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ABSTRACT
While hierarchical namespaces such as filesystems and repositories
have long been used to organize data, the rapid increase in data
production places increasing strain on users who wish to make
use of the data. So called “data lakes” embrace the storage of data
in its natural form, integrating and organizing in a Pay-as-you-go
fashion. While this model defers the upfront cost of integration,
the result is that data is unusable for discovery or analysis until it
is processed. Thus, data scientists are forced to spend significant
time and energy on mundane tasks such as data discovery, cleaning,
integration, and management – when this is neglected, “data lakes”
become “data swamps.”

Prior work suggests that pure computational methods for resolv-
ing issues with the data discovery andmanagement components are
insufficient. Here, we provide evidence to confirm this hypothesis,
showing that methods such as automated file clustering are unable
to extract the necessary features from repositories to provide useful
information to end-user data scientists, or make effective data man-
agement decisions on their behalf. We argue that the combination
of frameworks for specifying file similarity and human-in-the-loop
interaction is needed to aid automated organization. We propose an
initial step here, classifying several dimensions by which items may
be considered similar: the data, its origin, and its current character-
istics. We initially consider this model in the context of identifying
data that can be integrated or managed collectively. We additionally
explore how current methods can be used to automate decision
making using real-world data repository and file systems, and sug-
gest how an online user study could be developed to further validate
this hypothesis.
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1 INTRODUCTION
It has been nearly a decade since the widespread adoption of data
lakes. This change in approach to data management, from up-front
data integration to a Pay-as-you-approach [19, 29], offers multiple
advantages, namely flexibility, speed to insight, and simplicity of
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implementation. The downsides, however, have becomemore preva-
lent as the years have passed. The flexibility of data lakes becomes
a hindrance at scale when the heterogeneity of the data does not
allow for unified querying capabilities. The speed to insight is lost
when requirements change and new datasets must be discovered,
cleaned, and integrated into an analytics task. Even the simplicity
of implementation becomes problematic when the low bar for im-
plementation encourages lax data model design and poor metadata
management. Data lakes, when mired in these complications, can
then be more accurately labeled as “data swamps" [16].

This phenomenon is best illustrated by example: take the an-
alytics pipeline at a large hospital network. When the network’s
pipeline was initiated, it may have consisted of processing a single
set of unclean patient visitation reports from one hospital in the net-
work. As time passes, this may grow to the same set of reports from
multiple hospitals in the network, then to different sets of reports
from these hospitals, then to reports from outpatient clinics, and so
on. Each of these items requires a new ad-hoc solution to process.
The overhead of discovering, cleaning, integrating, and managing
all this data, which was once trivial, has become an imposition.

Providing pure, generalizable, computational methods to re-
solve the challenges posed by each of these components has been
an area of research focus for some time now. Researchers have
made significant progress in many sub-areas, such as data clean-
ing [20, 23, 31, 36] and data integration [5, 12, 19, 34, 35], and other
metadata management tasks [17, 18]. Some items, however, remain
elusive. While many critical problems must be addressed to help re-
alize the vision of data lakes, we believe that data discovery through
similarity (e.g. show me more like this) is a critical first step that
is not addressed by existing tools. Automated systems for data dis-
covery exist for specific environments, but in general are unable
to provide users with successful dataset recommendations [14].
Automated data management has had success with semantic tag-
ging solutions [25, 30, 32], but provides limited utility without an
infeasibly large amount of user input.

This incompleteness in data discovery and data management
suggests that pure computational solutions do not provide the
efficacy required for these applications. We take this perspective
here: we seek solutions that require minimal expert user input to
produce results that are usable in practice. This idea of minimizing
the needed amount of human-in-the-loop input is a familiar thread
in several arenas [33], but we believe that it is yet to be applied in
this domain.

This paper serves as a first step in a project to build a series of
tools to aid in the taming of data lakes; through user studies we plan
to evaluate our hypothesis on the benefits of similarity based tools
for a variety of tasks, such as discovery, management, security, and
organization. In this paper, we provide evidence demonstrating the
difficulty of using pure computational solutions for data discovery
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and data management. Additionally, we propose a human-in-the-
loop methodology for these tasks that collects user feedback both
proactively and retroactively along the dimensions of the data itself,
its origin, and the current characteristics in order to identify data
that could be integrated or managed similarly. Lastly, we provide a
basis for this methodology, and note suggestions for future work
in conducting an online user study and developing tools founded
on this methodology before concluding.

2 FRAMEWORK OF DATA SIMILARITY
We first define necessary terminology before proposing our frame-
work of data similarity.

2.1 Definitions
We define data discovery to be the process by which an end-user
discovers data relevant to a conceptual research question or query.
For example, one can consider an employee at a major financial firm
performing an experiment to predict how potential customers in a
new market might respond to the opening of a new bank branch. If
the employee starts with only the area’s census demographics, they
would likely be interested in a dataset that contains information
on the financial status of those customers. A tool that can both
identify and join related datasets would significantly reduce the
time currently required for discovery. Accomplishing tasks of this
type most often consists of identifying related terms based on how
often they appear together, or identifying similarity between the
schemas of two datasets.

In contrast, we define datamanagement to be the task of appro-
priately organizing and maintaining existing content. This includes
tasks such as duplicating items identified as important, encrypting
files identified as sensitive, deleting superfluous files, and compress-
ing or archiving files identified as unimportant. For example, one
can consider a staff researcher at a pharmaceutical company who
runs drug trials fairly often. As part of FDA regulations, they must
securely store the data and maintain an audit trail. If they make
local copies of the data for one-off statistical analyses, however,
these copies can inadvertently become lost in the organization’s
data swamp. This worry is compounded by typical organizational
structures; the swamp comprises data from data creators across
multiple teams, each with domain-specific knowledge.

2.2 Proposed Framework
If an employee comes across a file in the data swamp and wishes to
encrypt both that file and similarly sensitive files, they currently
need to do so manually. If they wish to discover other data from
the same project or on the same topic and join that data, they again
must do so manually. A tool that could determine file similarity
based on expected sensitivity, topic, or provenance would enable
the employee to quickly scale this remediation. To that end, we
propose a framework of data similarity, shown in Table 1. Below,
we describe the three branches of this framework and define the
ten aspects of data similarity that these branches encompass:
1) The Data Itself. The types of similarity that are most straight-
forward to measure are the characteristics of the data itself. For
instance, data lives in at least one location. Data can be similar
to other data in its relative location on disk, the contextual clues

Table 1: Our proposed framework of data similarity contains
three high-level categories capturing ten aspects of inwhich
data can be similar to other data.

The Data Itself
• Location
• Metadata
• Contents
• Topic

Origin
• Provenance
• Reliability
• Initial Purpose

Current Characteristics
• Immediate Utility
• Retention Importance
• Sensitivity

provided in the tokens of the data’s directory path, which database
data resides in, and which systems contain backup or derivative
copies of data.

Data can also be similar to other data in terms of itsmetadata,
encompassing attributes from the size of the data to the extension
to the time it was created or last modified. The contextual clues
suggested in the name of the file are also valuable metadata, and
files may be similar to each other in terms of file name (e.g., two
files called “readme”).

The contents of files or databases are an important way inwhich
they may be similar to each other. Files whose contents on the level
of bits are nearly identical (i.e., have a small edit distance) may be
modifications or derivatives.

When we consider similarity in terms of contents, one can focus
on similarities that are on the level of bits and therefore are easily
machine-identifiable. However, files that superficially seem dissim-
ilar on the level of bits may nonetheless be very similar in contents.
For instance, the translation of a document into another language
or a photo of the same object in vastly different lighting results in
two files that may look very different based on naive notions of
similarity, yet would likely be considered similar to a human. We
conceive of this more complex notion of similarity in contents to be
applicable whenever there is a direct mapping between the contents
of two instances of data, yet an exceedingly complex computational
model describes this translation.

Finally, data can be similar to other data in terms of topic, though
this relationship may or may not be easily detectable computation-
ally. Different instances of data about the earth’s climate, even if
from completely different sources and completely different experi-
ments, is nonetheless similar in terms of topic. Similarly, cartoon
drawings of dogs and photographs of dogs can likely be said to be
similar in terms of topic.
2) Origin. Data can also be similar to other data based on its origin.
First, the provenance can be the same, meaning that the data were
created at similar times, in similar locations, and/or by related
people or tools. For example, a short story written by one author
at a writer’s retreat and a short poem written by another at the
same retreat would be similar along this dimension. Notably, data
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originating from the same conceptual project, same authors, or from
the same time period can be argued to have the same provenance,
albeit in subtly different ways.

The reliability of data, or degree that a viewer can trust in its
correctness, also derives from its origin. Data can be unreliable from
its initial origin. This occurs in cases of data collected using faulty
or poorly calibrated scientific instruments, information created by
an author of low repute, or potentially even data where the source
is unknown and therefore cannot be fully trusted. Data can also
be made unreliable through subsequent transport and processing,
including by imperfect data cleaning, lossy compression, improper
subsetting, unexpected encoding, or undocumented derivation from
a different data set.

Data can also be similar in the initial purpose for which it
was created. Instances of data that differ in form may have been
collected toward the same initial goal. For example, a receipt and a
W-2 form that were both created for tax purposes would be similar
along this dimension.
3) Current Characteristics. While the previous dimension fo-
cused on the origin of the data, the third dimension instead focuses
on current uses for that data. First, one can consider the imme-
diate utility of data. Over time, data might become more or less
important. For instance, data that is highly relevant for a certain
scientific experiment might be crucially important until a PI de-
termines that the technique is not promising, at which point the
data loses utility moving forward. In contrast, measurements of a
particular distant galaxy taken years prior as part of a broad probe
might suddenly become highly valuable and useful if interesting
phenomena are later observed in that galaxy and scientists wish to
characterize longitudinal changes.

Regardless of its utility past or present, data might differ or
be similar in retention importance. Some types of data, such as
family photos, are important to retain out of nostalgia. Other types
of data, such as scientific data sets collected at great effort or cost
but of no immediate utility, are important to retain in case they
later become useful. Other data might have a legal obligation for
retention, such as data collected during drug trials or financial
records. In contrast, other data might have obligations for deletion,
such as data a scientist has promised human subjects would be
deleted at the conclusion of an experiment.

Finally, data can be similar to other data in terms of sensitivity.
For instance, an electronic health record and a photocopy of a
personal tax returnmight be similar in sensitivity to the data subject
despite differing substantially in form.

2.3 Applying this Framework of Data
Similarity

Many tasks relevant to draining data swamps can be facilitated
by enabling the humans in the loop to express tasks based on one
or more of the dimensions of similarity in our framework. For
example, if a user is deleting a file or dropping a database table
deemed to have no current or future relevance, that user might
want to issue a command that the system delete other files from
the same project. As a second example, a medical researcher might
discover personally identifiable information in electronic health

records on a backup system and then wish to audit the rest of that
backup system to encrypt similarly sensitive data.

Current interfaces do not enable humans in the loop to express
similarity with the rich vocabulary encapsulated by our proposed
framework, rendering data management highly labor intensive for
humans, particularly in cases involving retrospective management
of large data swamps containing data from many users. Unfortu-
nately, implementing this rich vocabulary for expressing similarity
is far from trivial. We posit that data may be similar to data along
some dimensions of this framework, but not others. That data can
be similar in some dimensions, but not others, means that pure
computation alone cannot fully solve this problem, yet we imagine
that a human in the loop in concert with computation will en-
able such expressive HILDA interfaces. Minimizing the burden for
human users is especially important because many retrospective
data-management tasks cannot be crowdsourced both due to con-
cerns about security and privacy and because crowdworkers likely
lack the domain knowledge necessary to complete these tasks.

The process of human-in-the-loop data discovery is similarly
handicapped by the inability for users to specify actions using the
dimensions of this framework, as well as by the inability of systems
to suggest other data sets that are similar in such ways. For instance,
while working with a given dataset, a user might want to search
for data of similar origin, or that is similarly reliable, or that is
about a similar topic. Moving towards this vision is the basis for a
long-term research agenda.

Moving forward, we hypothesize that it is possible to build a
multidimensional similarity ranking along the dimensions of our
framework with an active learning strategy that leverages schema
similarity, file content similarity, and metadata similarity to guide
initial tuple selection. Given limited, iterative feedback, the method
could then provide recommendations of similar files when users
request assistance from this tool in data discovery or data man-
agement, such that users can either join together similar files or
perform other management actions on files that are similar along a
specified framework dimension.

3 EXPERIMENTS SUMMARY
In order to validate the hypothesis that computational methods
alone are insufficient to address the challenges of data discovery
and data management in a data swamp, we use two corpora to
perform experiments.

The first corpus is the Google WebTables dataset, a dataset con-
sisting of 1B+ data records, extracted from several million web
tables. This dataset was obtained from the Web Data Commons 1

that used multiple heuristics to identify relational tables on the
web [11]. The second of these is a file system dump from the Car-
bon Dioxide Information Analysis Center (CDIAC), consisting of
~ 0.5M files that contain environmental science data. This second
dataset is particularly noteworthy because it has several attrac-
tive characteristics that make it more like a data lake than a data
swamp. Its directory structure is well-organized, files have infor-
mative names with associated metadata, and many of the tabular
files are based on schemas are simple to extract. Therefore, experi-
mental results on this corpus should perform well, and if they do

1http://webdatacommons.org/webtables/
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not, this lends credence to the hypothesis that naive approaches
are insufficient to address the challenges of data discovery and data
management in data swamps.

We use these datasets to conduct two experiments. The first of
which, is a pair of experiments using a schema-completion tool
based on WebTables [11] to identify data with similar schemas.
Here we define a task in which an end-user wants to locate datasets
with schemas that can augment the schema of a given input dataset.
Our second experiment investigates our ability to automatically
group files that are considered similar based only on their metadata.
We use the CDIAC dataset and compare our automatically created
groupings with the manually assigned groupings derived from file
system structure (i.e., namespace proximity).

4 SCHEMA SIMILARITY EXPERIMENTS
To evaluate the potential for pure computational solutions to data
discovery challenges, we investigate our ability to automatically
associate schemas. To do so, we implemented a schema completion
tool, based on Google’s WebTables [3, 11]. Given an input dataset
of tables, we randomly remove 20-30% of the attributes from these
tables , and pose the partial tables as input to the aforementioned
schema completion tool. We evaluate the effectiveness of the tool
based on whether it is able to impute the missing schema.

We evaluate this tool on both the original WebTables corpus and
the CDIAC repository. We limit the number of tables considered
(~100K tables) from these corpora to represent realistic file system
or repository sizes and to make our experiments computationally
tractable. Since the key objective of the experiment is to evaluate
the performance of schema matching and discovery, we focus on
the accuracy of schema auto-completion and attribute synonym
identification.

Figure 1 illustrates our current implementation, which contains
three major components: data extraction, schema exploration, and
schema generation. Data extraction is responsible for reading the
structured tabular data and eliminating formatting issues. Although
WebTables relies on the huge corpus to generate accurate results,
this pre-cleaning process would neither hurt nor improve the final
results, given that our system cannot calculate the similarity be-
tween the words and schemas if the words cannot be recognized.
Schema exploration aims to model the data relations and impute
synonyms, based on the assumption that words often appearing
in the same relations may be synonymous. Each explored schema
is assigned a score: the higher the score, the greater probability
that the schema has been inferred correctly. Finally, schema gen-
eration outputs all the explored schema and ranks them with the
final scores from the previous step.
Evaluation Metrics: The output of the schema completion tool
is: 1) for each table a ranked list of tables with schemas that are
considered similar; and 2) for each word a ranked list of synonyms.
The output statistics of running an experiment with different con-
figurations can be used to evaluate the schema completion tool
against two important performance metrics.

• Accuracy: measured as the number of correct schema com-
pletions within the top-k results, given different k and input
data size.

Other 
rankingNaive top-K ranking

Predefined dirty data 
patterns

return the feedbacks

generate 
“cleaned” tables

Data Extraction

...

Schema Exploring

WT-1

  transfer tables

transfer explored schema

improve
data quality

WebTables Basic 

WT-2

WT-N

Schema Generation 

…...

Web Tables

Attribute 
synonym finding

Figure 1: The architecture of our implementation.

Top-1 Top-5 Top-10 Top-15 Top-20
title 0.05 0.32 0.38 0.43 0.47
flag 0 0.02 0.08 0.03 0.09

location 0.02 0.05 0.09 0.12 0.13
student 0 0.08 0.12 0.2 0.23
username 0.04 0.13 0.29 0.34 0.35
report 0 0.01 0.04 0.07 0.09
AVG ≈0.02 ≈0.1 ≈0.16 ≈0.17 ≈0.23

Table 2: Fraction of correctly identified synonyms in schema
exploration based on 10000 web tables

• Scalability: measured as the change in accuracy when in-
creasing the input data size.

4.1 WebTables Corpus
Dataset: To reduce the complexity of our experiments we create a
small-scale input dataset by randomly sampling the entire WebTa-
bles corpus. The resulting dataset contains 10,000 HTML tables
from the Web. We randomly remove attributes for evaluation.
Preliminary Results: Fig. 2 demonstrates the difficulty of com-
pleting schema given minimal input data. Since the key idea of
WebTables is to exploit probability to complete schema, the small-
scale input dataset significantly reduces performance. Even in the
Top-20 case (which is impractical in most real-world scenarios),
the average accuracy is around 20%, insufficient for data discovery
tasks. We also evaluate the synonym identification function, which
is useful in schema exploration. These results are presented in Table
2. In the ideal case, our tool would correctly identify synonyms in
the Top-1 instance. Unfortunately, the results are rarely correct in
this case (2%). Even in relaxed cases, such as Top-5, Top-10, Top-15,
and Top-20, our tool cannot identify the correct synonyms. Thus,
limited input data size significantly affects the accuracy of the tool.
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Figure 2: Fraction of correctly completed schemas

Figure 3: Fraction of correctly completing schemas of
CDIAC

4.2 CDIAC Corpus
Dataset: We also evaluate WebTables on a dataset from CDIAC
which contains a large collection of environmental science data.
To make an apples-to-apples comparison, we uniformly sampled
the whole dataset and pre-processed the data to obtain 100K tables
(around 10GB). Following the same process as for the WebTables
corpus, we randomly selected several schemas and removed some
attributes, then queried the schema completion tool to determine if
it was possible to accurately complete them.
PreliminaryResults: The results are shown in Fig. 3. These results
are superior to those on HTML tables. We hypothesize that this is
due to two reasons. First, CDIAC focuses on environmental data and
therefore the data is inherently similar from a macro perspective.
Second, most tables in CDIAC have similar layouts and content,
perhaps as they were created by the same person or the same tool.
For instance, there are many tables that report carbon levels in the
Indian Ocean at different times. These tables use the same layout
with the same attribute names. In this case, our tool performs well
(e.g., synonyms can be found easily); however for some common
attribute names (e.g., data or time) it is still difficult to complete
them. In general, Fig 3 demonstrates that WebTables performs well
if the given data are relevant and their quality are high. However,
this is an almost ideal scenario and is not likely to be common
in real-world scenarios. In future work we plan to explore if such
differences hold between enterprise lakes and scientific lakes.

To evaluate our thesis that such tasks are more difficult in scenar-
ios in which little is known about the specific context we evaluate
schema completion on the CDIAC dataset when trained on the

Figure 4: Fraction of correctly completing schemas of
CDIAC using HTML Tables

WebTables dataset. The results are presented in Fig. 4. Even for the
most relaxed scenario, i.e., top-20, the accuracy is only 10%. In most
cases, our approach didn’t work at all. These results highlight the
difficulty establishing similarity with little context known.

5 FILE SYSTEM METADATA EXPERIMENTS
We now turn to the question of evaluating file similarity using
groupings derived from available file system metadata. To do so,
we estimate the Jaccard similarity between file paths using a com-
bination of MinHash [9] and Locality-Sensitive Hashing (LSH) [1].
We then compare these clusters against the logical groupings estab-
lished by the directory structure. We evaluated these techniques on
the CDIAC dataset with ~ 0.5M files in the repository. Our results
are shown in Table 3. For this experiment, we conducted scans
over different subsets of the total files, varying the number of files
examined, as well as the permutations for MinHash, given that
greater numbers of permutations increase the accuracy of MinHash
in estimating the Jaccard similarity. We then estimated the Jaccard
similarity of the file path for each file using MinHash, and bucketed
it via LSH to group together files that had similarity greater than
50%. We iterated through the traversed files, and measured the
percentage of similar items in each grouping that were also located
in the same directory. We report the mean value of this percentage.
For example, when 100 files in total were examined, and MinHash
evaluated Jaccard similarity using 64 permutations, on average only
16% of the files in a given file’s similarity grouping lay outside of
the given file’s directory.

The results align roughly with expectations: the percentage of
files that lie outside of the directory grows as more files are exam-
ined. It is also notable that as the MinHash permutations increase,
the percentage of files in a grouping that lie outside of the directory
decreases, suggesting that low-permutation MinHashes overesti-
mate similarity.

In a practical sense, though, if 85% of similar files (~ 0.5M files
and 256 MinHash permutations) lie outside of the directory, then
attempting to manage files in the same directory similarly will miss
a significant portion of the files that should be managed similarly.
This would mean that such a data management approach would be
highly ineffective, and would require significant additional input
from the user in order to address the root challenge. Naturally,
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this is a very rough estimate, and state-of-the-art methods can cer-
tainly achieve higher accuracy. The particularities of the CDIAC
dataset, however, make this result more surprising. Given its appar-
ent grouping of similar files in similar directories, this suggests that
even in clean repositories such as this one, significant additional ex-
planatory power is required. This shows the greater impact of this
initial result, and demonstrates that human computation could be
necessary in order to increase the accuracy to a sufficient threshold.

MinHash Permutations
64 128 256

Fi
le
s
Ex

am
in
ed 102 0.16 0.16 0.12

103 0.36 0.36 0.36
104 0.88 0.88 0.88
105 0.93 0.90 0.85
106 0.93 0.91 0.85

Table 3: Accuracy of Jaccard similarity comparison on
filepaths

6 RELATEDWORK
The taming of data swamps is comprised of four main components.
We review existing research along each of these components.
Data discovery: Prior work studied the process of data discovery,
often in specific contexts. Deng et al. [14] presented effective data
discovery techniques for polystore systems, where data may reside
in heterogeneous databases that support SQL queries. Balakrishnan
et al. [3] designed a system for additional dataset recommendations
by leveraging a relational-based corpus of 100M+ HTML tables col-
lected from the web. Halevy et al. [17] designed and implemented
a full data discovery system at Google to cluster datasets, annotate
datasets, and identify relationships between datasets. Their system
leveraged tightly coupled information about the generating code
(from Google’s infrastructure). Unfortunately, data swamps might
not be polystore systems and might not contain relational-based
data or well structured information about the generating code; Thus
these techniques are largely insufficient in a general scenario. Fur-
thermore, these existing systems mostly overlooked the need for a
human-in-the-loop component in data discovery. Recently, Heller-
stein et al. [18] touched upon the organization of both machine and
user generated metadata to provide data context. However they did
not explore the necessity and scope of exact human-in-the-loop
mechanisms for data discovery in real-world data swamps, we aim
to bridge that gap. Other related projects explore discovering at-
tributes, synonyms, and values given a corpus of documents and
sample schemas [11, 37].
Data cleaning: Existing solutions include purely computational
systems [31], as well as human-in-the-loop systems like DataWran-
gler (now Trifacta) [23] and others [20, 36]. These systems provide
significant benefit, and are able to achieve high accuracy. Thus
they provide us a solid foundation to clean data from data swamps.
Furthermore, Bergman et al. [6] as well as Krishnan et al. [26] inves-
tigated query-based formulations of data cleaning in systems that
support queries. However, since many data formats do not support
queries, their techniques are not suitable for our purpose.

Data integration: There is significant support in literature on in-
tegrating data from multiple sources. Prior research has proposed
two broad approaches—(i) exploiting large-scale data [5, 12] and
(ii) utilizing human-in-the-loop assistance [19, 28, 34, 35]. Gener-
ally speaking, the data-driven approaches compare the similarity
of individual records using a preferred metric (e.g., edit distance,
Jaccard similarity), potentially assigning confidence scores and/or
comparing other tuples in the record, and then deciding whether
the entities match. The human-in-the-loop approaches focus more
on gaining confidence on whether entities match based on data
collected from crowd workers, while adjusting the model based on
the worker reliability. We leverage these approaches in our work.
Data management: In our context of data swamps, the data man-
agement tasks include users keeping files [10, 22], finding files [8,
15], maintaining their file collections [32], and versioning files [7].
Notably, these tasks are closely related to the field of personal infor-
mation management (PIM) [21]. Existing research on PIM systems
aimed to help users better store, organize and retrieve their data in
contexts like email, local files or even cloud storage [2, 4, 24]. Our
work extends this research to the data swamps. Specifically our
work points out concrete directions and research challenges to ef-
fectively incorporate human feedback for better data management
in the data swamps.

Lastly, aside from these different components of processing data,
another interesting relevant challenge is to minimize the human
interactions using active learning [13, 27]. This direction is comple-
mentary to our research and advances in that field can be directly
incorporated in our proposal.

7 FUTUREWORK
Based on these initial results, our next step is to perform studies
of different file systems and data repositories by surveying users
and requesting their feedback along the dimensions specified in
the conceptual model. We intend to use these survey results to ana-
lyze the correlation between user responses and file metadata, file
contents metrics, and similarity measures to investigate if human
input could then lay the basis for efficient and effective methods of
data discovery and data management. Implementing these solutions
would then flesh out the pipeline fully enough that a data swamp
navigator tool would become feasible. This, we believe, is a strong
motivation and ultimate goal for our work.

8 CONCLUSION
In this paper, we have empirically demonstrated the difficulty of
applying pure computational methods for similarity-based data
discovery and data management. Additionally, we proposed a high-
level framework for human-in-the-loop approaches to these tasks,
identifying the criteria that should provide the most impact in these
methods. We demonstrated a basis for this methodology, and noted
suggestions for future work in conducting an online user study and
developing tools for these tasks. While there is still much progress
to be made in this area, we believe this work can provide a stepping
stone for future results.
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