca Dovichi,
Aleksander Herrmann Binion, Arthur Borem, and Blase Ur. 2024. JupyterLab
in Retrograde: Contextual Notifications That Highlight Fairness and Bias

*Also with University of Chicago.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0330-0/24/05

https://doi.org/10.1145/3613904.3642755

Issues for Data Scientists. In Proceedings of the CHI Conference on Human
Factors in Computing Systems (CHI °24), May 11-16, 2024, Honolulu, HI, USA.
ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3613904.3642755

1 INTRODUCTION

For decades, researchers have voiced concerns about the (un)fairness
of algorithmic decision systems [18, 20]. As data-driven machine
learning (ML) systems have been integrated into daily life and
used to make automated decisions, these concerns have been re-
alized across many domains [2, 8]. Various solutions have been
proposed, including greater transparency [22, 44], fairness audit-
ing [3, 6, 16, 30], and mathematically quantifying fairness [4, 35].

While many current tools for enhancing fairness [6, 23, 30, 44]
facilitate post-hoc auditing of a trained model, relevant decisions
occur far before that. Creating a model, even without considering
fairness, requires a series of decisions about how to clean data,
which data to include/exclude, which model architectures to try, and
which one of many possible models investigated to deploy. These
tacit data-preprocessing decisions significantly affect the fairness
and performance of downstream models [19], yet well-intentioned
data scientists! may not be aware of how these decisions later
impact fairness and bias. Tacit decisions tend not to be documented
and often rely on individual data scientists’ judgment.

In contrast to existing approaches that help data scientists build
more fair models through interventions at either the start of the
data-science process (e.g., requirements engineering) or the end
(e.g., retrospective auditing), in this paper we focus on helping data
scientists become more aware of fairness-related impacts through-
out the process of turning source data into a generalized model.
Absent interventions, decisions data scientists make early in the
data-science process may become ossified, with the data scientist
unwilling or unable to reconsider them [1].

To this end, we designed, built, and evaluated Retrograde, an

open-source? extension to the JupyterLab computational notebook

'We use the term “data scientist” to refer broadly to anyone engaged in data analysis,
feature engineering, or the production of machine learning models.
20ur source code is available at https://github.com/UChicagoSUPERgroup/retrograde

https://orcid.org/0009-0002-7904-186X
https://orcid.org/0000-0002-8795-3386
https://orcid.org/0009-0006-5499-8699
https://orcid.org/0009-0003-1343-4115
https://orcid.org/0009-0007-0432-6197
https://orcid.org/0000-0002-4577-8364
https://orcid.org/0000-0001-9365-3155
https://doi.org/10.1145/3613904.3642755
https://doi.org/10.1145/3613904.3642755
https://github.com/UChicagoSUPERgroup/retrograde

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

environment for Python. Retrograde assists data scientists by gener-
ating and displaying contextually relevant notifications throughout
the data science process. These notifications highlight potential
fairness impacts of the data scientist’s decisions throughout ex-
ploratory data analysis, data cleaning, model building, and model
selection. Our design aims to highlight fairness decisions as they
occur and to stimulate re-examination, hence the name Retrograde.

Beyond designing the user experience of the notifications them-
selves, creating Retrograde required designing and implementing a
new back-end framework. As detailed in Section 3.1, this framework
overcomes key technical challenges that would otherwise make
it onerous or even impossible to calculate the information Retro-
grade’s notifications display. After reading data into a JupyterLab
notebook, data scientists frequently clean and otherwise modify the
data. As part of this process, they often drop columns representing
data subjects’ demographics, preventing later analyses of a model’s
performance relative to those demographics, especially if future
actions (e.g., dropping rows with missing data) further modify a
DataFrame’s rows or columns. Data scientists also often overwrite
a given variable (e.g., X_test, df) while iteratively training differ-
ent machine learning models, obscuring the relationship between
different versions of data.

Retrograde overcomes these challenges by tracing data prove-
nance and data versioning in JupyterLab via continual code analysis
monitoring a data scientist’s actions. To display notifications at ap-
propriate times, Retrograde focuses on two widely used Python
libraries: pandas (DataFrame manipulation) and scikit-learn
(ML). When it detects actions like importing new data or train-
ing a new ML classifier, Retrograde decides whether to show a
customized, data-driven notification about possible fairness short-
comings. Specifically, we designed notifications (see Section 3.3)
that alert data scientists about protected classes (e.g., race, gender)
and potential proxy variables in their data, missing data (including
correlations with demographics), demographic differences in model
performance, and counterfactuals for data subjects.

We evaluated Retrograde through a between-subjects online
study (Sections 4-5) in which we tasked 51 data scientists—a dif-
ficult population to recruit—to use a dataset we provided to build
a classifier that would automatically approve or deny loan appli-
cations. We assigned each participant either to see Retrograde’s
notifications continuously throughout the data science process,
only at the end, or not at all (see Section 4.2).

In analyzing participants’ code, final models, and survey re-
sponses, we found that Retrograde influenced participants’ reac-
tions, actions, and perceptions. Compared to those who were not
given Retrograde, participants who saw Retrograde’s notifications
throughout the process were far less likely to use protected classes
(e.g., race) as predictive features in their models, as well as more
likely to impute missing values rather than drop entire rows with
missing data. As a whole, those participants also minimized differ-
ences in model performance (F1 scores) across racial groups. For
all of these cases, some participants specifically attributed these
actions to information they learned from Retrograde’s notifica-
tions. Notably, participants who were not given Retrograde did not
manually compute the key information Retrograde’s notifications
provided, leaving them unaware of the potential fairness issues
flagged. Finally, in an end-of-study survey, Retrograde participants

Harrison et al.

were less comfortable deploying the model they had built and more
skeptical of their model than participants without Retrograde.

In sum, our work presents and validates a novel approach to
automatically notifying a data scientist about specific fairness issues
in their data and models in a JupyterLab computational notebook.
The front-end notifications we designed were enabled by our back-
end framework tracking data provenance and data versioning. We
envision Retrograde being a key resource for helping inexperienced
data scientists better consider fairness throughout the data science
lifecycle, as well as a valuable tool for automatically surfacing
potential fairness problems early in the process of data work.

2 RELATED WORK

We highlight prior work on interventions that flag issues in bias
and fairness, as well as prior studies of computational notebooks
like JupyterLab, including tools for tracing data provenance.

2.1 Interventions Promoting Fairness

Existing tools to help data scientists make decisions about fairness
focus on auditing the final model itself. Specifically, they emphasize
understanding and debugging model behavior, mostly overlooking
how decisions earlier in the data science process contributed to the
model. For example, the Google What-If tool [23] enables visual
exploration of model performance. Most directly, it supports coun-
terfactual analysis, enabling the data scientist to investigate what
features would need to be different for a data point to be classified
(predicted) differently. The IBM Al Fairness 360 library (AIF360) [6]
implements a variety of fairness metrics and fairness algorithms
proposed in the literature. Building off the popular scikit-1learnli-
brary, which is also a focus of Retrograde, AIF360 provides ready im-
plementations for data scientists seeking to audit machine learning
models and attempt to correct statistical biases discovered. Fairkit-
learn [30] provides a visual interface on top of AIF360 for exploring
different metrics and tradeoffs for models.

These tools are used only with an already trained model and
do not connect any of their auditing to decisions made earlier in
the data science process. Independent evaluations of these toolkits
have underscored these points. Richardson et al. asked data scien-
tists to evaluate existing models using two fairness toolkits [48],
while Deng et al. asked participants to build a model from data
and explore their model using AIF360 and Fairkit-learn [16]. Both
studies concluded that existing toolkits focus nearly exclusively
on the model-building component of the data science process, not
addressing contextual factors related to fairness. Further studies
of Fairkit-learn and AIF360 found they can encourage a “checkbox
culture” where data scientists do not seek to understand the under-
lying reasons for disparities identified [3]. In contrast, Retrograde
connects issues in a model to the data scientist’s earlier decisions.

A complementary approach to fairness emphasizes procedural
checks. While the specific procedures vary [40, 47, 50], these ap-
proaches rely on somebody with the power to inspect a model
and decide whether it should be deployed. These approaches seek
to determine how a model will behave when deployed, especially
whether that behavior aligns with the values the overseer aims
to uphold. Researchers have proposed short summary informa-
tion sheets describing relevant aspects of the model [44] or the

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

data [22, 38] to support such processes. While procedural and or-
ganizational aspects are critical to fairness, we focus on individual
data scientists. A single data scientist’s specific actions and analyses
can be audited only via comprehensive and burdensome oversight
processes that rarely occur in practice [3, 17].

Some work has sought to understand the role tacit decisions,
such as the data preprocessing steps Retrograde considers, play in
the data science process [12]. Much of this work has been descrip-
tive in nature, often involving interviews. Through semi-structured
interviews with data science workers, Muller et al. [45] found that
data science necessarily involves a significant amount of interven-
tion and decision making by data scientists, even up to the creation
of ground truth. At the same time, Sambasivan et al. [49] found
that an emphasis on models, as opposed to data quality, can lead to
cascading issues with deployed models. It is no surprise, then, that
studies of existing fairness toolkits have called for new tools with
more awareness of the end-to-end data lifecycle [16, 37, 48].

Work has also investigated interfaces and visualizations to help
data scientists understand model errors. FairVis [9] aims to en-
able visual exploration of groups with disparate model predictions,
while Silva [54] facilitates causal exploration of datasets. Others
have sought to enable more general understanding. For instance,
Symphony provides multiple views of computational notebooks to
different stakeholders [5], facilitating collaboration.

Other systems have sought to more seamlessly link visualization
and code [33, 52, 53]. Cabrera et al. proposed a framework for how
data scientists try to understand model behavior and implemented
AlFinnity, a tool that supports hypothesis-based exploration [11].
Zeno is a user interface and associated Python API that allows users
to conduct different forms of error exploration [10]. Chameleon
is a system for understanding model performance under different
versions of the data [29], which overlaps in small ways with one
notification we designed. These tools focus on understanding model
errors and therefore become relevant only after data-processing
decisions have already been made.

Furthermore, most existing toolkits require that users read tech-
nical documentation or have prior knowledge of fairness concepts.
Miceli et al. present qualitative evidence that documentation feels
burdensome to data practitioners [43]. In contrast, Retrograde’s
notifications aim to be self-contained. With Retrograde, we expand
the scope of fairness tools by enabling contextual notifications and
interventions throughout the data science process.

2.2 Computational Notebooks

We built Retrograde on top of the JupyterLab computational note-
book environment. Computational notebooks are often used for
data exploration, manipulation, feature engineering, and training
by practitioners of all levels [31]. They allow users to execute blocks
of code in arbitrary order, as well as to inspect different code out-
puts. This flexibility makes them well-suited to exploring data sets,
yet can impair state management and reproducibility [1, 13, 32, 52].

As mentioned in Section 1 and further detailed in Section 3.1,
Retrograde’s notifications require tracing data provenance and data
versions. JupyterLab’s aforementioned flexibility makes it espe-
cially difficult to reliably map the contents of data, the relationship
between different pieces of data (e.g., which data was derived from

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

which other data), and the relationship between specific data ver-
sions and specific machine learning models. Because the order of
cell executions determines the notebook state, it is insufficient to
simply analyze the contents of the notebook in order to understand
how a particular model was produced. Some prior work has focused
on enabling users to reproduce data artifacts [27, 56], alerting users
whenever the notebook contents have changed in ways that prevent
recovering the notebook state [39], or predicting user goals from
analysis of notebook logs [55]. However, these approaches do not
seek to address our key challenges of data and model provenance.

3 THE RETROGRADE ENVIRONMENT

Retrograde is an open-source extension of the JupyterLab environ-
ment we developed for displaying data-driven, interactive notifica-
tions that help data scientists consider fairness and bias issues. Here,
we first describe Retrograde’s back-end analysis approach and then
describe the notifications we designed on top of this environment.

3.1 Goals and Challenges

Our high-level goal was for Retrograde to provide data-driven noti-
fications that highlight specific fairness considerations based on the
data scientist’s specific actions throughout the data science process.
This high-level goal encompasses several distinct sub-goals. First,
we wanted to trace, to the best possible approximation, the process
used to take raw data and turn it into a model. Second, we wanted
to use this information to infer when to trigger the appropriate no-
tifications. Lastly, we wanted to ensure that the tracing accurately
captured the process by which the model was constructed.

Achieving these goals required us to overcome key challenges.
Whenever an assignment statement or function (e.g., . dropna())
changed the contents of a variable, we needed to record that vari-
able’s state and tag it with a version number. Whenever specific
versions of existing variables contributed to another variable (e.g.,
X_testys and y_test,3 were used to train model myg), we needed
to record these relationships. We also needed to instrument key
functions in the data scientist’s workflow. For example, when the
scikit-learn .fit() function was used to train a model, we
needed to record the resultant model to evaluate its performance.
Similarly, when the pandas .read_csv() function was used to
import data, we needed to search it for protected classes and, if
found, display the appropriate notification. These connections were
paramount. For example, computing canonical fairness metrics for
a model requires reliable access to the model itself, evaluation data,
and the demographics for each data subject even after the data had
been cleaned, split into training and test sets, and potentially had
the columns with demographic information removed early in this
process. While some prior work has used basic provenance tracking
to make computational notebooks more reproducible [27, 39, 56],
our approach required substantial additional machinery.

3.2 Retrograde’s Back-end Analysis Approach

Figure 1 presents a more concrete example demonstrating these
challenges, as well as Retrograde’s approach to solving them. In this
example, a user loads and cleans some data, uses that data to train
a model, modifies the data in a way that overwrites data variable
names, and then re-evaluates that data. When the user initially

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Cell Execution

1. The user loads, cleans, and featurizes data. foo| gender| - |accept
Important context, like data subjects' gender and
rows with missing data, may be lost.

df = pd.read_csv(“filename”)
= custom data cleaning (df)
.dropna (subset=[“accept”],
inplace=True) df
X[“accept”]
X.drop ([d((ep*” “gender”,
svi”, “bar”], axis=1l)

XX

X
o

2. The user creates a train/test split and evaluates a
fitted model. Evaluating fairness would require
tracing back to information dropped from df.

foo| gender| .. |accept

train, test = train_test_split(X, Y,
frac=.9)

lr = Model () .fit (train)
lr.score (test) df

1r

train

3. The user loads additional data to try improving
accuracy, overwriting the variables df and x in the
kernel.

foo3 | food

df = pd.read csv(“filename diff”)
X
X supp = df[[“foo3”, “food”]]
X.drop (“foo3”, inplace=True, axis=1l)
df
X = pd.concat ([X, X_supp], axis=l)

1r
train

4. When the user trains a new model 1r with
different data, the state necessary for auditing and
comparing models is no longer available in the
kernel.

foo3 | food

train, test = train test split (X, Y, X
frac=.9)

foo | foo2| foo3 | food

lr = Model () .fit (train) df
lr.score (test)

1r

train

Available Variables

foo foo2 foo3

foo foo2| foo3 foo4d

foo |foo2 foo3

foo foo2| foo3 foo4

Harrison et al.

Data Graph

foo|£o02|£003 (df, vl)

Y (X, v1)

(Y, vl)

f£oo | £002| £003 (df, vl)

(X, vl)
Y
vl)
test
(train, vl) test, vl)

£oo3 /food (df, vl) (df, v2)

(X, vl

X_supp Y
(Y, vl
test

(train, vl test, vl)

(X_supp, v1)
(X, v2)
(df, v1)

£oo3|food (df, v2)

, vl X supp, vl)
X_supp \
(Y, vl

<

(x, v2)

test

(tralr, v2) (test, v2)

test, vl)

traln, vl

Figure 1: This figure illustrates some key challenges for tracking data provenance and data versions. The left column shows
typical example code for importing and cleaning data and then using that data to train a classifier. The center column shows
the variable state after the corresponding notebook cell executes. These variables would be available to Retrograde within
the kernel at the end of each cell execution. The right column shows a graph abstraction of the data relationships Retrograde
captures, distinguishing between versions of each variable. For example, (df, v1) has no direct observable relationship to (df,
v2). In the center column, DataFrames colored purple are the first version of the data referred to by their variable name. Those

colored green are the second version.

loads DataFrame df, it might contain data that, while inappropriate
or irrelevant as a predictor when training a classifier, can provide
insight about fairness. For example, if df contains a column en-
coding a protected class (e.g., gender) that is generally considered
impermissible to use as a basis for decision-making, then the data
scientist should drop that column when creating a matrix of classi-
fication features, often termed X in tutorials. These classification
features may undergo further processing and combination, in the
example here, by being split into train and test sets. To audit a
model’s performance on test with respect to the protected class
requires mapping rows in test back to rows in df.

Up to Step 2 of Figure 1, this mapping can usually be achieved
with just access to the JupyterLab kernel (i.e., the variables defined
and available). However, after Step 3, data that could be relevant to
the model 1r may no longer be defined within the kernel. In other
words, df after Step 3 has different values than it did in Steps 1-2.

An approach that does not track the version history of variables
cannot fully capture the relevant data relationships. To track these
relationships, we developed an extension to the standard iPython
kernel used in JupyterLab that makes relevant variables available
to Retrograde. We furthermore implemented within Retrograde a
data provenance system to capture relationships between specific

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

Notebook (1)

[11[df = pd.read csv() |«

Retrograde

Logging
Notification

— O
(2)\-: Custom Kernel ;

Analysis

Figure 2: On cell execution, the front-end component
(1) sends code to the server extension and (2) kernel. It also
saves the namespace in a manner accessible to the server
extension. The server extension (3) uses the code and names-
pace to (4) generate notifications.

variable versions and specific trained models. The lines of the data
graphs on the right side of Figure 1 provide intuition about the
relationships our approach captures.

As shown in Figure 2, when a user executes a cell, Retrograde
sends the cell contents to the kernel and to our JupyterLab server
extension. Retrograde has access to the variables defined within
the kernel, as well as the state of the user’s Python code at each ex-
ecution. It uses information about data types and contents derived
from the kernel to analyze the code and identify relationships be-
tween data. It looks specifically for Pandas DataFrame and Series
objects, but can track transformations of these data back and forth
to common data formats like lists and numpy arrays.

Retrograde summarizes these data relationships as edges in a
data ancestry graph, similar to those in Figure 1’s right column.
Retrograde also inspects the actual data as defined in the kernel,
using this information to determine data versions. For example, is
df in Cell 3 referring to the same data as it was in Cell 2? Retro-
grade determines this by looking at the data column names, types,
and lengths. Retrograde stores information about data versions in
a database so that it can refer back to data no longer in the ker-
nel for auditing purposes. This does not fully capture differences
and updates to data. For example, rows may be modified without
necessarily constituting a new data version. We found that this ab-
straction, while not fully precise in all cases, enabled the framework
to model the data lineage necessary for generating our notifications.

Using this information, Retrograde can issue events, such as
when new data is detected or a DataFrame is updated. These events
inform notifications, directly or indirectly. Retrograde also tracks
scikit-learn model fit and model score calls for classifier models,
issuing events for these as well. In addition to the tracing and
event-listening, Retrograde stores the code executed at each point.

Retrograde focuses entirely on analyzing relationships between
pandas DataFrame and Series objects and scikit-1learn models,
rather than all of Python. Identifying arbitrary relationships be-
tween arbitrary Python variables would be much more computation-
ally expensive, likely impossible in some corner cases, and unneces-
sary for our goals. We supported pandas because it is a very com-
monly used library for data manipulation and can encode semanti-
cally meaningful information about data, such as column names
and types. A similar rationale was used to select scikit-learn, a
machine learning library that requires far less configuration than
competing libraries like PyTorch or Keras and is thus popular with
beginners. While capable of identifying usage patterns commonly
encountered in model development, our analysis is approximate.
Retrograde does not enter function calls to inspect data, nor iden-
tify global side effects. For example, an assignment df2 = f(df1)

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

-]
retrograde C % . Counterfactuals
" Model Report z
F
a
> ! Protected Columns §

" 7 Missing Data
is before continuing.")

L)
. . Proxy Columns

Figure 3: The Retrograde sidebar interface. New notifications
are shown in orange and open as a new tab in JupyterLab.

will always infer a link between df1 and df2 regardless of what
the function actually does. These conceptual limitations did not
appear to impact the information generated during our user study.
Furthermore, a computational notebook might contain some cells
that are effectively “dead ends,” meaning that no further analysis in
the notebook builds on those cells’ transformations or models. Each
fitted model would generate a Retrograde notification. However,
after the user moved on to other models, they would not be notified
about any new information pertaining to that dead end. Similarly,
potentially problematic data manipulations could generate notifi-
cations, but Retrograde’s provenance tracking would not falsely
indicate that a dead-end, problematic version of that data frame
was an ancestor of unrelated versions.

3.3 Notifications

Retrograde uses the information derived from the back-end analysis
to provide customized, contextual notifications to the data scien-
tist. The figures throughout this section show excerpts of these
notifications, while Appendix A provides full screenshots. When a
notification is generated, an alert (an orange bubble) appears on the
right side of the JupyterLab environment (Figure 3). Alerts are non-
blocking. When clicked, they open a new tab presenting the relevant
information. Notifications can be triggered either based on actions
observed in the notebook or from metadata tags within a notebook.
For example, a notification may trigger when a DataFrame with a
particular column is first defined in the notebook, when a file is
loaded into a dataframe, or when a model is fit. Retrograde also
enables metadata tags that identify a particular section of a sample
notebook as part of deciding when to show a notification. In our
user study, we used a combination of action-based triggers and
metadata tags to control notifications. Specifically, we used meta-
data tags to track a participant’s progress through the notebook
and provide fine-grained control over when notifications triggered
to ensure they appeared at consistent times across participants.
We implemented the following set of notifications, which high-
light some fairness-related patterns a data scientist might overlook.
They are not designed to provide definitive statements or to other-
wise “lint” notebooks for ethics. Instead, these notifications provide
a proof-of-concept for the Retrograde platform and were designed
to address known challenges associated with common phases of
the data science process. We developed the user interaction of these
notifications by identifying which tacit decisions are made at each

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

= Within | loans |

Column Sensitivity
Below you can assign each of the columns in loans to one Column Explorer
of the standard protected classes. Then you'll have the
opportunity to explore some facts about this class.

Select ¥
gender gender v
Classification
raco . Please select a column to begin.
Value Distributions
adj_bls_2 none . Please select a column to begin.

Figure 4: The Protected Column Note highlights protected
classes that were automatically identified in the DataFrame.

phase and how they propagate to other phases. In tandem, we it-
erated on other design decisions through several piloting sessions
with experienced data scientists.

3.3.1 Protected Column Note. As shown in Figure 4, the Protected
Column Note highlights the presence of data that may be impermis-
sible to use as a basis for decision-making. For example, a dataset
may include columns for race or gender, which would in certain con-
texts be illegal to use as predictive features. The Protected Column
Note’s goal is to notify the data scientist about the presence of such
data. As we found in our user study, data scientists commonly use
as much data as available without necessarily thinking through the
implications of using that data. We wanted data scientists who saw
this note to either avoid using demographic data as predictors or
to make a contextual determination that the feature did not pose a
significant unfairness risk. Other notifications made use of the iden-
tified protected classes in auditing (e.g., examining demographic
differences in model performance). This notification triggers when
anew data or data update event occurs if the data has columns that
may represent protected classes. We identify these classes by apply-
ing heuristics to the column names (e.g., “gender”) and samples of
each column’s values (e.g., “M,” “F,” and “NB”) as established by US
Civil Rights legislation. While using automated heuristics can cause
problematic false positives and false negatives, Retrograde asks the
data scientist to review and update these automated determinations
about protected classes. This note makes use of the data version-
ing functionality, as well as the kernel inspection functionality.
When a new data event or data update event is registered, the Pro-
tected Column Note applies its heuristics. Furthermore, to address
false negatives or incorrect automatic determinations, the interface
allows the user to modify the determination for each column, if
desired. This note displays the information for all DataFrame ob-
jects that could be referenced by the user. That is, if a DataFrame
has been defined at any point and has not been deleted from the
namespace, then this note contains information on it.

3.3.2 Missing Data Note. As shown in Figure 5, the Missing Data
Note draws attention to missing data, especially demographic pat-
terns in missing data. If data is missing systematically, simply drop-
ping rows with missing data will introduce bias. Possible mitiga-
tions include imputing missing data or being more selective when
dropping rows with missing data. The Missing Data Note is trig-
gered whenever data is imported or modified if the new or updated
DataFrame’s missing data is significantly correlated with a pro-
tected column, which we defined as having a p-value < 0.2. This

Harrison et al.

Why this matters There are a number of reasons why data may be missing. Ir
collection practices. It may also be missing due to random error. How you hanc
behaves.

Within loans |

= When race is white, gender is missing 6/714 (0.8%) entries
= gender is missing 17/2411 (0.7%) entries

« When gender is female, income is missing 203/1208 (16.8%) entries
o income is missing 266/2411 (11.0%) entries

« When race is white, interest is missing 11/714 (1.5%) entries
o interest is missing 27/2411 (1.1%) entries

Figure 5: The Missing Data Note attempts to find and reveal
patterns in missing data related to protected columns.

Within | Loans |
Column Significantly correlated Potentially correlated
name columns (p < 0.001) columns (p < 0.25)

adj_bls_2 (F = 1.54), approved (F = 3.33),

gender principal (F = 3.95)

income (F = 28.84)

approved (F = 24.9), income (F = 15.66),

race term (F = 2.25), type (x* = 45.31) 8.52), zip (x* = 1406.74)

Figure 6: The Proxy Column Note highlights significant cor-
relations between protected columns and all other columns
in the DataFrame.

approximation captures patterns that may warrant further investi-
gation without overwhelming the user with spurious correlations.
Specifically, the Missing Data Note first determines whether each
column contains categorical or continuous data, which is used to
select an appropriate correlation test. This note generates a report
for each defined DataFrame with missing data.

3.3.3 Proxy Column Note. We also wanted to alert users about
data that is highly correlated with protected classes; these are often
termed proxy variables. The Proxy Column Note (Figure 6) looks for
data that does not explicitly encode a protected class, yet is strongly
correlated with a protected class. For example, in the United States,
ZIP code is often a strong proxy for race, so using ZIP code as a
predictive feature may introduce bias. Rather than trying to de-
tect a set of well-known proxy variables, the Proxy Column Note
instead empirically calculates the degree to which each variable in
a DataFrame correlates with protected classes identified as part of
the Protected Column Note. Because the appropriateness of using a
proxy variable is highly context-dependent [24, 34], we designed
the Proxy Column Note to raise awareness of identified proxy vari-
ables, yet make clear that the data scientist should decide what to
do. Even if there were more certainty about the correct mitigation
to apply, many mitigations require specialized implementations and
analyses beyond the scope of our tool to control for proxy variables.
A Retrograde user well-versed in fairness tools might apply some
form of fairness correction, such as from the AIF360 library [6].
The Proxy Column Note triggers when a dataframe is created
(e.g., through a CSV import) or updated. It relies on the Protected
Column Note for information about which columns represent a pro-
tected class. In our user study, we additionally set it to trigger only
after the user had finished exploratory data analysis because pilot
sessions indicated that this notification triggering at the same time

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

gender: male gender: female

count=346 count=325
Precision: 0.378 Precision: 0.25
Recall: 0.695 Recall: 0.581

F1 Score: 0.49 F1 Score: 0.349
FPR: 0.669 FPR: 0.627
FNR: 0.304 FNR: 0.418

Figure 7: The Model Report Note uses data provenance meth-
ods to display group-wise error metrics.

as the Protected Column Note overwhelmed participants. In terms of
implementation, the Proxy Column Note calculates pairwise correla-
tion tests between each non-protected and each protected column.
We use heuristics to infer each column’s data type (categorical or
numeric), using appropriate tests to flag significant correlations.
Specifically, we used the nonparametric Spearman’s rank correla-
tion coefficient (p) to compare numeric data with numeric data, the
x? test to compare categorical data with categorical data, and the
ANOVA test to compare numerical data with categorical data. This
note generates a report for each DataFrame that has been defined
in the namespace and that has been identified as having protected
classes and non-protected (but potentially correlated) data.

3.3.4 Model Report Note. Depicted in Figure 7, the Model Report
Note computes fairness metrics with respect to protected columns,
as defined by the Protected Column Note. Our goal was to nudge
participants to analyze their model relative to data subjects’ demo-
graphics. Like the metrics methods of the scikit-learn library,
our notification computes a model’s precision, recall, F1 score, false
positive rate, and false negative rate. Whereas standard metrics
methods compute these values overall, our Model Report Note also
computes them for each protected class. Crucially, this notification
leverages Retrograde’s provenance-tracing features to compute
these values even if the protected columns were previously dis-
carded from the DataFrame. A data scientist who encounters this
note might consider applying a fairness library, reconsider the use
of proxy columns identified in the Proxy Column Note, or choose a
model that minimizes differences across demographics groups.
The Model Report Note triggers when a model is evaluated (specif-
ically, when a classifier has the . score() method called). Further-
more, it only appears if Retrograde can trace an ancestor DataFrame
with at least one protected column to the arguments passed to the
score function. In other words, this message is only relevant if
Retrograde can make a reasonable guess about which rows in a
model’s test data corresponded to specific protected classes. This
notification automatically updates when the model is re-evaluated
with new data. The Model Report Note makes use of the columns de-
fined in the Protected Column Note, the analysis of the most recently
executed code (to identify model score calls), and the data version
graph. Retrograde traces the arguments to the score function back-
wards until it finds a DataFrame version with protected columns.
The note then does best-effort matching between the dataframe
version and the test data to get protected class labels for the test

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

prediction index income interest principal
224674

e -y false 1981 33432 6.329 - 117260.681

e 44243

= true 1258 5279 3.844 - 118623.319

628122

e =) false 148 104748 0.415 5 523711.681
62

false =) true 2049 3677 7.962 - 104472.319

Figure 8: The Counterfactual Note randomly perturbs up to
two features at a time and shows the “prediction diff”

set. While this matching is brittle, simple heuristics like index and
shared columns worked well in practice.

3.3.5 Counterfactual Note. The idea of a counterfactual explana-
tion is to show how a data subject could have received a different
outcome by describing a “similar” data point with a different classi-
fication decision [23]. The Counterfactual Note (Figure 8) helps the
data scientist understand model features that substantially change
predictions when perturbed in small ways. A classifier that is highly
sensitive to minor perturbations, particularly in apparently irrel-
evant features, may not be fair [7, 21]. With this notification, we
hoped to prompt users to consider the features they had chosen
and to select models they expected to be more robust. Similar to
the Model Report Note, the Counterfactual Note triggered on model
evaluation. Unlike the Model Report Note, it does not rely on pro-
tected attributes from the Protected Column Note and therefore does
not use the data version graph. The Counterfactual Note accesses
the model and test data, re-evaluating the model after randomly
perturbing the evaluation data. In order to make the perturbations
of numerical features feasible and minimal for each loan applicant,
we decided to randomly add to, or subtract from, each cell up to
half the standard deviation of that column. For categorical vari-
ables, we randomly select a different value for each row. A user
can select columns to modify, seeing which perturbations result in
outcomes different from the model’s original predictions. A short di-
gest shows the original accuracy, the new accuracy, and the number
of predictions changed in each direction.

4 USER STUDY METHODS

We evaluated Retrograde through a two-hour online user study in
which participants completed a data cleaning and model-building
task using data that deliberately introduced fairness issues. Partici-
pants assumed the role of a data scientist tasked to build a model
using the provided data to make automated loan determinations.
Specifically, we asked them to create a model that would decide
whether to grant a loan with “no human oversight or intervention.”
We asked participants to treat the task with “the same care and
rigor as if these tasks were part of [their] job duties.” We did not
specifically discuss criteria like accuracy or fairness that the model
should satisfy. We gave participants a structured Jupyter Notebook
(see Figure 9), but did not require them to follow that structure.

4.1 Recruitment, Compensation, and Ethics

We recruited participants from the US and UK on the Prolific crowd-
sourcing service and Upwork freelancer marketplace. On Prolific,
per the platform’s policies, we ran a screening survey to identify a

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Data Preprocessing Modeling

T T T
Data Exploration <— Data Cleaning <«— Feature Engineering <> Model Training <— Model Selection

« describe « drop null values « normalize values
+ visualize | + remove duplicates | + categorical encodings
« summarize « identify issues « creating features performance « evaluate different
« explore with data + evaluate tradeoffs « reflect on feature feature engineering
| | and p power ‘ rategi
of features decisions « compare

performance
Protected Column | Missing Data |

« establish and « tune hyper-
evaluate baseline ‘ parameters

across models and
feature sets using
various metrics

Proxy Column Model Report ‘

Figure 9: We split the task into five sections. The Retrograde
notifications that appeared at each Continuous stage are
listed in orange.

Counterfactual ‘

Table 1: The columns in the synthetic data we provided and
how they were described to participants, who used this data
to train a classifier for automating loan decisions.

Name Description for Participants

D An identifier internal to the loan provider

Date (No description)

Race The race of the applicant

Gender The gender identity of the applicant

ZIP The ZIP code of the applicant’s permanent address
Income The household income of the applicant

Type The type of loan requested

Interest The price of taking the loan in percent

Term Duration of the loan being applied for, in months
Principal ~ The initial size of the loan in USD

Adj_bls_2 An adjustment factor internal to the loan provider
Approved ~ Whether the loan provider approved the loan application

pool of participants who reported experience with Python, pandas,
and scikit-learn. We additionally used two screening questions
from prior work [15] to assess programming knowledge. We com-
pensated all participants $0.35 for the pre-screen, which typically
took well under one minute. Of 4,771 people who completed the
pre-screen, only 207 qualified for the study. Of these 207 eligible
Prolific workers, 42 completed the study. On Upwork, where data
work similar in character to our study is common but screening sur-
veys are not, we did not test for programming knowledge. Instead,
we relied on the freelancer’s self-described abilities programming
in Python and using the relevant libraries. Otherwise, participants
on Upwork and Prolific were given identical descriptions of the
task. An additional 9 freelancers from Upwork completed the study,
resulting in a total of 51 participants. Section 5.1 further describes
participants’ backgrounds and demographics.

The study took approximately two hours, and we compensated
participants $80. We set this amount by examining hourly rates for
freelancers with scikit-learn experience on sites like Upwork.
Our institution’s IRB approved our protocol. Our custom Jupyter-
Lab instance with the Retrograde environment installed ran on a
server we controlled. Participants accessed our server via their web
browser; no new software was installed on participants’ devices.

4.2 Conditions

Each participant was randomly assigned to one of three conditions.
As a baseline, participants in the None condition did not receive
any Retrograde notifications. The Continuous condition presented

Harrison et al.

Retrograde notifications throughout the task when triggered, rep-
resenting our proposed use case for Retrograde. As an additional
control, participants in the Post-Facto condition received Retro-
grade notifications, but only in bulk in the model selection stage
near the end of the study. In the Post-Facto condition, participants
could still take action in response to the notifications. However,
we hypothesized they might be reluctant to return to early data-
cleaning and model-building tasks and that other decisions might
have otherwise already calcified. In other words, while Continuous
best represents our proposed approach to using Retrograde, Post-
Facto roughly approximates the temporal behavior of most existing
ML fairness tools [6, 44, 51] in which a data scientist evaluates their
model only after it has been trained, albeit with additional data. In
our study, 17 participants were assigned to each condition.

4.3 Detailed Description of the Task and Data

We provided participants with a dataset, a data dictionary, and a
JupyterLab environment with the minimal guidance necessary for
completing each section. Rather than using an existing dataset, we
artificially constructed the dataset for this study to deliberately in-
troduce fairness-relevant aspects to the data. Real datasets that are
commonly used as benchmarks, such as the COMPAS dataset [36],
have already been subject to cleaning and aggregation, which are
parts of the data science process we wanted to investigate. Our
dataset, whose columns are summarized in Table 1, purportedly
reflected past creditworthiness decisions. We generated this data
to model a scenario where, due to red-lining, there were patterns
of geographic- and employment-related discrimination based on
data from a large city in the US. The demographic variables prob-
abilistically determined the income, ZIP code, and type of loan
being requested for each applicant. We calculated the loan approval
column by applying a facially neutral deterministic rule that did
not directly rely on any of the demographic attributes. This facially
neutral rule, however, created disparate impact: the likelihood of
loan approval for Black applicants was 13%, versus 60% for white
applicants in our dataset.

In addition to the discriminatory pattern, we also added data
cleanliness issues, some of which were also relevant to fairness
and bias. We selectively removed data partly at random and partly
correlated to gender. We duplicated a small number of rows and
mapped certain data to inconsistent values. For example, Black
applicants were recorded in the data as “black,” “Black,” or “African-
American” We additionally introduced a data column (Adj_bls_2)
with an ambiguous name and description. At minimum, the missing
data ensured that participants could not simply “click through”
without manipulating the data as most scikit-learn models do
not permit data with null entries.

4.4 Survey Instrument

We asked participants a series of survey questions after each section
(see Figure 9), as well as after submitting their final model. Ques-
tions ranged from Likert-scale questions to free-response questions.
For example, during the Data Cleaning section of the task, we
asked participants to “describe the steps you took to clean the data”
and answer “what issues and other problematic features did you
end up identifying in the data?” Note that we asked participants

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

only to describe their process; we chose not to prompt them about
any fairness- or ethics-related aspects until the end of the study,
preferring participants to raise these issues organically. After partic-
ipants submitted their final model, they answered questions about
the effort they spent on different tasks, as well as to perform a
self-assessment of their model across different criteria (e.g., the par-
ticipant’s comfort deploying their final model). In this final section,
we did specifically ask participants to reflect on the fairness of their
model. For participants who saw Retrograde notifications (Contin-
uous, Post-Facto), we asked their impressions of the notifications.
Our supplementary materials contain the full survey instrument.

4.5 Data Analysis

To evaluate Retrograde’s impact, we holistically analyzed the char-
acteristics of participants’ final models, the Python code and com-
ments in their JupyterLab notebooks, and their survey responses.

Upon completing data collection, two members of the research
team manually analyzed each participant’s notebook to identify
which preprocessing and data-cleaning methods the participant
used (e.g., dropping all rows with null values), which features the
participant used as predictive variables in their models, and which
model architectures (e.g., RandomForestClassifier) the partici-
pant tested during model selection.

We then focused on the final model the participant submitted as
their proposed classifier, recording those same characteristics and
final model metrics (e.g., precision, recall, F1 score). Additionally,
we used an alternate version of the dataset without the introduced
data issues to further evaluate the performance of participants’
final models. Our goal was to identify tangible differences in the
performance of participants’ models. Our backend infrastructure
also captured full logs of participants’ activities, including cell ex-
ecutions and the time of those executions. These logs helped us
understand how model selection progressed.

We analyzed qualitative survey responses in multiple waves.
Initially, one author open coded participants’ free responses to all
questions in each section of the survey, focusing on how partic-
ipants discussed considering particular actions, why they made
certain decisions in the end, and how they reacted to Retrograde’s
notifications (Continuous and Post-Facto only). Another author
then used this codebook to code all the data, modifying and adding
codes as needed. These two coders then met and resolved disagree-
ments on all responses. The two researchers then revisited the
coded survey responses, iterating through each participant and
discussing their responses across questions in light of the partic-
ular actions they did and did not take in their code. Beyond this
qualitative understanding, for which we present both key themes
and representative quotes, we also present quantitative survey data
(e.g., Likert-scale responses).

Because each condition had only 17 participants, we would have
had very low statistical power in attempting to make statistical
comparisons across groups. Note that data scientists with the req-
uisite skills to complete the study are both quite difficult and quite
expensive to recruit, especially for a two-hour task. As a result, it
was not realistic to recruit a larger sample. That only a small frac-
tion of Prolific users who completed our screening survey qualified
for the study underscores this challenge. Instead, we built a holistic

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

understanding of Retrograde’s impacts in part by examining each
participant’s collected actions in data cleaning and model building
alongside their survey responses. In many cases, participants as-
signed to a condition in which they saw Retrograde’s notifications
directly attributed actions they took to Retrograde’s notifications
in their survey responses, highlighting Retrograde’s impact. Note
that while we present counts of how many participants (out of 17)
in each condition took particular actions, these numbers should not
be interpreted as generalizable proportions given the small sample.

5 RESULTS

This section describes participants’ processes, results, and percep-
tions throughout the user study. We observed that participants in
Post-Facto and None were remarkably likely to use race or gender
as predictive features, whereas participants in Continuous were
significantly less likely to do so. Participants in Continuous tended
to submit models that had less disparity between racial groups
in terms of F1 scores. Furthermore, when discussing the process
of data science, participants in Continuous were more likely than
those in Post-Facto and None to highlight fairness concerns as the
basis for decision-making. We first highlight notification-specific
findings, followed by more general results.

5.1 Participants

We had a total of 51 participants (17 per condition), with 42 recruited
from Prolific and 9 from Upwork. Among participants, 70.6% iden-
tified as male, 23.5% as female, and 5.8% preferred not to say. They
were young, with 84.3% between the ages of 18 and 34. They identi-
fied as White (58.9%), Asian (19.6%), Black (7.8%), mixed (3.9%), and
Hispanic/Latine (2.0%); 7.8% preferred not to say.

Participants were highly educated, with most (94.1%) holding
a bachelor’s degree or higher. The remaining 5.9% of participants
were currently university students studying computer science or
machine learning. As would be expected given the screening criteria
and skills necessary to complete the study, participants reported a
high degree of technical skill. Overall, 96.0% of participants held
either a degree or a job in a computer programming-related field.
Jobs participants held included data scientist for a Fortune 500
company, post-graduate researcher in artificial intelligence, and
careers in business analytics, computational physics, and scientific
research involving neuroimaging. Participants without significant
technical employment experience all reported taking courses in
machine learning, data science, or statistics. Participants who did
not report significant experience in data science explained that
they gained the requisite skills for this task by working in highly
related fields (e.g., data engineering) or using machine learning
libraries in hobby projects. Examples of hobby projects from such
participants included creating bots to trade cryptocurrency and
stocks, competing in data science competitions, and training neural
networks to identify skin lesions from patient photographs.

5.1.1 Protected Column Note. As seen in Table 2, 12 participants in
the None condition and 11 in the Retrograde Post-Facto condition
chose to use protected columns in their final model, versus only 5
participants in the Retrograde Continuous condition. Using these
protected columns as predictive variables in granting or denying a
loan would typically be seen as discriminatory. Participants in the

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Harrison et al.

Table 2: The number of participants among the 17 in each condition who adopted the specified data-cleaning and modeling
approaches. What we believe to be the best (most fair) value for each approach is bolded.

Used Protected Used Proxy Used .dropna() Imputed Missing Cleaned
Condition Columns Column (ZIP) Function Data Values Categories
None 12 9 15 5 8
Continuous 5 8 11 8 5
Post-Facto 11 11 13 6 7

Continuous condition frequently pointed to the Proxy Column Note
as the reason they excluded those variables: “The information from
the notifications made me reconsider using race and gender directly
in the model” (P-27-Continuous). P-34-Continuous explained, “I did
not include gender and race [as predictor variables]. The notifications
made me realize this was protected data” Participants who did not
see the Protected Column Note during data cleaning (i.e., Post-Facto
and None) were also more likely to discuss race or gender as a
useful predictor (8 and 7, respectively) in their survey responses.

This did not mean that those who used race or gender as pre-
dictors were unaware of shortcomings for their model’s fairness.
Participants in all groups discussed the usage of race or gender as
problematic in some form in their survey responses (10, 8, and 7
from Continuous, Post-Facto and None, respectively). As Table 2
indicates, this did not always translate to removing the data. For in-
stance, P-32-Continuous kept the protected columns despite know-
ing they were problematic because they improved accuracy.

In contrast, None and Post-Facto participants tended to start
with as much data as possible and defer the examination of those
decisions for later. With Post-Facto, Retrograde’s interventions did
not have the same effect on provisional decision-making as in Con-
tinuous. For example, P-36-Post-Facto discussed the use of race
and gender as problematic, yet used race in their final model: "Race
seems to be a wildcard," they explained. “A shockingly low amount
of black people were [accepted] for a loan. That could be because
their average income was lower though” When asked how well they
understood the model and whether the model was biased, they re-
sponded, “It makes decisions using race & sex so that can’t be exactly
fair. The biggest indicator of a loan being turned down was race” That
participant epitomized a behavioral pattern frequent among par-
ticipants in None and Retrograde Post-Facto: provisional decisions
becoming permanent despite awareness of them being potentially
problematic. P-41-Post-Facto exemplified this phenomenon rather
directly, saying that they did not take the notifications into full
account because “they only popped up at the end”

Continuous participants also discussed the use of race or gender
as problematic, but their stark behavioral differences suggest that
the Protected Column Note produces changes in thinking and in
behavior seen in Table 2 and as demonstrated by comments like
the following: “I think the protected data aspects will make my solu-
tion less effective, as I'll probably avoid incorporating them into the
decision making” (P-20-Continuous). Similarly, P-18-Continuous
commented, “I did not use any of protected variables, I was going to
at first (though I did use ‘proxy’ variables as discussed)”

5.1.2 Missing Data Note. As discussed in Section 4.3 and our sup-
plementary materials, the synthetic data we provided contained
three categories of data issues: missing data, inconsistent categori-
cal labels, and duplicated rows. The most straightforward, albeit

naive, way to handle missing data is to drop all rows (data sub-
jects) with any missing data, but this can cause systematic biases
if missing data is correlated with demographics [25]. The data we
gave participants had a gendered pattern of missing data in which
women with approved loans frequently had missing income entries.
Participants in Continuous were less likely to use .dropna()—
dropping all rows with null values—and more likely to impute miss-
ing data, both of which are often preferable. Whereas 11 Continu-
ous participants and 13 Post-Facto participants used the .dropna()
function to drop all rows containing any missing data, 15 None par-
ticipants did so. While 8 Continuous participants imputed missing
data, only 6 Post-Facto and 5 None participants did so.
Participants expressed the value in having missing data auto-
matically flagged for them: “They helped me see how much missing
data there was” (P-21-Continuous). “Missing data [notifications]
allowed me to fix my code for data cleaning” (P-29-Continuous). P-
30-Continuous commented, “The notification about missing data was
really useful, as that would be annoying to do manually in pandas”
Some participants found it particularly valuable that the Missing
Data Note suggested imputing missing data: “I imputed missing
values differently based on the insights provided in ‘Missing Data™
(P-45-Post-Facto). P-18-Continuous did not feel imputing data was
sufficient, yet was not sure what to do instead: “Sometimes I didn’t
know what action to take, for instance when you told me how biased
the missing data was (more female data missing for instance)” Overall,
the Missing Data Note was valuable for participants in surfacing
information that requires potentially complicated computations to
detect correlations between missing data and protected classes.

5.1.3 Proxy Column Note. The proxy column note highlighted po-
tential proxy variables for protected classes. A data scientist should
carefully consider whether it is appropriate to include such proxy
variables as predictors in their models. While only 8 Continuous par-
ticipants included proxy variables in their final model, 11 Post-Facto
and 9 None participants did so. In their final survey, Retrograde par-
ticipants again referred frequently to the notifications as the way
they were nudged to consider proxy variables. P-20-Continuous
explained, “I was informed that some of the columns I extracted are
highly correlated to some protected classes”

While participants expressed awareness of the issues noted by
the Proxy Column Note, they tended to be less confident in how to
address the issues that it brought up. For instance, P-35-Post-Facto
wrote, “I removed term as it can act as a proxy variable to race and
gender. I kept principal even though it is a proxy as it seemed like
it would be difficult to make a decision regarding approving loans
without knowing that” Discussing additional issues they observed
with the data, P-26-Continuous commented, “[IJwould be worried
that the ’zip code’ would be used as a proxy for race or something
similar and be discriminatory. For [the] real world I would probably

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

want to spend a long time looking at things like that to determine
if that was the case” Other participants also expressed that they
might have been more successful addressing proxy columns if given
more time: “If I had more time it would have been useful to engineer
features based on their significance in counterfactuals and proxy
columns” (P-45-Post-Facto).

Even for participants who still used proxy variables, Retrograde
raised awareness of the issue. In discussing the fairness of their
final model, P-27-Continuous wrote, “I am not using race and gender
directly, but these may be correlated with other features I used such as
income and zip code” In contrast, only two participants in the None
condition mentioned either proxy variables or ZIP codes being
correlated with race in any of their survey answers.

5.1.4 Model Report Note. The Model Report Note highlighted differ-
ences in model performance across protected classes. To look at the
effects of the Model Report Note, we examined potential differences
in the performance of the final models participants chose to submit,
as well as how participants reported making those decisions. While
participants across all groups had roughly similar model perfor-
mance overall (Table 3), participants who saw the Model Report
Note were likely to have less disparity across protected classes in
F1 scores and other key metrics (Table 4).

Participants’ final models in Continuous and Post-Facto had sub-
stantially smaller ranges in F1 Scores across racial groups (0.19 and
0.23, respectively) than participants in None (0.33). This suggests
that while participants largely had similar error rates on the overall
dataset, their models differed substantially when looking at perfor-
mance across racial groups. Note that Continuous and Post-Facto
participants saw the Model Report Note at roughly the same point.

While participants across all conditions were likely to discuss
accuracy as the key factor for choosing their model, Continuous par-
ticipants were more likely to discuss fairness concerns as a reason
not to deploy the model due to the Model Report Note. Continu-
ous participants (8) were more likely to express that their fairness
concerns outweighed the utility of deploying the model (5 and 2
from Post-Facto and None, respectively). A number of those par-
ticipants centered the value of the Model Report Note: “I read the
model report and then modified the script because it gave me ideas”
(P-39-Post-Facto). “Thanks to the orange tab called Model Report,
I know that my model has much lower precision for females than
males, so I need to work on that” (P-20-Continuous). Similarly, P-
25-Continuous explained, “The model report showed that one of my
models performed poorly for different races so I went back to try and
improve the performance across the races...I would not have noticed
this as it didn’t appear in the sklearn metrics” For further discussion
of Retrograde’s impact on deployment perceptions, see Section 5.3.

This result highlights how participants who saw notifications
were able to make alterations that did not appreciably affect overall
performance, but decreased disparities between sensitive groups.
A well-known result states that for an imperfect classifier, it is
impossible to simultaneously equalize false positives and false neg-
atives between two groups [14, 35]. This means that the groups will
necessarily have disparities in precision (the ratio of true positives
to true plus false positives), or in recall (the ratio of true positives
to all positive instances). The F1 score is the harmonic mean of
precision and recall, so one could choose many different models,

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

each of which strikes a different balance between precision and
recall for each group, while maintaining the same F1 score. Partici-
pants in Continuous and Post-Facto had much lower F1 ranges than
those in None, but had similar ranges for precision and recall. This
suggests that the models developed by participants in Continuous
and None may have been more equal in some regards, but may have
balanced how to prioritize precision or recall disparities differently.
In other words, the advice provided by the notifications translated
into material differences in model performance.

5.1.5 Counterfactual Note. The Counterfactual Note was designed
to further facilitate reasoning about uncertainty, specifically re-
garding model performance on similar (but unseen) data, as well
as understanding which data creates the most variability in model
predictions. We hoped to promote analysis of model brittleness,
possibly identifying sensitive values that strongly impact model
predictions. Some participants reported utilizing it as a deciding
factor for their final model: “[The] counterfactuals [notification] was
helpful for choosing [the] best model” (P-29-Continuous). Others
found this notification challenging to grasp: “They seemed like use-
ful info but were a bit overwhelming. I had to look for other resources
to try to understand what was being said about counterfactuals a bit
more” (P-35-Post-Facto). One participant specifically cited time as
a primary obstacle to acting on the information from the Coun-
terfactual Note: “If I had more time it would have been useful to
engineer features based on their significance in counterfactuals and
proxy columns” (P-29-Post-Facto). This notification, more than oth-
ers, was intended to present information that was not immediately
actionable, yet prompts future consideration (see Section 5.3).

5.2 Analysis Without Retrograde

To gauge whether the Continuous version of Retrograde provided
participants novel information or information they would have cal-
culated anyway, we examined all None and Post-Facto notebooks
to determine if any of those participants manually performed anal-
yses similar to what Retrograde would have shown. Specifically, we
coded the notebooks for missing data analysis, pairwise correlations
among columns to detect proxy columns, calculating model metrics
by demographic group, and calculating counterfactuals or other
types of feature importance. Because Retrograde’s calculations pri-
oritize empirical relationships between protected classes and the
rest of the data, we distinguish when these methods were focused
on protected classes or applied more generally. For example, the
missing data notification looks at correlations with data subjects’
demographics. We placed less importance on general analyses of
missing data. Practically all participants checked for null values in
the data, the presence of which would prevent a scikit-learn clas-
sifier from being trained. The Missing Data Note was more specific
and rigorous in analyzing demographic biases in missing data.

No participants in the None or Post-Facto conditions calculated
any of the key information presented in the Missing Data Note,
Model Report Note, or Counterfactual Note. In contrast, the Proxy
Column Note’s calculations were roughly approximated by eight
of the 34 None and Post-Facto participants. Seven participants
calculated correlations between all columns of the dataframe or only
non-sensitive columns, though not in ways that directly reproduced
the Proxy Column Note’s insights about proxy variables. P-6-None

CHI ’24, May 11-16, 2024, Honolulu, HI, USA Harrison et al.

Table 3: Key model metrics across conditions. The labels FPR and FNR refer to “false positive rate” and “false negative rate,”
respectively. Larger numbers are preferable for the F1 score, precision and recall. Smaller numbers are preferable for the FPR
and FNR. The best value for each metric is bolded.

Condition ‘ F1 Score Precision Recall FPR FNR
Mean (o) None 048 (0.28) 070 (0.16) 0.65 (0.18) 0.24 (0.20) 0.47 (0.24)
Continuous | 0.52 (0.29) 073 (0.14) 060 (0.20) 0.18 (0.14) 0.47 (0.22)
Post-Facto | 045 (0.31) 0.74 (0.15) 062 (0.21) 020 (0.17) 0.50 (0.25)
Median None 0.52 0.68 0.68 0.19 0.54
Continuous 0.57 0.72 0.57 0.14 0.48
Post-Facto 0.50 0.75 0.65 0.17 0.50

Table 4: The range of key metrics across demographic groups (i.e., the difference between the maximum and minimum values
for any particular demographic group) by condition. Smaller differences indicate greater equality across demographic groups.

Range (Max - Min) Across Racial Groups Range (Max - Min) Across Gender Groups

Condition ‘ F1 Score

FNR ‘ F1 Score

Precision Recall FPR Precision Recall FPR FNR
Mean (6) None 033 (0.14) 030 (0.16) 031 (0.22) 0.6 (0.12) 031 (0.22) | 0.14 (0.10) 021 (0.13) 0.12 (0.08) 0.15 (0.11) 0.12 (0.08)
Continuous | 0.19 (0.08) 025 (0.13) 0.25 (0.14) 0.6 (0.11) 0.25 (0.14) | 0.12 (0.08) 0.14 (0.09) 0.12 (0.08) 0.13 (0.10) 0.12 (0.08)
Post-Facto 0.23 (0.10) 0.24 (0.12) 0.29 (0.13) 0.15 (0.08) 0.29 (0.13) | 0.14 (0.13) 0.20 (0.17) 0.16 (0.12) 0.14 (0.09) 0.16 (0.12)
Median None 0.31 0.34 0.21 0.14 0.21 0.11 0.16 0.10 0.13 0.10
Continuous 0.22 0.28 0.20 0.14 0.14 0.10 0.11 0.11 0.10 0.11
Post-Facto 0.22 0.24 0.27 0.14 0.13 0.08 0.19 0.11 0.11 0.11

produced a scatter matrix of feature correlations of seven variables
that included gender, more directly approximating Retrograde.

For the Missing Data Note, none of the 34 None or Post-Facto
participants specifically examined patterns in what data was miss-
ing. That said, P-13-None summarized all rows in which the income
value was missing, which could give insight about demographic
biases in missing data if the participant is sufficiently attentive to
their manual analysis. In contrast, most participants calculated the
number of missing rows, and all participants resolved the empty
entries either by imputing missing values or dropping rows with
missing data. However, the Missing Data Note goes further in cal-
culating the rate of missing data for protected groups.

While the Model Report Note provides specific model error sta-
tistics for each protected class, highlighting significant differences,
no participants reproduced this information. Five participants used
confusion matrices or error metrics like F1 score, though on the
entire dataset, rather than calculated separately by protected class.

The Counterfactual Note implements column perturbation to
determine which changes most influence model predictions. No
participants implemented a counterfactual analysis, but five of the
34 None or Post-Facto participants examined feature importance.

5.3 Retrograde’s Effects on Perceptions

To gauge potential differences in participants’ perceptions across
conditions, we asked a number of self-report survey questions re-
garding their models and data. As Figure 10 shows, Retrograde had
a substantial impact on participants’ perceptions of their models,
particularly in engendering a healthy skepticism about their models.
Whereas 47% of None participants disagreed or strongly disagreed
that they would feel comfortable deploying their final model, 65% of
Continuous and 76% of Post-Facto participants similarly disagreed.
In other words, they would feel uncomfortable deploying the model
they constructed in the study. Most commonly, participants in the
None condition wanted either to achieve higher classification ac-
curacy or to try additional modeling or data-analysis techniques

before deployment. Across the two Retrograde conditions, these
were participants’ second and third most common rationales. In con-
trast, fairness considerations were Retrograde participants’ most
common source of discomfort with model deployment. For example,
P-23-Continuous found their final model to be “systematically racist
and sexist,” P-22-Continuous felt their model “should be examined
to ensure it’s not biased,” and P-27-Continuous wanted “to consider
whether the model is fair to all protected classes [...] I would want
to spend more time analyzing it — for example, by looking at feature
importance” Other participants emphasized the need for deeper
analysis of their model’s fairness, sometimes directly mentioning
Retrograde’s notifications: “I did not do nearly enough feature en-
gineering or data exploration in an effort to source out bias in the
decision making. What if a good portion of the training data had
been made by racist individuals? That bias would have been learned
by the model. I would like to answer more questions, especially some
things I missed. I did not see in my initial data exploration that a lot of
females are missing income data” (P-38-Post-Facto). Similarly, P-50-
Post-Facto wrote, “I would want to spend more time addressing some
possible biases in the model in a real-world deployment (Retrograde
pointed out some associations with protected classes)”

As shown in Figure 10, less than one-quarter of participants in
both Continuous and Post-Facto agreed with the statement that
their final model was the best that could be achieved given the data,
whereas nearly 50% of participants in None thought that this was
the best model that could be achieved. In contrast, we observed
marked similarity across conditions in participants’ agreement that
the submitted models were biased, highlighting the pervasiveness of
participants’ broader sociotechnical concerns about biased models.

Another emergent theme was that of uncertainty surrounding
the efficacy of preprocessing decisions and the generalizability
of their model. Notably, 7 participants Continuous expressed this
uncertainty, while 5 from Post-Facto and 3 from None did so. P-27-
Continuous wrote, “The notifications mostly just presented informa-
tion. They left it up to me to determine what to do. Again, I was unsure

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Comfortable deploying Best that can be achieved Confident | understand Feel model is biased

===

0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
B Strongly agree Somewhat agree Neither agree nor disagree Somewhat disagree B Strongly disagree

None
Continuous

Post-Facto

Figure 10: Participants’ Likert-scale responses to the following statements: (1) “I would feel comfortable if this model were
deployed in the real world for making automated loan decisions”; (2) “I am confident that the model I submitted is the best that
can be achieved given the data”; (3) “I am confident that I understand the way the model I submitted makes decisions”; and

(4) “I feel that the model I submitted is biased””

what the best approach was to handle protected classes and potentially
sensitive information.” Similarly, P-18-Continuous commented, “I
don’t know how it will behave with outliers or completely different
data sets” This suggests that Retrograde initiated holistic ethical
assessments for some participants and the interventions provided
a period to pause and engage with this uncertainty in earnest.

While Retrograde affected some preprocessing decisions, like
feature selection—especially for proxy columns—and not dropping
all rows with null values, the other data issues were less explicitly
affected by the Missing Data Note and Proxy Column Note. Many par-
ticipants felt that Retrograde should give more concrete solutions to
the topics they covered: “Some were more clear than others. Some felt
a bit overwhelming. We were given the info but not really told how to
make decisions based on that info” (P-35-Post-Facto). Retrograde was
designed to be an informational tool, giving few normative recom-
mendations and instead focusing on providing analysis relevant to
user-specific notions of sensitivity, which for many in Continuous
and Post-Facto (14 and 10, respectively) left them feeling limited or
stymied more frequently than those in None (8). Interestingly, for
some participants this same sentiment was directed towards other
notifications: “Sometimes, e.g. in the proxy columns or the missing
data columns, the actions to take were clear. However in the coun-
terfactuals, protected data and model report, I didn’t know what to
do with this information” (P-30-Continuous). These findings sug-
gest that despite Retrograde’s interventions uncovering underlying
fairness issues and encouraging the data scientist to address them,
some data scientists still struggle identifying how to do so.

5.4 Retrograde’s Other Effects

Although Retrograde did not provide any explicit feedback about
data cleaning beyond missing data, we hypothesized that Retro-
grade and specifically the Missing Data Note might encourage partic-
ipants to be more conscientious about general data-quality issues.
However, we did not observe this to be the case. We examined
whether participants fixed cases where multiple values for a cat-
egorical valuable arguably ought to be combined, which we term
“cleaned categories” in Table 2. In this case, 8 None participants
merged these types of categories, whereas only 5 Continuous and
7 Post-Facto participants did so. We observed that the particular
choices participants made during data cleaning were highly depen-
dent on the feature-inclusion decisions participants made in the
earlier phase of the data analysis. In part this was due to the ex-
perimental design; categorical inconsistencies were included only
in the race column, which meant that participants who excluded

the column early in the process had no reason to notice or address
those inconsistencies.

Furthermore, participants’ activity logs indicated that many Con-
tinuous participants expended the most effort in the initial 20% of
the task. In contrast, in Post-Facto, the final 20% of the task saw
participants iterating on specific cells the most. In contrast, the
None condition saw a relatively even distribution of effort across
the task. Taken together, these results suggest that contextual noti-
fications create different focal points for participants, in addition
to impacting the decisions made.

6 DISCUSSION

To encourage data scientists to more carefully consider how the
models they are building fall short in fairness, we hypothesized
that flagging potential issues throughout the process of data science
would be more effective than the more common post-facto auditing
approach embodied by prior work. To that end, we designed and
implemented the Retrograde tool, built on a novel data-provenance-
tracking back-end framework we developed for JupyterLab. We
evaluated Retrograde in a between-subjects experiment in which
51 data scientists developed a binary classifier for loan decisions.
Empirically evaluating tools for our intended user population is
difficult. People with the programming and data science abilities
required for our study tend to have myriad employment options
and thus tend to be harder to recruit than other populations for
user research. Nevertheless, our study participants, who were over-
whelmingly professionals or active hobbyist coders, do appear to
have largely fit the profile of our intended user. Crucially, all par-
ticipants reported educational background in programming or em-
ployment in a related field. Furthermore, most reported significant
professional experience in data science or machine learning. All par-
ticipants are likely to conduct data science in practice. Nonetheless,
while these participants had expertise, they were not necessarily
industry experts (e.g., those leading ML teams at major companies).
We found that important issues (e.g., systematic biases in miss-
ing data, disparate model performance across demographic groups)
tended to go unaddressed without prompting. Due to their focus
on different portions of the task, participants who saw notifications
developed distinct perceptions of their work and the task than those
who did not. The majority of Continuous and Post-Facto partici-
pants cited Retrograde in discussing the actions they chose. Our
holistic and qualitative findings showed that Retrograde’s contin-
uous intervention is likely to tangibly refocus data scientists on
fairness and bias early in the exploratory process of data science.

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

A key result of our study is that participants who received notifi-
cations during the task were significantly less likely to use columns
with protected features than participants who received notifications
at the end of the task or no notifications at all. This finding first
indicates that the default behavior of participants appeared to be
to take as much data as was available and to use it as a predictor
without first considering whether or not it was appropriate. Second,
it indicates that even participants who were alerted after the fact,
who had the opportunity to go back and reconsider this decision, by
and large chose not to do so. This pattern lends credence to our hy-
pothesis that raising issues while they are actively being considered
will be a more effective prompt than raising them post-hoc.

Another key finding is that participants in Continuous and Post-
Facto produced models that on average tended to be more equitable
that those that did not see Retrograde. Note that Post-Facto and
Continuous participants would have seen the Model Report Note
at similar times in their process. One possible explanation is that
participants who saw the Model Report Note were prompted to
conduct a more thorough search and ended up selecting a model on
some basis other than overall accuracy. While participants largely
discussed their models choices in terms of “accuracy,” it was not
always clear what specific metric they were referencing. In our
materials, we were careful to ask participants to produce the best,
rather than the most accurate, model. It may be that our participants
felt the need to communicate their rationale using a more “objective”
framing and accuracy was the term they most frequently used to
do so. We lack the data to be able to make a determination, but
understanding the discursive strategies data scientists employ to
rationalize their decision-making is an avenue for future research.

We also found that participants found the uncertainty in the
process difficult to navigate. In particular, the Missing Data Note
and Proxy Column Note were intentionally somewhat ambiguous
in directing the data scientist how to mitigate the issues raised.
Addressing the issues highlighted by these notifications requires
reasoning about causes and mechanisms. For example, in our data,
ZIP code was highly correlated with race, but so were the loan
term and type. To respond to this information, participants would
have needed to theorize about why the pattern may be occurring,
subsequently making a determination about whether and how to
react. There is a great deal of uncertainty inherent in each of these
stages: the theory may be wrong, and the correct response also may
be a matter of dispute. In their surveys, participants expressed want-
ing more specific guidance from the notifications, though in many
situations the correct mitigation to bias issues is highly contextual.
Trying to give more specific guidance might be counterproductive.

In addition, Retrograde increased many participants’ skepticism
about their models’ suitability for deployment. While some par-
ticipants who did not feel confident about deploying their models
hoped to try other model-building or data-cleaning techniques,
often hoping to increase model accuracy, fairness considerations
were the most common concern. For some participants, it seemed
that additional time for fairness-focused analysis and reflection
would have sufficed. Other participants, however, seemed to want
to engage in more extensive processes and interventions.

How to address a model’s fairness shortcomings is a major open
topic for the research community [26]. In some cases, organization-
level interventions, deep engagement with different stakeholders,

Harrison et al.

and complex processes might be most appropriate to understand the
ethical issues inherent in weighing potentially competing values.
While many aspects of fairness-related decisions should not neces-
sarily be left up to individual people, one intervention that might
help reduce some aspects of uncertainty would be a more well-
developed fairness “toolbox” for data scientists to audit and modify
their models. During the time we were developing Retrograde’s no-
tifications, we were unable to identify any clear resources that gave
succinct, specific guidance we felt would generalize. Specifically, we
looked for resources with practical approaches to addressing fair-
ness issues for people who were not necessarily machine learning
experts. While there are textbooks focused on fair machine learn-
ing [4, 46], these did not provide the kind of guidance that would be
useful for our participants. Providing more concrete starting points
for addressing fairness issues could help reduce future users’ expe-
riences of uncertainty. In any case, we feel that Retrograde has the
potential to alert individual data scientists that conversations need
to be started in their organization about the fairness implications
of the specific models they are building.

One limitation of the current work is that our study evaluated
only the actions of individual data scientists. People exist within
social power structures that constrain and coerce individual actors;
systemic challenges require systemic change [42]. Indeed, as Sec-
tion 2.1 mentioned, some prior work on fairness processes centers
entirely around organizational and procedural methods. In real-
ity, all analyses automated by Retrograde could be done manually,
though many of these analyses (e.g., subdividing model perfor-
mance by protected class, generating counterfactuals, performing
all pairwise correlations in search of proxy variables) would be
onerous and annoying for the data scientist to perform by hand.
We contend that even under rigorous oversight regimes, there ulti-
mately will be decisions visible only to individual data scientists.
Our goal was to highlight when such decisions may have fairness
impacts so that the data scientist can respond appropriately.

Automatically highlighting decisions that impact fairness re-
quired several enabling technical contributions. Developing Ret-
rograde required intellectual contributions to computational note-
books in the form of more robust methods for tracing DataFrames’
ancestry and reasoning about the relationship between data scat-
tered throughout a computational notebook. In addition to tracing
data provenance, it also required developing programmatic under-
standings of data semantics. The approaches we implemented were
tailored to tabular data and classification tasks. Extending these
ideas to more general scenarios is a key avenue for future work.

Our Retrograde tool and accompanying user study focused on a
specific task and setting: binary classification on tabular data for
granting loans. We chose this task and setting because the poten-
tial societal impacts are clear and many prior studies on fairness
focus on binary classification. However, there are many other pos-
sible tasks and settings. Our notifications implicitly centered on
notions of group fairness, or disparities between different groups of
people (often protected classes like gender or race). If a machine
learning model were being used to predict a numerical quantity
(e.g., using a linear regression model) or one of multiple outcomes
rather than only two possible outcomes, a close analogue of our
Model Report Note would likely be straightforward to construct. For
settings other than loans where the primary fairness criterion is to

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists

minimize differences across groups, we similarly expect Retrograde
to generalize. Similarly, Retrograde’s underlying framework (noti-
fications enabled by provenance tracking and automated analysis
of relationships between data and models) would likely remain
effective for supporting many different scenarios.

However, notions of fairness beyond group fairness, or even
more general notions of data science ethics, might require radically
redesigned notifications and completely different data sources. For
instance, the current version of Retrograde would not cover con-
cerns about whether the data with which a data scientist is working
is demographically representative of a particular population or even
accurate in the first place. Similarly, the societal implications of
an automated decision system making specific types of incorrect
predictions in a given setting, or even the use of automation in
that setting in the first place, would fall outside Retrograde’s scope.
Furthermore, more exploratory use cases could push a tool’s goals
and design closer to visualization recommendation [41]. In short,
the contents, context, timing, and prominence of notifications may
need to change across tasks and settings. Regardless, we hope that
Retrograde sparks conversations about potential support structures
to help data scientists better consider fairness in their workflows.

7 CONCLUSION

We found that Retrograde’s notifications throughout the data sci-
ence process redirected participants’ attention to fairness- and
bias-oriented aspects of their data and models. This difference in
attention resulted in decreased usage of race or gender as direct
bases for decision-making, as well as models with some reduced
disparities. Retrograde also impacted participants’ actions and per-
ceptions in consequential ways. Whereas participants in the None
condition often focused on model training, Continuous participants
engaged in greater analysis in the preprocessing stage of data work,
ultimately leading them to a more critical lens in their perceptions
of their models. We also found that Retrograde’s notifications in-
creased participants’ uncertainty and skepticism about their work.

These results underscore the importance of continuous inter-
ventions for inducing meaningful changes in how data scientists
approach the preprocessing stages of data science. While it is possi-
ble that, working as part of a socio-technical team in an organization
with robust institutional safeguards, the data scientist would have
eventually addressed the same issues even if fairness was ignored
in the early stages, we believe there is strong value in considering
fairness and bias throughout the process of data science.

Future work is needed to explore how an interface like Retro-
grade can interact with a socio-technical team. Problematic deci-
sions early in the process of data science can inadvertently persist
when moving from speculative model building to a production en-
vironment, and not every organization has robust procedures for
auditing models. That said, notifications did have some drawbacks
in terms of design and affordances. Specifically, some participants
found Retrograde annoying or confusing, while others were disap-
pointed that Retrograde did not provide direct and explicit solutions
to the issues it raised. While this finding suggests space for improve-
ments to the notification design, it may also suggest an unavoidable
tension in the continuous interaction model between annoying

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

notifications and surfacing important issues in real-time. Through-
out the landscape of fairness tools, the focus has largely been on
post-facto audits of models, while the preprocessing stage has not
received much scrutiny for the critical effect it can have on the
resulting fairness of models. Our user study suggests that continu-
ous and contextual interventions can promote healthy skepticism
towards model performance, critical ethical reflection, and early
identification of ethical dilemmas and remedies.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grants No. CNS-2047827 and No. IIS-1939728.
We would also like to acknowledge that ACM CHI 2024 is being
held in Hawai’i and is offering only extremely limited options for re-
mote participation. Nonetheless, we have chosen not to present this
work in person due to the impact the conference will likely have on
the Kanaka Maoli (Native Hawaiians) and other locals [28]. We en-
courage future selection processes for conference locations to more
carefully consider how our conferences impact local communities.

REFERENCES

[1] Sara Alspaugh, Nava Zokaei, Andrea Liu, Cindy Jin, and Marti A. Hearst. 2019.
Futzing and Moseying: Interviews with Professional Data Analysts on Exploration
Practices. IEEE Transactions on Visualization and Computer Graphics 25, 1 (2019).

[2] Julia Angwin and Jeff Larson. 2016. Machine Bias. ProPublica. https://www.
propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

[3] Agathe Balayn, Mireia Yurrita, Jie Yang, and Ujwal Gadiraju. 2023. “Fairness
Toolkits, A Checkbox Culture?” On the Factors That Fragment Developer Prac-
tices in Handling Algorithmic Harms. In Proceedings of the 2023 AAAVACM
Conference on Al Ethics, and Society.

[4] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2023. Fairness and Machine
Learning: Limitations and Opportunities. The MIT Press.

[5] Alex Bauerle, Angel Alexander Cabrera, Fred Hohman, Megan Maher, David
Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony: Compos-
ing Interactive Interfaces for Machine Learning. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems.

[6] Rachel K.E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, et al. 2018. AI Fairness 360: An Extensible Toolkit for
Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. (2018).
https://arxiv.org/abs/1810.01943.

[7] Emily Black, Manish Raghavan, and Solon Barocas. 2022. Model Multiplicity:
Opportunities, Concerns, and Solutions. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency.

[8] Joy Buolamwini and Timnit Gebru. 2018. Gender Shades: Intersectional Accu-
racy Disparities in Commercial Gender Classification. In Proceedings of the 1st
Conference on Fairness, Accountability and Transparency.

[9] Angel Alexander Cabrera, Will Epperson, Fred Hohman, Minsuk Kahng, Jamie
Morgenstern, and Duen Horng Chau. 2019. FAIRVIS: Visual Analytics for Dis-
covering Intersectional Bias in Machine Learning. In Proceedings of the 2019 IEEE
Conference on Visual Analytics Science and Technology.

[10] Angel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet
Talwalkar, Jason I. Hong, and Adam Perer. 2023. Zeno: An Interactive Framework
for Behavioral Evaluation of Machine Learning. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems.

[11] Angel Alexander Cabrera, Marco Tulio Ribeiro, Bongshin Lee, Robert Deline,
Adam Perer, and Steven M. Drucker. 2023. What Did My AI Learn? How Data
Scientists Make Sense of Model Behavior. ACM Transactions on Computer-Human
Interaction 30, 1 (2023).

[12] Inha Cha, Juhyun Oh, Cheul Young Park, Jiyoon Han, and Hwalsuk Lee. 2023.
Unlocking the Tacit Knowledge of Data Work in Machine Learning. In Extended
Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems.

[13] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus
Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,
and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems.

[14] Alexandra Chouldechova. 2017. Fair Prediction with Disparate Impact: A Study
of Bias in Recidivism Prediction Instruments. Big Data 5, 2 (2017).

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://arxiv.org/abs/1810.01943

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

[15] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith.

2021. Do You Really Code? Designing and Evaluating Screening Questions for
Online Surveys with Programmers. In Proceedings of the 2021 IEEE/ACM 43rd
International Conference on Software Engineering.

Wesley Hanwen Deng, Manish Nagireddy, Michelle Seng Ah Lee, Jatinder Singh,
Zhiwei Steven Wu, Kenneth Holstein, and Haiyi Zhu. 2022. Exploring How
Machine Learning Practitioners (Try To) Use Fairness Toolkits. In Proceedings of
the 2022 ACM Conference on Fairness, Accountability, and Transparency.

Wesley Hanwen Deng, Nur Yildirim, Monica Chang, Motahhare Eslami, Kenneth
Holstein, and Michael Madaio. 2023. Investigating Practices and Opportunities
for Cross-functional Collaboration around Al Fairness in Industry Practice. In
Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Trans-
parency.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference.

Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam
Choudhary, Evan P. Hamilton, and Derek Roth. 2019. A Comparative Study of
Fairness-Enhancing Interventions in Machine Learning. In Proceedings of the
Conference on Fairness, Accountability, and Transparency.

Batya Friedman and Helen Nissenbaum. 1996. Bias in Computer Systems. ACM
Transactions on Information Systems 14, 3 (1996).

Prakhar Ganesh, Hongyan Chang, Martin Strobel, and Reza Shokri. 2023. On
The Impact of Machine Learning Randomness on Group Fairness. In Proceedings
of the 2023 ACM Conference on Fairness, Accountability, and Transparency.
Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021. Datasheets for Datasets.
Commun. ACM 64, 12 (2021).

Google. 2022. What-If Tool. https://pair-code.github.io/what-if-tool/

Nina Grgi¢-Hla¢a, Muhammad Bilal Zafar, Krishna P. Gummadi, and Adrian
Weller. 2018. Beyond Distributive Fairness in Algorithmic Decision Making:
Feature Selection for Procedurally Fair Learning. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Rolf H. H. Groenwold and Olaf M. Dekkers. 2020. Missing Data: The Impact of
What Is Not There. European Journal of Endocrinology 183, 4 (2020).

Galen Harrison, Julia Hanson, Christine Jacinto, Julio Ramirez, and Blase Ur. 2020.
An Empirical Study on the Perceived Fairness of Realistic, Imperfect Machine
Learning Models. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency.

Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems.

Josiah Hester. 2023. Why is CHI in Hawai’i? https://www.chiinhawaii.info/
Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and Visualizing Data Iteration in Machine Learning. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems.

Brittany Johnson, Jesse Bartola, Rico Angell, Katherine Keith, Sam Witty,
Stephen J. Giguere, and Yuriy Brun. 2020. Fairkit, Fairkit, on the Wall, Who’s
the Fairest of Them All? Supporting Data Scientists in Training Fair Models.
http://arxiv.org/abs/2012.09951

Kaggle. 2021. 2021 Survey. https://kaggle.com/competitions/kaggle-survey-2021.
Mary Beth Kery, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad A.
Myers. 2019. Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems.

Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. 2020. mage: Fluid Moves Between Code and
Graphical Work in Computational Notebooks. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology.

Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Do-
minik Janzing, and Bernhard Schélkopf. 2017. Avoiding Discrimination through
Causal Reasoning. In Proceedings of the Annual Conference on Advances in Neural
Information Processing Systems.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent
Trade-Offs in the Fair Determination of Risk Scores. http://arxiv.org/abs/1609.
05807

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. 2016. How We An-
alyzed the COMPAS Recidivism Algorithm. ProPublica. https://www.propublica.
org/article/how-we-analyzed-the-compas-recidivism-algorithm

[37

[38

[39

S
=

[41

[42

[43

(44

[45

[46

[47

S
&

[49

[50]

[51

o
5,

[53

(54]

[55]

[56

Harrison et al.

Michelle Seng Ah Lee and Jat Singh. 2021. The Landscape and Gaps in Open
Source Fairness Toolkits. In Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems.

Lydia R. Lucchesi, Petra M. Kuhnert, Jenny L. Davis, and Lexing Xie. 2022. Small-
set Timelines: A Visual Representation of Data Preprocessing Decisions. In Pro-
ceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency.

Stephen Macke, Hongpu Gong, Doris Jung-Lin Lee, Andrew Head, Doris Xin,
and Aditya Parameswaran. 2021. Fine-grained Lineage for Safer Notebook Inter-

actions. Proc. VLDB Endow. 14, 6 (2021).
Michael A. Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach.

2020. Co-Designing Checklists to Understand Organizational Challenges and
Opportunities around Fairness in AL In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems.

Andrew McNutt, Gordon Kindlmann, and Michael Correll. 2020. Surfacing
Visualization Mirages. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems.

Milagros Miceli, Julian Posada, and Tianling Yang. 2022. Studying Up Machine
Learning Data: Why Talk About Bias When We Mean Power? Proceedings of the
ACM on Human-Computer Interaction 6, GROUP (2022).

Milagros Miceli, Tianling Yang, Laurens Naudts, Martin Schuessler, Diana Ser-
banescu, and Alex Hanna. 2021. Documenting Computer Vision Datasets: An
Invitation to Reflexive Data Practices. In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model Cards for Model Reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency.

Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay, Q. Vera
Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers
Work with Data: Discovery, Capture, Curation, Design, Creation. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems.

Aileen Nielsen. 2021. Practical Fairness: Achieving Fair and Secure Data Models.
O’Reilly.

Inioluwa Deborah Raji, Andrew Smart, Rebecca N. White, Margaret Mitchell,
Timnit Gebru, Ben Hutchinson, Jamila Smith-Loud, Daniel Theron, and Parker
Barnes. 2020. Closing the AI Accountability Gap: Defining an End-to-End Frame-
work for Internal Algorithmic Auditing. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency.

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, and
Henriette Cramer. 2021. Towards Fairness in Practice: A Practitioner-Oriented
Rubric for Evaluating Fair ML Toolkits. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M. Aroyo. 2021. “Everyone Wants to Do the Model Work, Not
the Data Work”: Data Cascades in High-Stakes AL In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems.

Hong Shen, Leijie Wang, Wesley H. Deng, Ciell Brusse, Ronald Velgersdijk,
and Haiyi Zhu. 2022. The Model Card Authoring Toolkit: Toward Community-
centered, Deliberation-driven Al Design. In Proceedings of the 2022 ACM Confer-
ence on Fairness, Accountability, and Transparency.

Jessie J. Smith, Saleema Amershi, Solon Barocas, Hanna Wallach, and Jennifer
Wortman Vaughan. 2022. REAL ML: Recognizing, Exploring, and Articulat-
ing Limitations of Machine Learning Research. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency.

April Yi Wang, Will Epperson, Robert A. DeLine, and Steven M. Drucker. 2022.
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
Jing Nathan Yan, Ziwei Gu, Hubert Lin, and Jeffrey M. Rzeszotarski. 2020. Silva: In-
teractively Assessing Machine Learning Fairness Using Causality. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems.

Jing Nathan Yan, Ziwei Gu, and Jeffrey M. Rzeszotarski. 2021. Tessera: Discretiz-
ing Data Analysis Workflows on a Task Level. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems.

Chenyang Yang, Shurui Zhou, Jin L.C. Guo, and Christian Kastner. 2021. Subtle
Bugs Everywhere: Generating Documentation for Data Wrangling Code. In
Proceedings of the 36th IEEE/ACM International Conference on Automated Software
Engineering.

https://pair-code.github.io/what-if-tool/
https://www.chiinhawaii.info/
http://arxiv.org/abs/2012.09951
https://kaggle.com/competitions/kaggle-survey-2021
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1609.05807
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists CHI °24, May 11-16, 2024, Honolulu, HI, USA

A FULL IMAGES OF RETROGRADE’S NOTIFICATIONS

notebook_dist.ipynb [Model Report X)
B+ X 0O 0 » ® G » Markdown v retrograde C 3| Counterfactuals

Below is a small code snippet to help you get started.
You may delete the snippet if you wish. . | Model Report

from sklearn.model_selection import train_test_split

apesBonay

. | Protected Columns
X, y = get_features(cleaned_data)

if not ready_for_training_testing(X, y): > . Missing Data
print{"we identified an issue with your data above! You must fix this before continuing.")
2 Proxy Columns
split your data into training and test sets

important parameter description: ., Welcome

test_size: float - Represents the proportion of the dataset to include in the test split
random_state: int - Controls the shuffling applied to the data before applying the split.
Pass an int for reproducible output across multiple function calls.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_sizestest_size, random_statesra
YOUR CODE HERE

SELECT A MACHINE LEARNING MODEL FROM HERE BY UNCOMMENTING THE LINE

from sklearn.neighbors import KNeighborsClassifier

from sklearn.linear_model import SGDClassifier

from sklearn.svm import SVC

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

KNN = KNeighborsClassifier(n_neighbors = 9).fit(X_train, y_train)
KNN_pred = KNN.predict(X_test)
KNN.score(X_test, y_test)

income approved race_asian race_black race_hispanic/latino ... gender_male gende
r_non-binary type_auto type_home type_personal
5 -8.357021)] 1 0 ... o
) 1 [} 0
7 8.368756 L] o] o ... (]
] 1 e o

2 | Idle Mode: Command & Ln1,Col1 notebook_dist.ipynb

Figure 11: The Retrograde interface. The left side is a standard JupyterLab computational notebook. When a new notification is
available, a link appears in orange on the right side, turning gray when it has been read (as the Model Report Note was in this
example) and orange again if there is an update. The notification window itself appears over the notebook on the left side,
persisting as an additional tab (again like the Model Report Note) once the user switches back to the notebook tab.

Protected Columns

Some of the columns in the loans dataframe feature protected classes of data. A protected class is group of people sharing
a commen trait who are legally protected from being discriminated against on the basis of that trait. Some examples include
race, gender, and pregnancy status.

Why should | be concerned?

When you are building machine learning models off of data that includes information from protected classes, you may be
inadvertently replicating power structures that cause vielence and harm, which could play into how your model makes
predictions.

What can | do about it?

Below, the column sensitivity picker will allow you to decide if a column represents one of the protected groups (note this Is
not necessarily the same as being correlated to a protected group). Retrograde uses that sensitivity decision in other
notifications to show you more informatien about your data and/or model.

- Within | loans |

Column Sensitivity
Below you can assign each of the columns in loans to one Column Exl"lorer
of the standard protected classes. Then you'll have the
opportunity to explore some facts about this class.

Select i
gender gender -
Classification
racoli . Please select a column to begin.
Value Distributions
adj_bls_2 none . Please select a column to begin.

Figure 12: The Protected Column Note highlights protected classes that were automatically identified in the DataFrame. The
user can inspect the values in each column. Users may manually change the protected category the column falls under.

CHI 24, May 11-16, 2024, Honolulu, HI, USA Harrison et al.

Missing Data

This notification surfaces cases of missing data in your dataframes, particularly patterns where data is missing at a higher rate
for certain types of data subjects than others.

Why this matters There are a number of reasons why data may be missing. In some instances, it may be due to biased
collection practices. It may also be missing due to random error. How you handle the missing values may impact how the model
behaves.

Within | Loans |

« When race is white, gender is missing 6/714 (0.8%) entries
o gender is missing 17/2411 (0.7%) entries

« When gender is female, income is missing 203/1208 (16.8%) entries
o income is missing 266/2411 (11.0%) entries

+ When race is white, interest is missing 11/714 (1.5%) entries
o interest is missing 27/2411 (1.1%) entries

What you can do It is up to you to determine why you think the values in each column are missing. In some cases, it may be
appropriate to exclude rows with missing entries in a particular column. It may also be appropriate to impute that data, such as
by adding an average value in place of the missing data rather than dropping those rows. These decisions also may depend on
whether you believe the column is relevant to the predictive task. If the column with missing data is not relevant, then it may be
appropriate to exclude that column.

How was it detected? Retrograde calculates missing data values by examining the all columns with na values. This means that
placeholder values not recognized by pd.isna() are not recognized. The |Missimg Data:] notification uses the protected
columns identified in the (Protected Column) notification and checks the most common sensitive data value when an entry is
missing. It does not check combinations of columns.

Figure 13: The Missing Data Note attempts to reveal patterns in missing data related to protected columns (protected classes).

Proxy Columns

Some columns (variables) in your dataframe are correlated with protected classes. These are called proxy variables.
Below, we list the correlation coefficients (Spearman’s rho [p], Chi-Square [¥*], or ANOVA [F]). Correlation coefficients close to 0
indicate no correlation, whereas those close to 1 or -1 indicate a high degree or positive or negative correlation.

Why it matters Using proxy variables as predictors in your model may unintentionally base the model's decisions on protected
classes like race and gender even if you exclude those sensitive variables from the model.

What you can do It is up to you to decide whether to include proxy variables (or even protected classes themselves) as
predictors in your model. The correlations identified here may or may not be meaningful. There also may be more complex
correlations that weren't detected. In some cases, a variable's predictive value may outweigh its correlation with a protected
class; in other cases, it might not.

Ultimately, it is up to you to make a decision about whether it is valid to include the correlated columns in your model.

Within | Loans _J

Column Significantly correlated Potentially correlated
name columns (p < 0.001) columns (p < 0.25)
gender adj_bls_2 (F = 1.54), approved (F = 3.33), income (F = 28.84)

principal (F = 3.95)

approved (F = 24.9), income (F = 15.66), principal (F =

race term (F = 2.25), type (x* = 45.31) 8.52). 2p (* = 1406.74)

How was it detected? Retrograde calculates these values by comparing every sensitive column with every non-sensitive
column. Based on the data types of the columns being compared, Retrograde uses Analysis of Variance, Chi-Square, or
Spearman tests as appropriate. It shows highly significant correlations (p < .001) on the left and less significant correlations (p <
0.25) on the right. The correlations shown are those that had a p-value of less than 0.2, the Highest Correlated columns are those
that had a p-value of less than 0.001

Figure 14: The Proxy Column Note inspects associations between columns identified as protected and other columns in the
DataFrame. It tries to apply the most appropriate test and reports correlations with strong, significant correlations.

JupyterLab in Retrograde: Contextual Notifications That Highlight Fairness and Bias Issues for Data Scientists CHI °24, May 11-16, 2024, Honolulu, HI, USA

Model Ir (44.7% accuracy)

Model evaluated on: X_test using sensitive columns from | cleaned_data

Figure 15: The Model Report Note uses our data provenance methods to display group-wise error metrics even when those
protected groups’ features are not present in the test data (e.g., they were dropped from the DataFrame earlier in the task).

Modifications Table
principal ¥

index income interest type Zip

1981 33432 6.329 home 60637
1258 5279 3.844 auto 60614
148 104748 0.415 home 60625
2049 3677 7.962 personal 60625
1815 66664 3.554 home 60626
725 9349 7.525 personal 60623
1326 36478 3.016 home 60626

Figure 16: The Counterfactual Note randomly perturbs up to two features at a time and shows the “prediction diff” as a table.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interventions Promoting Fairness
	2.2 Computational Notebooks

	3 The Retrograde Environment
	3.1 Goals and Challenges
	3.2 's Back-end Analysis Approach
	3.3 Notifications

	4 User Study Methods
	4.1 Recruitment, Compensation, and Ethics
	4.2 Conditions
	4.3 Detailed Description of the Task and Data
	4.4 Survey Instrument
	4.5 Data Analysis

	5 Results
	5.1 Participants
	5.2 Analysis Without
	5.3 Retrograde's Effects on Perceptions
	5.4 Retrograde's Other Effects

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Full Images of Retrograde's Notifications

