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Abstract—In smart homes, access-control policies increas-
ingly depend on contexts, such as who is taking an action,
whether there is an emergency, or whether an adult is
nearby. The vast literature on context sensing could po-
tentially be leveraged to support contextual access control,
yet this literature mostly ignores attacks, adversaries, and
privacy. In this paper, we reevaluate the literature on home
context sensing through a security and privacy mindset.
We first describe a novel threat model in smart homes
focusing on the capabilities of non-technical adversaries.
Replay, imitation, and shoulder-surfing attacks are much
more likely in this model. We summarize contexts relevant to
access control in homes, mapping them to existing sensors.
We then systematize the sensing literature to construct a
decision framework for home context sensing that considers
security, privacy, and usability. Applying our framework, we
find that current sensors do not fully mitigate likely threats
in homes. Some sensors are susceptible to simple threats like
physical denial-of-service attacks, making it easy to bypass
policies relying on the absence of a characteristic. Many
sensors collect more data than needed and are not effective
for all groups of users or under all situations.

Index Terms—access control, smart homes, context sensing,
sensors, Internet of Things, IoT

1. Introduction

Smart home technologies, including Samsung Smart-
Things [121], Amazon Echo [4], and Google Nest [45],
are being widely deployed. While convenient, they intro-
duce security and privacy risks [84], [103], [104], [118].

Access control is a key problem that requires new
approaches in smart homes due to the inherent differences
between devices and scenarios in the home IoT relative
to traditional computing [55], [126], [161]. Traditionally,
access to a resource is granted unconditionally to a user or
a role encompassing a fixed set of users by typing a pass-
word. However, home IoT devices usually have a fixed
location, while the users present vary over time. Thus, the
set of users who ought to have access to a resource varies
over time and may include guests, in-home workers, and
others [29], [67], [161]. Users of shared devices may have
complex social relationships, such as parent-child [124],
parent-teenager [145], neighbors [15], or roommates [79].
Many home IoT devices also lack screens and keyboards,
so interaction occurs through voice, gestures, or physical
interactions like pressing buttons [43], [123]. Even for
devices with screens (e.g., a smart TV), the content on
the screen is often meant to be shared, putting users’ pass-

word at risk. These new modalities require authentication
mechanisms beyond passwords [27].

Crucially, He et al. [55] and Schuster et al. [126] found
that desired access control in smart homes is frequently
contextual (situational). Rather than granting uncondi-
tional access to a given user or a given role, authorization
decisions may depend on the context. A context can be
the user’s location relative to the device, the history of
the user’s interactions with the device, or the state of
the home [55]. An example policy is that a child can
only use the smart TV when a parent is nearby [55].
Here, the system must verify two contexts: (i) a child is
trying to use the TV and (ii) a parent is around. Enforcing
contextual access control requires privacy-preserving and
trustworthy context sensing. That is, a sensor (e.g., a
motion sensor) must reliably detect some context (e.g.,
a room is unoccupied) while respecting users’ privacy.

Prior work in the security and privacy community
has already proposed ways to utilize contexts in access
control [60], [126], but has not focused on how to detect
contexts in the physical world in ways that are both
trustworthy and privacy-preserving. A large amount of
existing work on sensing and ubiquitous computing could
be applied here, but it mostly ignores attacks, adversaries,
and privacy. For example, work done on robust sensing
often sacrifices privacy by adopting more invasive sensing
methods [21] or denser sensor deployment [13], [94]. This
is not realistic for an intimate setting like one’s home.
Some bodies of work also discover that errors are bound
to occur in particular circumstances, but they regard these
errors as rare or unintentional occurrences [61], [148],
[171]. Adversaries can exploit this assumption.

In this SoK, we critically reevaluate the literature
on context sensing in homes with a security and
privacy mindset. Furthermore, we translate this literature
to the problem of context sensing for access control,
identifying sensor types that best match specific contexts
within practical constraints. To do so, we first identified
home contexts that are critical to access control from
the small literature on contextual access control in smart
homes. We then systematically searched the proceedings
of the last decade of top conferences in sensing systems
(SenSys, MobiSys, and MobiCom), ubiquitous comput-
ing (UbiComp/IMWUT), and human-computer interaction
(CHI and UIST), identifying dozens of recent papers about
sensors that can detect those contexts in smart homes.
To capture well-known mature sensors, we also searched
for commercially available sensors for smart homes and
added classic papers on relevant sensors. This process left
us with 94 pairs of contexts and sensors. Analyzing these
papers while also revisiting key IoT papers from the secu-



rity, HCI, and usable security literatures, we constructed
a decision framework that highlights each sensor’s pros
and cons for security, privacy, and usability when used to
detect an access-control-relevant context in a smart home.
Our work thus lays a foundation for secure, practical, and
privacy-preserving context sensing in smart homes.

Our first contribution is a novel threat model
broadening the adversaries that prior literature has
considered for smart home sensing. Prior work has
focused on how experts can exploit IoT systems through
software vulnerabilities [3], [166], default passwords [5],
replication of physical traits [89], and adversarial exam-
ples [17], [36], [130], [163]. While our model encom-
passes these threats, we focus on non-technical adversaries
with legitimate access to a home, such as kids, room-
mates, guests, and workers, who usually have stronger
motivations than remote strangers. Notably, most papers
on context awareness and home sensing do not consider
the adversarial mindset typical in the security community.

From our threat model, we make several observations.
First, physical denial-of-service attacks are trivial against
many sensors. Thus, in contextual access control, poli-
cies that allow access by default or rely on the absence
(rather than presence) of a characteristic are easy to by-
pass. Second, non-technical users are highly capable of
replay, imitation, and shoulder-surfing attacks. They can
also impersonate someone by simply taking that person’s
phone. Identity cannot be reliably authenticated through
possession of a phone or naive recognition of voices/faces.

Contextual access control in homes thus requires de-
ploying sensors with key properties. The sensors, alone or
in ensemble [13], must resist attacks from both technically
literate outsiders and non-technical insiders. They must
also minimize inadvertent data collection because sensors
may be deployed in private areas of the home. Finally,
household members must find the sensors acceptable.

Our second contribution is a decision framework
for evaluating the degree to which a particular sensor
possesses these key security, privacy, and usability
properties. We further distinguish between attacks of dif-
ferent complexities, privacy considerations from various
actors, and specific usability criteria. The latter includes
ease of deployment, reusability of a sensor across con-
texts, and inclusiveness. This framework will be useful
for individuals who design or deploy sensors in homes,
including DIY users [16], manufacturers, and researchers
in security and in sensing. We will refer to these indi-
viduals as smart home designers. This framework can
help smart home designers navigate the vast array of
sensing mechanisms described in the literature or available
commercially. We envision the framework helping smart
home owners to decide which sensor to use, manufacturers
to design their products for facilitating contextual access
control, and researchers to develop sensors that are more
sensitive to security and privacy issues. The framework
also outlines criteria to consider when designing a new
sensor. In particular, our framework elucidates key trade-
offs among the variety of sensors (e.g., motion sensors,
microphones, thermal imaging) that can detect a given
context (e.g., whether anyone is in a room).

For our third contribution, we apply our frame-
work to highlight trade-offs in deploying sensors for
access control in homes. Through a systematic review

of the sensing literature, we identify indicators (e.g.,
characteristics, such as gait) and associated sensors (e.g.,
a pressure sensor mat for detecting gait) for sensing either
identity (e.g., this is Jane) or context (e.g., this is an
adult). Using our decision framework, we evaluate each
sensor’s key properties. We used our literature review to
gauge sensors’ robustness to attack, privacy properties
(e.g., requirements for data storage), and deployability.
With our framework, smart home designers can identify
the sensors that support desired contexts for access control
and recognize trade-offs in security, privacy, and usability.
To keep our framework and evaluations up-to-date,
we have released them in a public GitHub repository.1
Researchers may publicly modify, expand, or dispute the
table through pull requests and issues, facilitating open
discussion between the sensing and security communities.

Applying our framework yields the following insights.
First, we find that many current sensors, when used
alone, do not adequately address potential threats from
non-technical adversaries. They are especially vulnerable
against rarely studied physical DoS attacks. Second, many
sensors collect more data than needed. Contrary to cur-
rently deployed architectures, many sensors do not require
cloud storage for data. Lastly, we found that many sensors
are not inclusive based on age or disability, and some can
be ineffective under certain environmental factors.

We first detail related work (Section 2) and describe
our smart home model underpinning our framework (Sec-
tion 3). This model identifies sensors that may operate
in the smart home and would thus be in scope for our
systematization. Our security and privacy evaluations of
these sensors relied on our threat model of adversaries
and attacks on context sensing, which we describe next
(Section 4). Then, we propose our decision framework
for selecting sensors for contextual access control in terms
of security, privacy, and practicality (Section 5). We also
describe our method for evaluating sensors through this
framework (Section 6). Applying the framework, we make
many observations about security and privacy in practical
situations (Section 7). Finally, we discuss our framework’s
applications (Section 8) and conclude (Section 9).

2. Related Work

Privacy in the IoT: Prior research demonstrates gaps be-
tween users’ perceptions of their privacy in smart homes
and reality. Users have a limited understanding of privacy
risks, and these opinions vary by context [10], [34], [77],
[88], [161]. Researchers have explored the design space
of usable privacy protection for the IoT [157], designed
mechanisms for data transparency in homes [64], [65],
[113], and made personalized privacy mechanisms that
predict an individual’s preference in a given situation [12],
[34]. Building on the usable privacy literature, we capture
privacy concerns about implementations of contextual ac-
cess control, including sensing, data storage, and retention.

There is a growing body of research on developing
privacy-preserving measures in ubiquitous sensing sys-
tems, such as obfuscation in audio sensing [42], cross-
device tracking through ultrasound [91], bystander privacy
in wearable cameras [31], [54], and so on. However,

1. https://github.com/UChicagoSUPERgroup/eurosp21
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the public has no guarantee that the manufacturers of
smart home devices will implement any of these counter-
measures. Non-technical users are also unlikely to deploy
such measures by themselves. Therefore, smart home
designers should select a sensing method that minimizes
overprivileged and inadvertent data collection before de-
ployment, which is the focus of our paper.
IoT SoKs: A few prior papers survey specific aspects of
the IoT. Fernandes et al. highlighted that access control
and authentication are among the IoT’s new intellectual
challenges [38]. Considering software and networks, Al-
rawi et al. proposed methods for security evaluations of
home IoT devices [3]. While they comprehensively ex-
plore digital attacks, we instead focus on physical attacks
on sensors. Yan et al. examined analog sensor security, for-
malizing sensor circuits’ security properties [156]. Their
attackers are highly technical, whereas we focus on the
non-technical adversaries that are common inside homes.
On the network level, Yu et al. argued that context-
aware enforcement is essential in the IoT [159]. Zhang
et al. [166] compared academic and industry perspectives
on IoT security. Their “environment mistrust” category
can include physical attacks on sensing. They focus on
technical attacks, such as signal jamming and voice syn-
thesis. We expand their threat model to explore physical
attacks on sensors by non-experts.
Access Control in Smart Homes: Researchers have stud-
ied users’ mental models of access control for IoT de-
vices [55], [70], [144] and data in homes [92], finding that
current systems do not address the challenges unique to
smart homes. Inspiring our work, Schuster et al. proposed
protocols for enforcing contextual (a.k.a. “situational”)
access control [126]. They introduced Environmental Situ-
ation Oracles that answer queries about context. They did
not, however, investigate physical sensing. We investigate
the trustworthiness and usability of the physical sensing
that necessarily underpins their oracles.

To improve the robustness of sensing, Birnbach et al.
proposed ensemble methods that combine sensors to ver-
ify physical events in homes [13]. While they focused on
techniques for sensor fusion, we provide a framework to
help designers choose a set of sensors with complementary
usability/privacy properties and abilities to resist attacks.

User-centered work focuses on the expression of poli-
cies, not enforcement. He et al. mapped potentially desir-
able policies [55] and Zeng et al. studied the user interface
for expressing policies in multi-user homes [162], but
gaps remain. Current designs rely on the integrity and
availability of sensor data, which we show are not guar-
anteed. Privacy concerns can also make people unwilling
to deploy certain sensors in homes [23].

While an expanding body of work proposes contextual
access control, no prior work has investigated how to
realize such a system using existing physical sensors.

Network Attacks: Remote adversaries can exploit weak-
nesses in protocols or software to attack home IoT devices
without being physically near a home. These attacks,
which are not unique to smart homes, include network-
based denial of service (DoS) attacks [5] and exploiting
weak or default credentials [72]. Sensor-based IoT devices
are conceptual successors to wireless sensor networks and
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Figure 1: Our model of a smart home.

thus inherit most attacks against them [32], [62], [69].
They have been widely studied and are thus out of scope.

3. Our Model of a Smart Home

Context sensing and access control depend heavily on
how a smart home works. Here, we abstract away im-
plementation differences and discuss a model that applies
to most smart homes. Current IoT devices support rich
functionality, yet access control in the home has largely
been limited to using smartphones as a proxy for identity.

Figure 1 depicts our basic model. A smart home
consists of two types of Internet-connected devices: ac-
tuators that execute commands (e.g., lights), and sensors
that measure their surroundings (e.g., motion sensors).
Users control actuators through interaction modalities
(e.g., smartphone, voice, physical buttons). The access-
control policy uses contexts sensed via sensors to decide
whether to authorize access.
Actuators can be controlled over the internet or a local
network, enabling access control [126]. Traditional de-
vices (e.g., non-IoT locks) are outside our model.
Users are people with remote or local access to devices,
including family members, visitors, and workers.
Interaction Modalities describe how the user interacts
with devices. Our model includes five modalities. The first
four typically result in immediate changes, while the last
covers automation that causes future changes.
1. Manual Interaction: A user can interact with devices
manually, often by flipping switches or pressing buttons.
Additional sensing is required to identify the user in
such scenarios. A contextual access-control framework
can inform a smart device whether to permit access.
2. Smartphones: Smartphone apps can control devices,
sometimes via a home hub. Because users already au-
thenticate to their phone, current IoT systems often rely
on the possession of a phone as a proxy for identity.
3. Voice: Voice assistants let users control devices by
speaking. Currently, they perform no authentication [154]
or use speaker recognition that is easy to fool [132], [165].
4. Gestures: Currently uncommon in homes, gestures
could be detected using ultrasonic or radio waves to rec-
ognize and authenticate movements as a source of input.
5. Automation: Smart home automation can link changes
in context or other triggers to actions. They can be set with
apps [66] or end-user programming [146]. Absent access
control, automations may create loopholes [133], [150].
Imagine the automation: “If the lights turn off then play
a movie.” If a child may not play movies, yet may turn
off lights, a crafty child could start a movie by turning off
a light. While focused on contextual access control, our
framework can also apply to automations triggered by a
sensed context [146], such as when a room is warm [133],
[164]. An attacker who tricks a sensor can cause chained
automations toward a malicious goal [150], [151].



Contexts describe a particular state of the physical world.
In a smart home, contexts describe situations, states of ac-
tuators, presence of specific people, and more. Examples
include a security camera being activated, the temperature
staying within some range, or a specific person sitting in
the kitchen. Contextual access control relies on sensors to
reconstruct these situations.
Sensors detect physical properties. Traditionally, they
have been used primarily for smart home automation (e.g.,
motion triggers a light). However, recent research has
identified the need for contextual access control in the
smart home [55], [126], [162]. We envision that both
existing and future sensors will underpin this paradigm.

Smart homes use phones or accounts as an imperfect
proxy for identity. Context sensing has generally been
used for automation, not contextual access control.

4. Our Threat Model

Sensor-based access control in homes requires robust
sensing that protects user privacy. Prior IoT research has
primarily focused on defending against remote attacks
against IoT software [3], [159]. However, local attackers—
regardless of technical background—can also pose a sig-
nificant threat to the system by tricking physical sensors
into detecting incorrect contexts or violating others’ pri-
vacy. In fact, potential local attackers like family mem-
bers, roommates, guests, and workers could have stronger
motivations to bypass access control than unacquainted
remote attackers. Our work examines local threats broadly
and focuses on those posed by non-technical users with
legitimate or illegitimate access to a home. Below, we
taxonomize goals, attacks, and attackers. In light of the
larger literature on context sensing, we revisit these attacks
within our decision framework (Section 5).

4.1. The Attacker’s Goals

One of our key insights is that non-technical attackers
with modest and localized goals are a threat to contextual
access control. Whereas remote attackers disrupt at scale,
non-technical local attackers might only want to gain
illegitimate access to some resource or spy on another
individual. For example, a child may wish to watch TV
without approval, a burglar may want to erase security
camera footage after committing theft, or (as can be the
case with intimate partner violence [41], [90]) an abusive
member of the household may try to spy on members
of their household by evading policies stopping security
cameras from recording when people are home.

Local attackers might aim to bypass access control or
compromise the privacy of others in the home.

Strategies for attacking sensors depend on the policy.
A default-deny policy, which automatically denies access
to unknown users, is not always advisable. For instance,
prior work found users prefer default-deny policies for
locks, but would rather permit unauthorized users to con-
trol smart lights than leave users in the dark [55].
Impersonation: Under a default-deny policy, a system
only accepts authorized and authenticated users. An at-
tacker must impersonate an authorized user or fabricate a
valid token through imitation or replay attacks.

We find that these attacks often do not require techni-
cal knowledge (Section 7), especially in an intimate setting
like a home where boundaries to privacy are reduced and
private resources are easy to acquire. For example, many
widely deployed facial-recognition systems lack depth or
liveness detection. One can trick them by presenting a
photo or video of an authorized user [87]. Photos of
authorized users (e.g., a child’s parents) are easy to find
in a home, and videos can be taken in secret.

Similar issues arise for audio. People with access to a
home can record authorized individuals speaking to voice
interfaces. While authenticated speaker recognition is an
active area of research [37], many widely deployed voice
interfaces are vulnerable to simple replay attacks [132],
[165] or even lack authentication entirely [154].2 Off-the-
shelf voice morphing compounds this problem [97].

Local attackers have extensive access to photos and
audio, making basic face or speaker recognition sys-
tems vulnerable to replay and imitation attacks.

Current home IoT systems tend to rely on smartphones
as a proxy for identity, capitalizing on their ubiquity. How-
ever, smartphones often run out of battery, and they do
not offer the convenience of other interaction modalities
(Section 3). This practice also falsely assumes that the
user is always near their phone. For example, if the smart
TV will turn on only if an adult’s phone is in the room, a
mischievous child can take their parent’s phone while the
parent is sleeping. Furthermore, smartphone authentica-
tion is still not fool-proof as it is often knowledge-based
(e.g., PINs). It is often easy for others in the home to
bypass this authentication through shoulder-surfing.

Existing practices of using phones (potentially with
authentication) as a proxy for identity in shared spaces
can be risky in terms of both security and usability.

Invisibility: Contextual access-control policies can also
allow access by default. One example would be using
the smart stove. Whereas visitors or babysitters may be
allowed to use the stove, a child should not use it for
safety reasons. A natural policy that follows is “anyone
except a child can turn on the stove.” When these default-
allow policies depend on not sensing a characteristic or
situation, e.g. “record security video of the bedroom when
no one is home), an attacker needs nothing more than to
make the characteristic or situation “invisible.” They can
do this by changing or blocking the sensor’s field of view.

We will refer to such attacks, where the local attacker
prevents the sensor from physically detecting a context, as
physical denial of service (DoS). This can entail blocking
a motion sensor with paper or overloading a microphone
with loud noise (including outside the human hearing
range [1], [163]). Sensors must detect whether they are
receiving accurate and fresh input.

Default-allow policies, which rely on not detecting a
given situation, can be defeated by blocking sensors.

2. In our informal testing, Google Home’s speaker recognition only
seemed to verify the person who said “OK, Google.” It accepted further
commands spoken by someone else, making replay attacks trivial.



Dimension Type Capabilities Examples

Access
Indoors

Physical access to indoor & outdoor devices/sensors

Family member, babysitterRich observation opportunities
Full knowledge of sensor models & locations
Knowledge of access-control policies & automations

Outdoors
Physical access only to outdoor devices/sensors

Neighbor, prospective burglarLimited observation opportunities
Opportunistic attacks that reach more victims

Expertise Expert
Sophisticated network and imitation attacks

IT professional, hackerAbility to craft black-box adversarial examples
Unsophisticated replay/imitation attacks, block sensor

Non-expert Unsophisticated replay/imitation attacks, block sensor Child, domestic worker

Resemblance Similar Spoofing (through imitation) Sibling, one who looks similarHigher possibility of inadvertent false positives

TABLE 1: Local attackers can be characterized along the dimensions above, impacting attack capabilities.

4.2. Attacks

Based on these attacker goals, we surveyed top se-
curity and sensing conferences to identify likely attacks.
We clustered prior work based on attack method, resulting
in three major types of attacks: 1) replay and spoofing at-
tacks; 2) adversarial examples; 3) sensor hardware attacks.
Note that replay and spoofing attacks differ in practicality
despite often appearing together in the literature. We did
not find mentions of physical DoS attacks in our literature
survey, but include them because they are a clear threat
to access control. Below, we define these attacks.
Replay Attack: The attacker collects a credential and
feeds it back to a sensor. For example, the attacker can
play a voice recording, show a photo of a face, or make a
gummy mold of a specific fingerprint [89]. Our focus in
this SoK is on replaying the physical signal itself, although
network traffic can sometimes also be replayed.
Spoofing: The attacker forges an approximate credential
or situation they have not necessarily captured. Smoke can
spoof a fire, and energetic pet cats can spoof occupancy.
Physical Denial of Service (DoS): Jamming, blocking,
or moving a sensor can prevent accurate sensing. It is
important to note that the sensor detecting the absence of
a characteristic or situation is different from not detecting
it. For instance, when trying to sense whether a room
is empty, a camera blocked by a piece of paper will not
detect any people. This differs from a camera affirmatively
seeing a room without people. These attacks are often easy
to deploy, but have not yet received much attention.
Adversarial Examples: Against ML-based sensing
methods, the attacker can poison the training data or add
carefully crafted noise to inputs [125], [130].
Sensor Hardware Attacks: The attacker leverages the
physical principle behind the hardware to deceive the
sensor, such as with signal injection attacks [73], [163].
Inadvertent False Positives: This is not quite an attack,
but a sensor incorrectly detecting an identity or situation
can still compromise access control.

4.3. Physical Sensors’ Potential Attackers

To understand each attack’s feasibility, we characterize
the attacker’s capabilities. Table 1 provides a summary.
Our threat model concerns attackers who violate access-
control policies. We thus ignore adversaries who create

unreasonable policies, such as domestic abusers attempt-
ing to spy on their family. Defending against those adver-
saries requires countermeasures beyond access control.
Access: An attacker with access to the home would be
well-positioned for physical attacks against sensors. They
can observe authentication processes in the home, poten-
tially repeatedly, to record information for replay or imi-
tation attacks. For example, a roommate might encounter
multiple instances of the user speaking to a voice assis-
tant. They thus have multiple opportunities to record the
user’s voice for tricking speaker-recognition algorithms.
By having access to the home, attackers can also infer
access-control policies, automations, and sensor locations
or types from their observations. Legitimate access can be
permanent, such as for residents, or temporary, such as for
visitors and domestic workers. Illegitimate access occurs
when people enter the home without permission.

It is also possible for attackers to access sensors out-
side the home [15], [82] or make inferences using partial
information (e.g., from sensors visible through windows).
Some individuals who might rely on these methods in-
clude neighbors and prospective burglars. We note that
modeling the attack surface cannot rely on a simple indoor
versus outdoor dichotomy. For example, one can control
a voice assistant through an open window.
Expertise: Attackers with technical expertise, such as
infosec professionals, are capable of sophisticated at-
tacks. Some attacks against ML-based sensor systems
are of this nature. They can involve carefully crafted
eyeglasses [130], stickers [36], or audio [1], [163]. Experts
can also target sensors’ physical principles, such as apply-
ing acoustic interference to accelerometers [141]. Finally,
network- and software-based attacks are also possible.

On the other hand, nontechnical attackers can carry out
replay or imitation attacks that only require observations
(e.g., spoken passwords) or commodity recording equip-
ment (e.g., a smartphone). They can also disable sensors
by blocking, repositioning, or unplugging them.
Resemblance: Biometric sensors may confuse individ-
uals of similar physical traits. Biological family mem-
bers often share physical resemblances and have easy
access to sensors because they often live together or
visit each other. Real-world examples include one man
who tricked a voice-recognition system by imitating his
twin’s voice [132]. Identical twins can also fool facial
recognition [143]. It may also be possible for unrelated
people with physical resemblances to trick the sensors.



Our threat model highlights two key ideas missing
from prior work. First, most work focuses on threats from
attackers with extensive resources and expertise. We show
that non-experts with access to the home are capable of
replay and spoofing attacks against sensors that support
contextual access control. Second, blocking sensors can
allow attackers to evade some access-control policies. This
method of attack has not yet been studied extensively.

Contextual access control must consider that non-
experts with access to a home can attack sensors.

5. Decision Framework for Context Sensing

Individuals designing or deploying home sensors need
a framework that helps them navigate the trade-offs be-
tween sensors’ security, privacy, and usability properties in
conjunction with the users’ needs and the space itself [23].
These individuals, whom we term smart home designers,
will benefit from the framework in different ways:

• Do-it-yourself smart home owners can learn security
and privacy implications of selecting certain sensors.

• Sensor manufacturers can holistically evaluate their
current sensors’ trade-offs and identify additional
contexts that need new sensors to be developed.

• Security and sensing researchers can identify security
and privacy gaps that guide their future research.

For example, a smart home owner might wish to know
when anyone is at home. Consulting our framework
reveals that cameras are suitable for this, but are not
privacy-preserving. Meanwhile, pressure sensors on the
floor would be privacy-preserving, but are impractical and
expensive to install. The user can now determine whether
to prioritize occupancy detection at the cost of privacy.

Here, we first explore the life cycles of adopting
a sensing technique. Then, for each stage of the life
cycle, we further define the main security, privacy, and
usability criteria that smart home designers must consider
in choosing sensors, which we collectively consider our
framework. We constructed this framework by critically
analyzing the 94 pairs of sensors and contexts we identi-
fied through our systematic review of the sensing literature
(see Section 6.2) relative to the security and usable secu-
rity literatures concerning the home IoT (see Section 2).
We also considered broader security principles to fill in
potential gaps in this framework.3

5.1. Life cycles

Adopting a new sensing technology in one’s home is a
long-term and ongoing process. To avoid missing crucial
challenges during the process, we first define different
stages of the adoption process, as depicted in Figure 2.
Acquiring the required hardware: A user might need to
buy new sensors, which is a financial and time investment.
Deploying the hardware: After acquiring the hardware,
users need to install it in their homes. When needed, users
might also re-deploy hardware, such as to reposition it.

3. The team that constructed the framework included multiple students
and three faculty members. Two of the faculty members focus on security
and privacy research, but also have experience with machine learning
research. The other faculty member conducts sensing research.

Registration (optional): Sometimes the hardware may
require the user to register themselves first, which is
especially common for sensors pertaining to an identity.
(Re)training / Maintenance (optional): Before usage,
machine learning-based sensing methods commonly re-
quire the user to train the model about the context in its
unique environment. Retraining may also be required in
the future to adapt to users and a sensor’s environment
changing over time. Maintenance, such as battery replace-
ment and routine check-ups, may also be required.
Usage: After training, the sensor is ready for use. We
expect the sensing technique to operate until the user stops
using the sensor. To identify possible issues in this stage,
we must abstract how the sensing technique works.

Sensing detects environmental events, such as temper-
ature changes, movement in the background, and sound.
We term these indicators, which could be mapped to a
context. For example, if a sensor detects movement of a
heat source, it is likely to be someone moving nearby.

To detect the indicator, the sensor needs a signal sent
or radiated from the source. Depending on how far the
signal can be transmitted, the sensor may require direct
contact, near-field communication, or far-field communi-
cation. We term this process signal transmission.

Once the sensing hardware receives the signal, it first
needs to process the analog signal, such as using amplifi-
cation and noise filtering. The analog signal can then be
converted into a digital signal for further processing. The
sensing hardware stage represents the above process.

Finally, the digital signal, or the raw sensor data, is
sent to a processor or the cloud for further computation.
Depending on what the sensing method is designed for,
different data analysis methods may apply here. For ex-
ample, facial recognition and gait recognition may both
rely on cameras, but the data analysis would differ. Once
the sensed data analysis is complete, the algorithm outputs
whether the context it aims to detect is active.
End of Life: The user may eventually decide to uninstall
the home sensor. In this stage, the sensor may be directly
thrown away, given to others, or sent back to the manu-
facturer for upgrading or replacing. The hardware is not
guaranteed to be properly destroyed. Thus, information
leakage after disposal is possible. We treat the uninstalla-
tion process as two parts: removing all data (e.g., factory
reset) and physically removing the sensor from the home.

5.2. Security

We consider two ways in which a sensor may be
attacked. One is through inadvertent failures. An attacker
may bypass an error-prone sensor through brute force.
The other is through intentional attacks. These attacks are
described in detail in Section 4. Figure 2 also indicates at
which stage these attacks might occur.

We do not consider attacks before the usage stage.
The set-up stage occurs only once and the victim is often
present, increasing the difficulty of attacking the sensor
itself. Therefore, during the set-up stage, it is more likely
for the attacker to perform network attacks (e.g., sniffing,
person-in-the-middle), which are out of this paper’s scope.

In Tables 2-3, a red “!” signifies that a sensor is easily
susceptible to a given attack. A yellow “?” signifies that
it is not very susceptible to the attack. If no symbol is
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Figure 2: Different issues emerge in difference stages of using sensors in home.

shown in the table, the attack is implausible against the
sensor (e.g., replay attacks against smoke detectors).

5.3. Privacy

Sensors collect data to operate, but excessive collec-
tion of sensitive data causes privacy concerns. Further-
more, certain contexts require intensive computation on
data that is collected over long periods of time. To identify
potential privacy threats during the usage stage, we review
each stage carefully to identify general threats. We assume
that the sensing software is secure and do not consider
privacy threats before the usage stage. Our framework
considers the following aspects:
Required Data: Data that must be collected for the sensor
to function. Depending on which indicator the sensor
detects, different types of data are collected, with various
privacy implications.
Overprivileged Data: Depending on which sensor the de-
signer decides to use, superfluous data might be collected
inadvertently. For example, a microphone for occupancy
detection also records conversations. In the “overprivi-
leged data” column of Tables 2-3, poor means the sensor
collects unnecessary and sensitive information, acceptable
means it collects unnecessary data that is not sensitive, and
good means it does not collect superfluous data.
Data Storage: Data must be analyzed and stored in
the cloud if the device lacks the computational power
or storage space for local processing. For other sensors,
however, data can be stored on the device containing the
sensor or on an in-home hub. Nonetheless, companies of-
ten upload data to the cloud even when unnecessary [28].
There is no guarantee that the uploaded data will be used
ethically [56], which can deter users from deploying some
sensors in homes [23]. We consider whether each sensor’s
data must be stored on the cloud, or whether local storage
supports the needed functionality. We leave out of scope
the question of whether a company will choose to upload
data to the cloud even when it could be retained locally.
Retention Time: Some sensors require longitudinal data
(e.g., for training a model). Companies may again de-
cide to store all data indefinitely even when not strictly
necessary. Transient storage means sensed data can be
immediately discarded, while persistent means it must be
retained until the user factory resets the device. Similar to
data storage, companies may retain users’ data for as long
as they want, even if the user factory resets their device
and deletes their account. To focus on the requirement for
enabling the sensing technology, we only consider how
long the data must be available for the functionality.

5.4. Usability

To assess a sensor’s usability for a non-technical end
user, we consider the following criteria, which we com-
piled based on the stages identified in Figure 2.
Wide Availability: Users are more likely to adopt sensors
that they can easily acquire. For example, one can sense
occupancy with motion sensors or ultrasonic sensors, but
users and designers may prefer the former because of their
cheap cost and ubiquity. Nonetheless, more expensive
sensors (e.g., cameras) may also be widely available if
they fulfill multiple use cases. This may benefit users
because sensors that fulfill multiple use cases may obviate
the purchase of additional sensors.
Initial Set-up: How difficult is it for a non-technical user
to set up the hardware during the deployment stage? Good
means little to no effort is required, such as plug-and-play
installation. Poor requires substantial effort from the user,
such as renovating their current home for installation (e.g.,
painting the wall, changing the floor). Anything between
good and poor was deemed acceptable.
Registration: How much effort does it take to register a
user, or how long does it take to collect enough data to
train the model? Good means no registration or training
is needed. Acceptable encompasses two situations. In the
first situation, the sensing method requires straightforward
registration or data collection, meaning registration should
not take over 10 minutes. This includes most commercial
products, such as Touch ID or Face ID. In the second sit-
uation, data collection needs more time to finish, but does
not require user attention. For example, a system from
Hsu et al. [61] required the user to wear an accelerometer
for days as ground truth for identifying the user from their
RF reflection. While this process takes days, no attention
is required, earning it an acceptable rating. Poor takes
significant effort from users, usually exceeding 10 minutes
in duration while requiring constant attention the entire
time. For example, Qian et al.’s system [111] requires the
user to walk for four minutes each at three different paces.
Retraining / Maintenance: How often is model retraining
or hardware maintenance required? Good requires none.
Acceptable requires occasional retraining or maintenance
less than once a month (e.g., changing batteries every
few months). Poor requires retraining or maintenance at
least once a month. When evaluating biometric sensors,
we assume an adult user with stable features.
Reusability: Some sensors can detect multiple contexts.
For example, cameras can detect age, room occupancy,
or an identity. Good means many contexts can be sensed,
as with cameras. Acceptable means a few contexts can



be sensed, as with radar sensors. Poor means the sensor
detects only one context, as with fingerprint sensors.
Device Dependency: Some methods require users to carry
a device (e.g., a phone) during usage. Good means no such
device is required. Poor means that it is required.
Limitations: We consider whether the sensor is effective
for all groups of users and under all situations. We focus
on age, potential disabilities, and environmental factors
(e.g., lighting conditions, GPS reception underground).
Removal: When a user decides to stop using a sensor, the
sensor will be removed from the home. As removal is the
inverse of the initial setup, we decide to combine them
with the initial setup in Tables 2-3.

5.5. Example

We illustrate the use of this framework by describing
two examples. Both examples are sensors that one might
use to detect robbery, which is relevant to when access
is granted based on whether there is an emergency in the
home. They are also listed in Table 2.

Some commercial products, such as the Netatmo Cam-
era [102], alert the user when unrecognized individuals
enter the house. As one would expect, cameras and facial
recognition algorithms have poor security and privacy
qualities, but great usability. They are easily susceptible
to replay attacks and adversarial examples. They are also
susceptible to physical DoS if the attacker simply blocks
the field of vision with an object. Sensor hardware attacks
and spoofing are likely impossible for the adversaries we
consider. The video stream will capture more information
than needed to determine the occurrence of a robbery. Pro-
cessing the video stream requires long-term cloud storage.
Lastly, cameras are ubiquitous and easy to use, although
registering users and retraining the facial recognition al-
gorithm to accurately recognize users require some effort.

Glassbreak sensors, like Honeywell’s [58], can also
detect robbery by monitoring for audio frequencies of
glass breaking. These sensors are susceptible to replay
attacks, physical DoS, sensor hardware attacks, and spoof-
ing. Machine learning is not necessary, so adversarial
examples are not a concern. They capture basic audio
frequencies that encode more information than necessary,
but this information is simple enough to be stored locally
for a short amount of time. They are easy to acquire and
use, but they only fulfill the unique purpose of detecting
glass breaking. A user looking to sense multiple contexts
cannot rely on glassbreak sensors for other contexts.

6. Methodology

Both to understand the potential of applying our de-
cision framework in realistic situations and to illustrate
how to use it, we applied the framework to sensors
that would support commonly desired contextual access
control policies in smart homes. Applying the framework
requires: (1) a set of desirable contexts for access control
policies; (2) sets of sensors that can detect those contexts;
and (3) evaluations of the security, privacy, and usability
of detecting those contexts with those sensors. This sec-
tion details our method for applying the framework and
analyzing each aspect to create Tables 2–3.

6.1. Desirable contexts

Existing work on context sensing does not fully list
the desirable contexts for contextual access control in
homes. For example, some work focuses on non-security
domains, such as sensing contexts for healthcare [95],
activity recognition [76], [169], or indoor tracking [68],
[107], [112], [155]. Other work focuses on device-level
contexts (i.e., device states) [18], [66], [139], [159], but
does not consider contextual access control.

To overcome these challenges, we first identified a list
of contexts mentioned in the most closely related work
on contextual access control in homes [55], [126], [162].
We then analyzed the user study data from He et al. [55].
We manually clustered participant responses through open
coding. We added to our list contexts mentioned at least
five times or that are related to identity (thus naturally
relating to access control). Tables 2–3 list the final set of
desirable contexts in the leftmost column. The “user” in
the leftmost column refers to the initiator of the action
who uses a device that is owned by the “owner.”

6.2. Sensing Mechanisms

Extensive prior work proposes technologies to sense
identity or contexts in physical spaces. It is hard for a
smart home designer to navigate this work and determine
the appropriate sensor based on its security, privacy, and
usability trade-offs. For example, to track a person’s lo-
cation in the home, researchers have used cameras [155],
CSI (Channel State Information) from WiFi signals [112],
visible light channels [81], and more. Direct mappings be-
tween contexts and precise sensors are not straightforward.
Generally, a physical sensor is used to sense some char-
acteristic (which we term an indicator) that relates to that
context. For example, if age is the relevant context, one
might use a person’s gait, voice, or facial characteristics as
physical indicators of age. These indicators can be sensed
with cameras, microphones, and more.

For each context, we identified potential indicators
and associated sensors by surveying the sensing litera-
ture, searching for relevant industry products, and asking
experts from the sensing community for methods they had
encountered in their field. Our final set of sensors (see
Tables 2–3) includes both research prototypes and mature
products. The example column of Tables 2–3 lists the
examples of research prototypes or commercial products
we consider for each type of sensor.

To find and evaluate research prototypes, we system-
atically reviewed the last ten years of proceedings of top
conferences in sensing systems (SenSys, MobiSys, and
MobiCom), ubiquitous computing (UbiComp/IMWUT),
and human-computer interaction (CHI and UIST) in the
ACM Digital Library. We first filtered the search results
based on keywords (“sensing” in the abstract and “home”
in the paper), which yielded 716 papers. We then manually
inspected each paper to determine its relevance. We used
the paper’s title to determine potential relevance, which
led to 127 papers remaining. We then read each of these
papers to determine its actual relevance. We further ex-
cluded papers if (i) they were not related to sensing in
homes, but rather applications like VR/AR, smart cities,
or health; (ii) they did not focus on sensing a specific



context, but rather on refining sensing techniques through
improved processing algorithms or machine learning tech-
niques; or (iii) we could not directly map the paper to any
of the desirable contexts we identified. The final 36 papers
are listed in Table 2, and we extracted the indicators of
the contexts from the corresponding papers. If we did not
find prototypes in this body of literature for an indicator,
we looked to related top-tier conferences, such as CVPR.

To augment this initial list with more mature and
commercially viable methods, we first consulted experts in
the sensing community to identify classic papers for types
of sensors that are now commonly used. To cover methods
used in commercial products, we then searched for sensors
of each indicator (as collected from research papers above)
on Amazon. If we had not found any indicators at that
point for a context, we searched for sensors related to
that context and then included the indicators they used.
This process led to our final set of 94 pairs of a context
that is desirable to sense for access control in the home
and a type of sensor (research prototype or commercial
product) that identifies that context.

The steps described above survey, but do not sys-
tematize, this work. For systematization, we applied our
framework to analyze the security, privacy, and usability
of using that sensor to detect that context. To understand
how the sensing method worked, we read the relevant
research papers for prototypes and any user manuals,
technical specifications, and white papers we could find
for commercial products. We list the detailed criteria we
use for this systematization below and in Section 5.

6.3. Security

Attacks, listed in Section 4, target particular types of
sensors. To perform replay attacks, one must be able to
record and then play back the relevant data, a situation
that mostly applies to microphones and cameras. Attacks
on sensor hardware target sensors’ physical properties and
are thus relevant to microphones, MEMS sensors, and
more. We used past literature to decide whether the type
of sensor used by the sensing method is vulnerable or not.

Some attacks (e.g., physical DoS attacks) are less stud-
ied and some sensors (e.g., motion sensors) are less often
targeted. In these cases, we studied the sensor’s basic prin-
ciples from papers, product manuals, and white papers,
and we discussed among our team whether it might be
susceptible to each attack. For example, passive infrared
(PIR) motion sensors detect motion based on changes in
their view in infrared. Infrared radiation struggles to travel
through paper, glass, and thermal blankets, which makes
occlusion possible. We acknowledge that some products
may adopt anti-tampering techniques not specified in the
manual or technical specifications. Our judgments reflect
contemplation, rather than lab testing. Tables 2-3 thus
outline expected and potential attacks.

6.4. Privacy

We evaluated sensors’ privacy implications as follows.
We identified the data required by each sensor based on its
description in its paper or manual. Examples include audio
for microphones, air for smoke detectors, and phone pack-
ets for CUPID [129], a WiFi-based indoor localization

system. We then identified overprivileged data collection
by subtracting the information needed to determine the
context from what could reasonably be inferred from the
required data. We used the guideline in Section 5 to label
overprivileged data in Tables 2-3. For example, Touch
ID [9] requires fingerprints. This might suggest over-
privilege because a fingerprint is personally identifiable.
However, since it is used to detect the user’s identity, we
do not consider its data collection overprivileged.

Next, we determined the data storage location and
retention time required for reasonable performance. For
storage location, we examined the algorithms needed to
process the data for the sensor. If the sensor required a
large amount of longitudinal data or algorithms that could
not be computed locally (such as Gaussian models), we
labeled the sensor as requiring cloud storage. Otherwise,
we labeled it as local. For example, we consider local
storage sufficient for sensors that use SVM classifiers and
require only highly limited longitudinal data. If data did
not have to be stored for more than one access, we labeled
it transient. If any data did, then we labeled it persistent.
For example, smoke detectors have transient data retention
because they do not need to store historical air data to
detect future smoke. In contrast, fingerprint readers that
verify identity do need to store representations (templates)
of the fingerprint to perform future matching algorithms.

6.5. Limitations

Due to a lack of access to many of the products and
prototypes in our evaluation, the ratings we give are based
on team discussion and contemplation. To the best of
our ability, we tried to make the criteria as concrete as
possible and to review papers and specifications with care.
However, some cells in Tables 2–3 could be subjective and
debated by researchers with different assumptions and ac-
cess to different information. As such, we intend Tables 2–
3 to reflect an initial attempt of applying our framework
and distilling the pros and cons of each sensor in each
context. We intend these tables as a living document that
evolves with community effort and robust online debate,
as we discuss further in Section 8.

7. Insights From Applying the Framework

We present key findings from applying our framework
(Section 5) to sensors that support commonly desired con-
textual access-control policies in smart homes. Tables 2–
3 summarize each sensor’s pros and cons in security,
privacy, and usability regarding detecting a given context.

7.1. Robustness to Attacks

Most sensors are vulnerable to physical DoS. Of the 94
context-sensor pairs evaluated, 64 (68.1%) are vulnerable
to physical DoS attacks. Vision-, audio-, heat-, and EM-
wave-based sensors (radar, WiFi, radio) can easily be
blocked or jammed even by those with no technical back-
ground. Vision and heat-based sensors’ line of sight can be
blocked. Playing loud music floods audio sensors. Energy-
absorbent materials can be placed near transmitters (e.g.,
black material near light-based sensors). Through these
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User’s identity

Voice
Microphone, inertial sensors [37] 0.1% A,Bm

Microphone-only [75] 5-6% A, C, M
[46]† − A

Breathing patterns Microphone [19] 0.4-2% A

Facial features

Camera [102]† Variable V
Depth camera [8]† <0.001% P’
Infrared (IR) camera [93]† <0.001% P’
Camera, inertial, light sensors [20] 4.7% V, C, E

Eye features Iris scanner [119]† − P’ −

Fingerprint Fingerprint sensor [9]† 0.002% F
Microphone [116] 2-16% A −

Body shape Radar (RF) sensor [68] 10-21% B

Bioimpedance Bioimpedance sensor [26] 2% El
[122] 11-21% El −

Cardiac motion Radar sensor [83] 1.39% Bm
Camera [85] 1.4-4.5% Bm

Hand gestures IMU sensors [115] 10-36.2% M

Gait properties

Vibration sensor [109] 10% G −
Load cells [107] 7% G
Pressure sensors [111] 7.7% G
Camera [149] 6.25% V
Microphone, WiFi TX & RX [21] 8%-28% C, A
Photointerrupters [160] 1% G

Owner / guest Identity Similar to “Identity” above Similar to “Identity” above

User’s age

Voice Microphone [128] A

Facial features Camera

[105] 6.01 - 6.08 yr. P
[170] 4.83 - 6.28 yr. P
[108] 2.514 - 3.086 yr. P
[30] 22.24 - 9.07% V

Emergency in the
home

Fire
Smoke detector [47]† Variable E

[39]† Variable E
IR Camera [140] Variable V’
IR/UV detector [131]† Variable E

Toxic gas Combustible gas detector [137]† Variable E
Carbon monoxide detector [44]† Variable E

Robbery Camera [102]† Low V
Glassbreak sensor [58]† Variable A

User in same house
as the device Presence of tags

Bluetooth Low Energy (BLE)
signal sensor [7]† − L’

RF/Ultrasonic sensors [110] − L’
RFID [127] − L’
WiFi TX & RX [75] 10% A, C, M

Movement WiFi TX & RX
[148] 0.5m - 1.1m C −
[106] 1.84m C, Fp −
[152] 4% C

Trajectory Inertial sensors in phones [80] 1.5 - 2m G, M

User in same room as
the device

Presence of tags

BLE signal sensor [7]† − L’
BLE, IMU sensors [24] 2.42 - 14.72% M, T, O

RF Techniques [110] − L’
[168] 0.06% D

IR tags [153] Variable L’

Ultrasound TX & RX [78] 0.1m L’ −
[2] 3cm L’

Capacitive NFC [52] − L’
Visible Light Channel [167] 5.9cm L’

Movement
WiFi TX & RX

[148] 0.5m - 1.1m C −
[106] 1.84m C, Fp −
[152] 4% C

Motion sensor [127] 0.5m - 1.1m M
[99]† 1.84m M

EMI Voltage sampling [53] 6% L’
Passive magneto-inductive sen-
sors

[147] 6-17.4% L’

RF reflection RF sensor [61] 81% L’
Electric potential Electrical potential sensors [51] 0.16m El
Location semantic WiFi, microphone, IMU sensors,

Barometer
[168] 0.627-0.778 (F-measure) L’

Hand gestures IMU sensor [115] 83-91% (supervised) L’ −
Water pressure Pressure sensor [138] 17.31% - 29.89% L’ −

Owner away or not Location GPS [101]† Variable L
Adult nearby Age Similar to “Age” above Similar to “Age” above
Note: In the “Example” column, † denotes commercial sensors or systems.

TABLE 2: An example application of our framework to sensors and contexts identified in our review of the literature
and current sensing products. 36 of these sensors come from the academic literature, while the rest are commercial
products, denoted with a † in the “Example” column. We mapped the sensors to contexts they are able to detect for the
purpose of an access-control policy allowing or denying usage. The “Error” column contains reported values from the
cited example sensors. Other columns reflect our best judgment, which was informed by the cited works when related
information was reported. / /(blank) = Easy/Hard/Impossible, / / = Good/Adequate/Poor, / = Local/Cloud,

/ = Transient/Persistent data retention, − = Not found. For Required Data, A = Audio, B = Body shape, Bm =
Body movement, C = CSI, E = Environment, El = Electrical properties of body, F = Fingerprint, G = Gait, L/L’ =
Geo/Indoor location, M = Movement, P/P’ = Photo/Infrared photo, D = Device info, V/V’ = Video/Infrared video, T
= Temperature, O = Orientation, Fp = Floor plan. The rows of this table continue in Table 3.
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No one nearby

WiFi signals WiFi TX & RX [152] 96% (TPR) C
[11] Low D

Presence

RF sensor [68] High B

Camera with IR LEDs [48]† Variable V’
[14] Variable V’

Load cells [107] 7% G
Pressure sensors [111] 7.7% G
Ultrasonic sensors [57] 10% B

Movement Motion sensor
[120]† Variable M
[100]† Variable M
[59]† Variable M

Footsteps Microphones Variable A
Similar to “Gait” above Similar to “Gait” above

CO2 Nondispersive Infrared (NDIR)
CO2 sensors

[25]† Variable E

Body heat Infrared sensors [50]† Variable V’

People asleep nearby Movement
Inertial sensors [6]† Variable M

[40]† Variable M
Similar to “Motion sensors” above Similar to “Motion sensors” above

Radar sensor [114] 89.6% (recall) M

People present in
same house as the
user

Location GPS [101]† Variable L

Movement Static electrical field [96] 1.88% E −
RF sensors [171] Low M

Presence of tags RF/Ultrasonic sensors [110] − L’
BLE signal sensor [7]† − L’

People present in
same room as the user

WiFi signals WiFi TX & RX [135] Variable L’ −
[129] 1.8m C

RF reflection RF/Ultrasonic sensors [61] 19% L’
Sound (chat) RF/Ultrasonic sensors [75] 26% L’
Doorway activity RF/Ultrasonic sensors [57] 10% B
BLE signals BLE signal sensor [7]† − L’

TABLE 3: A continuation of the rows of Table 2, which is an example application of our framework to the sensors and
their associated target contexts. The abbreviations used are the same as defined in Table 2’s caption.

means of hindering sensor operation, attackers can become
invisible to systems with default-allow policies.

Physical DoS is hard to detect because the symptoms
can be similar to normal activities. This is very different
from network DoS attacks. Monitoring may alleviate the
issue, but home occupants are unlikely to perform constant
monitoring. A blocked sensor may not be noticed until the
attacker has already achieved their goal.

Sensor redundancy can mitigate physical DoS attacks.
For example, a room could have a motion sensor, a
pressure sensor in the floor, and a microphone to detect
whether the room is occupied or not. If access is granted
when the room is unoccupied, an attacker wanting access
would need to accomplish the difficult task of occluding
all three sensors around the same time. By cross-checking
the sensors’ data streams with each other [13], the system
could verify whether the room is unoccupied and deter-
mine whether a sensor has been compromised.

Careful policy design is another defense against phys-
ical DoS attacks. A system’s default policy—whether to
allow or deny access when a condition is met—can impact
attack success. For example, a user might specify “my
child should not have access to the TV.” With a default-
allow policy, TV access will be granted unless a child
is detected, yet the child can block a sensor to avoid
detection. With a default-deny policy, the child cannot rely
on physical DoS.

The optimal default policy may vary based on the
device or operation. Users may prefer default-allow rules
for controlling lights because falsely allowing operation
is typically of little consequence, but falsely denying
operation causes inconvenience [55]. A sensor’s false pos-

itive/negative rates also play a role. Smart home designers
should help users navigate these nuances through sensible
default policies and templates.

Many sensors are susceptible to physical DoS attacks.
Mitigations against physical DoS of sensors include
redundant sensors of different types and carefully
constructed default policies.

Audio- and vision-based sensing is vulnerable to many
attacks. Basic audio-based sensing is susceptible to all
types of attacks in Tables 2-3 [1], [17], [125], [163].
Visible-light camera sensing is also susceptible to all of
these attacks, except for hardware attacks. For cameras,
spoofing can be difficult, but replay attacks with photo or
video input are feasible.

Existing defenses for sensing methods are insuffi-
cient for access control because they were designed for
authentication instead. Most prior work on audio- and
camera-based sensing lacks security analyses. The few
that analyzed security focused on replay and spoofing at-
tacks. Authentication assumes that unrecognized users are
unauthorized. Thus, a large body of research has focused
on preventing replay and spoofing attacks against audio-
and camera-based sensing to avoid attackers from be-
coming recognized in this regard. A commonly proposed
defense is to rely on secondary channels of information
on the same device [136] or other devices [13], [165].
For example, 3D cameras (like Face ID on iPhones [8])
analyze depth information to deter simple, photo-based
replay attacks. However, in access control, default-allow
policies authorize unrecognized users, resulting in the
possibility of physical DoS attacks. Therefore, for such



policies, an attacker can gain access by targeting one infor-
mation channel (e.g., targeting an image’s visual features
by presenting a photo) and becoming unrecognizable to
the system.

Existing defenses for audio- and camera-based sensing
focus on attacks that compromise authentication, not
access control. Attackers can exploit the default se-
mantics of access-control policies to gain access, and
physical DoS attacks become easier.

Physical adversarial examples can be effective for
skilled, external attackers. For sensing methods that
rely on machine learning, we noted whether they were
susceptible to adversarial examples. Specifically, within
the scope of context sensing and our threat model, we
consider only physical adversarial examples. The attacker
misleads the algorithms by adding physical perturbations
to the environment or to themselves, instead of feeding
data to the algorithms directly. Recent work has demon-
strated the feasibility of such attacks for images [35], [36],
[130] and audio [1], [17], [125]. Although some attacks
require whitebox access to models, which is unrealistic
for commodity smart home devices, blackbox attacks are
also possible [35], [63], [86], [134], [142].

Internal attackers are less likely to use physical adver-
sarial examples because they require substantial technical
skills and resources to generate and test. Instead, they
would use familiarity with the system to launch replay,
spoofing, or physical DoS attacks to a similar end. How-
ever, if we consider external opportunistic attackers (e.g.,
a group of burglars) who do not have information about
the victim, physical adversarial examples can be very ef-
fective. In fact, untargeted adversarial examples are strictly
easier than targeted attacks. For example, attackers might
want to attack face recognition on all security cameras in
a neighborhood. In doing so, they can reuse and refine
their adversarial examples.

Internal attackers may prefer replay, spoofing, and
physical DoS attacks. Opportunistic external attackers
may prefer adversarial examples.

7.2. Privacy

Except for cameras, cloud storage is not usually re-
quired when sensing contexts. We found that 79.8%
(n = 75) of the examined sensing techniques do not
require data storage on the cloud. Unfortunately, 10 of the
14 methods that use cameras do require cloud processing.
Oftentimes, cloud storage is necessary for computationally
intensive algorithms or large training datasets required to
process video or image data online (e.g., neural networks
for facial recognition). Privacy-preserving machine learn-
ing may alleviate this need. One approach is to protect the
privacy of the training data. In federated learning [71],
sensitive data stays local and only gradient updates are
sent to the server. Another approach targets the inference
stage by running the models locally or on the edge [49],
[74]. Companies may prefer cloud storage because they
can collect user data. Despite the risk of data exposure,
some users may prefer cloud storage if it costs less.

Few sensing methods, often camera-based ones, re-
quire cloud processing. Federated learning or perform-
ing ML on the edge could obviate cloud processing.

Cameras/microphones are invasive but currently indis-
pensable, thus necessitating privacy countermeasures.
Users perceive age to be an important context for access
control [55]. Unfortunately, most existing age-estimation
methods rely on cameras or microphones, raising privacy
concerns. Until privacy-preserving methods for age detec-
tion become possible, users may instead wish to record
age while registering their identity during system setup.

Suppose cameras and microphones have to be used.
To enhance bystanders’ privacy, countermeasures against
these sensing methods have been proposed, such as strate-
gically blurring an image or jamming microphones with
ultrasonic noise [22], [31], [158]. These proposals improve
privacy, but also imperil the access control system, making
it more likely to ignore attackers or confuse attackers with
benign users. Therefore, detecting contexts with obfus-
cated sensor data may be another research direction. Raval
et al. [117] proposed a utility-aware obfuscation mecha-
nism for smartphone apps, which shows a promising road
to privacy-preserving sensing in homes.

Privacy-invasive sensors may be essential. Privacy pro-
tections may weaken the access-control system.

Mismatch between required and collected data. Only
25 of 94 context-sensor pairs (26.6%) do not collect
more data than needed to deduce the context. In contrast,
33.0% were acceptable and 40.4% were poor in our
analysis. Most sensing methods marked as poor record
unnecessary video or audio. Manufacturers typically rely
on high-fidelity sensors, such as cameras or microphones,
to sense contexts. This also happens when researchers
use microphones on voice assistants or smartphones for
ultrasonic-based sensing for their wide availability. While
federated learning or edge computing may mitigate pri-
vacy concerns, they may also appear cryptic to the average
user. These methods may therefore fail to alleviate user
concerns about sensors inadvertently collecting invasive
data. Future work should investigate effective means of
communicating to users privacy considerations, such as
using privacy labels [98] or visual indicators [33].

Competing interests between multiple stakeholders—
manufacturers, researchers, designers, users—also con-
tribute to this mismatch between the data required and
the data collected. The designer might only want to know
which room the user is occupying, but manufacturers
and UbiComp researchers likely would want to collect
information about the activity of the user in that room.
Obtaining this extra knowledge enables the latter two
parties to design and provide technology benefiting users
in other aspects of their daily life. For the benefit of smart
home owners and users, smart home systems and sensors
should offer the ability to prioritize utility or privacy.

Most sensors collect more data than needed. User
awareness and control of data collection is critical.

7.3. Access, Deployment, and Acceptability

Many sensing methods for authentication are not
inclusive. Research in sensing and access control is



generally not inclusive to the elderly and groups with var-
ious disabilities. For example, the gait-sensing literature
mostly does not consider people with walking disabilities.
For inclusivity, contextual access-control systems must
offer an array of sensors that allow every individual to
authenticate an identity or person-specific context.

8. Discussion

Utilizing the framework: Smart home designers can
utilize Tables 2–3 to identify the sensor(s) most suitable
for identifying a given context based on a given home’s
access-control policies. They can also examine overlaps
between contexts for each area of a home to identify
opportunities for sensor reuse. Based on the purpose
of sensing each context and where the sensors will be
deployed, they can prioritize particular security, privacy,
or usability criteria. For example, outdoor sensors for
burglary protection should prioritize security over privacy.
Sensors for a home entertainment system might want to
prioritize usability, while those in a more private area of
one’s home should emphasize privacy.

Fusing sensors can increase security [13]. Our frame-
work also helps designers identify a suite of sensors that
vary in the attacks (replay, physical DoS) they resist.

Despite our effort to be as objective as possible in
applying our framework to the 94 pairs of contexts and
(prototype or commercial) sensors to create Tables 2–3,
some of our decisions were necessarily subjective or open
to debate. Furthermore, the presentation of a compact table
cannot possibly capture the nuanced discussion underpin-
ning why a single cell shows a particular decision. As
such, we imagine our framework serving as the guiding
principle for the expanded online version of Tables 2–
3, with the online version serving as a living document
that captures the nuances of evaluating particular sensors
for particular contexts, welcoming contributions from the
community. We have therefore seeded this expanded on-
line version with summaries of our reasoning about why
a specific rating is given in each cell. Anyone can review
these notes and decide whether the reasoning is correct.
If they are confident that the reasoning is wrong, or some
important sensing method is missing, they are encouraged
to create an issue or make a pull request on the associated
GitHub repository.4

Implications for auditing: Auditing is an easy way
to solve many security issues mentioned in Section 7.1.
Mismatches between identities or situations detected by
multiple sensors [13] could signal an attempted replay,
spoofing, or physical DoS attack. Products like Samsung
SmartThings support auditing by providing a recent his-
tory of sensor data readings.

However, auditing sensor data faces privacy obsta-
cles. Access to sensor data may create privacy con-
cerns between members of a household (e.g., parents and
kids [145]). Also, from a security perspective, logs should
not be deleted or changed. Mutable logs defeat the purpose
of having a log, which makes the balance between security
and privacy even harder to achieve. Moreover, the amount
of data may be huge, which can cause usability issues
as well. Smart home designers cannot expect users to

4. https://github.com/UChicagoSUPERgroup/eurosp21

spend days sifting through sensor logs, particularly since
identifying problems might require manually analyzing
correlations between sensors.

To ease these burdens and balance privacy and trans-
parency, log data could be audited automatically to only
highlight key results. For example, the system could notify
users that it observed motion at home when the house ap-
peared unoccupied, guiding the user through the perceived
discrepancy. Future research should focus on transparency
that minimally impacts privacy, which can potentially be
applied to any intelligent system with a human in the loop.

Access control with partial information: Informa-
tion collected by household sensors can be incomplete,
leading to a faulty access-control system. The sensor could
be compromised by malicious parties, disabled to protect
bystander privacy, out of battery, or otherwise corrupted.
Sensor fusion is critical for robust access control. Corre-
lations between multiple sensors can help verify physical
events even if any subset are compromised [13].

If sensor readings are merely missing, not corrupted,
the home ought to aid the user in debugging the problem.
If the home is alerted that data is missing intentionally,
perhaps due to a sensor taken out of service to protect
bystander privacy, it should let users know what access-
control policies may be affected. The system could also
provide suggestions for less intrusive replacement sensors.
In case the system does not know why data is missing,
the system would benefit from every access-control policy
having a secure default behavior. In other words, missing
data should not facilitate attacks.

The privacy implication of a general model. One
thing we did not fully capture in our framework is the
privacy implication of a general model. A general model
is a machine learning model that is environment- and
user-independent, which means there is no need for users
to perform any training themselves. In our evaluation,
we typically gave these types of sensing methods good
privacy ratings because they should not require storage
of personal data. However, as discussed in Section 5,
we only considered the minimum data needed to run the
sensing method for the privacy evaluation. The actual
implementation may collect more than the minimum data
required. In particular, manufacturers are incentivized to
acquire more data to improve the accuracy of their models.
Unfortunately, with general models, the adversary only
needs the data to infer user activities, whereas in user-
specific models they to know both the data and the model.

9. Conclusion

Contextual access control in homes is desirable, yet
mostly unsupported. To bridge this gap, sensors can be
used to detect contexts. However, they must defend against
both expert and non-expert adversaries while respecting
user privacy and usability. We proposed both a new adver-
sarial model for context sensing in homes and a decision
framework for evaluating potential sensors in terms of
security, privacy, and usability. We applied this framework
to common sensors through literature systematization,
finding important trade-offs. We have made our framework
and evaluations accessible in a public GitHub repository
to facilitate updates and public discussion.

https://github.com/UChicagoSUPERgroup/eurosp21
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