
Better passwords through science (and neural networks)∗

William Melicher, Blase Ur, Sean M. Segreti,
Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor

We discuss how we use neural networks to accurately measure password strength, and how we
use this capability to build effective password meters. First, we show how neural networks can be
used to guess passwords and how we leveraged this method to build a password guesser to better
model guessing attacks. We report our measurements of the effectiveness of neural networks at
guessing passwords, demonstrating that they outperform other popular methods of modeling
adversarial password guessing. We then show how we developed a password guesser that can
be compressed so that it is practical for client-side use inside a web page [1]. Finally, we describe
how we designed and built a password meter, based on neural networks, that gives more accurate
and helpful guidance to users for creating passwords that are resistant to guessing attacks [2].

Passwords are the most common authentication mechanism in use today. We all use passwords
every day and will likely continue to do so for the foreseeable future. Unfortunately, human-
chosen passwords often follow predictable patterns. For example: exclamation points are at the
end; capital letters are at the beginning of passwords; dictionary words, well-known phrases,
keyboard patterns, and names of people and places are all common. Such predictable patterns
allow attackers to break into accounts by guessing passwords.

Guessing attacks can take the form of online attacks in which attackers make guesses while trying
to log in to a live system. Online attacks are sometimes defended against by limiting the rate at
which attackers may make guesses against the system. In contrast, in offline guessing attacks,
attackers can make large numbers of guesses without limits. This commonly happens when a
database of hashed passwords is stolen, an event that occurs with disappointing regularity. At-
tackers guess candidate passwords and compare them against hashed passwords in the database,
limited only by the amount of computer resources they have. The widespread incidence of pass-
word reuse makes such attacks more dangerous because attackers who crack a user’s password
that was leaked from a stolen database may use that cracked password—or common variations
of the password—to guess the credentials for that user’s other accounts. A common and effective
defense against both online and offline guessing attacks is to urge users to create less predictable
passwords that are more resistant to guessing.

To understand how to guide users to make less guessable passwords, our research group has
studied methods for modeling how attackers guess passwords. Previous approaches for modeling
password-guessing attacks include statistical approaches, and tools used in adversarial password
cracking. Statistical methods, such as Markov models and probabilistic context-free grammars,
work by deriving statistical properties from lists of training passwords. Adversarial password
cracking tools, such as John the Ripper and Hashcat, are typically used in practice for their ability

∗This is the authors’ version of this article; the official version appears in USENIX ;login: Winter 2017, Vol. 42, No. 4
(https://www.usenix.org/publications/login/winter2017/melicher).

1

https://www.usenix.org/publications/login/winter2017/melicher


to crack hashed passwords quickly; often they are configured by experts to craft special password
cracking rules for specific password sets. Prior work from our group has studied these approaches,
and shown how the combination of multiple automated approaches approximates the ability of
professional human experts to guess passwords [3]. However, modeling a guessing attack in
which attackers can make large numbers of guesses often requires servers with tens of CPU cores
and with gigabytes of disk space for storing models of password guessing. Such models are not
practical for giving real-time feedback to users during password creation; users can’t download
gigabytes of data or wait days or weeks to get feedback for creating a password.

Due to the challenges of accurately modeling password attacks, most password meters are un-
able to provide data-driven, principled feedback to users during password creation. Meters will
typically calculate some combination of a variety of heuristics—such as the number of special
characters used or the length of the password—which often has little correlation to the resistance
of passwords to guessing attacks [4]. When faced with such meters, users often make predictable
modifications in order to satisfy the meter’s strength estimate, such as adding an exclamation
point to the end of their password. However, because attackers are also aware of the predictable
patterns in password construction, such modifications do little to improve the password’s resis-
tance to guessing. In addition, meters are often incapable of providing positive advice or giv-
ing users suggestions about how to make passwords better, instead rating a password as simply
“weak” or “fair.”

Design of a neural network guesser

Neural networks are a machine-learning technique that is particularly adept at fuzzy classification
problems and problems dealing with computer processing of natural language. The intuition
for our approach was that, because the task of guessing passwords in an adversarial attack is
conceptually related to generating natural language, neural networks would be well suited to our
goal of modeling guessing attacks. Recently, the machine-learning community has showed how
to use neural networks to generate text, which our approach leverages [5]. Generating a password
with a neural network involves repeatedly predicting the next character of a password to build up
the password one character at a time. This process can be extended to generate large numbers of
probable passwords. During training, the neural network is taught to predict the next character
when given a real password fragment. The neural network can then learn to recognize high-
level patterns that often arise in password construction, such as keyboard patterns or exclamation
points at the end of a password.

We tried many different variations and tunings for training our neural network guesser. When
training neural networks, there is a large design space of different parameters and design decisions
to explore for better performance. We experimented with a wide range of different parameters in-
cluding: the number of parameters in the model; the method of representing password characters;
different recurrent neural-network architectures; using different types of training data; and using
a technique called transference learning, which specializes neural network predictions for differ-
ent situations. At the end of these experiments, we had a neural-network training methodology
that we found was most accurate for our application of guessing passwords. Additionally, we
used a technique of modeling password guessing to arbitrarily high numbers of guesses by em-
ploying Monte Carlo methods [6], allowing us to accurately model password guessability against
nation-states or other extremely powerful adversaries who have huge resources for cracking pass-
words.

2



Hashcat
JTR

Markov

MinGuess
Neural

PCFG

0%

30%

60%

90%

10
1

10
4

10
7
10

10
10

13
10

16
10

19
10

22
10

25

Guesses

P
e

rc
e

n
t 

g
u

e
s
s
e

d

(a) Guessing passwords that
must be more than eight charac-
ters.

Hashcat

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

100%

10
1

10
4

10
7
10

10
10

13
10

16
10

19
10

22
10

25

Guesses

P
e
rc

e
n
t 
g
u
e
s
s
e
d

JTR

(b) Guessing passwords that are
required to be more than eight
characters long and have a mix
of character classes.

Hashcat

JTR

Markov

MinGuess
Neural

PCFG

0%

25%

50%

75%

10
1

10
4

10
7

10
10

10
13

10
16

10
19

10
22

10
25

Guesses

P
e

rc
e

n
t 

g
u

e
s
s
e

d

(c) Guessing passwords that are
required to be more than 12
characters long and have a mix
of character classes.

Figure 1: Comparison of the ability of different password methods to guess passwords. The x-
axis of each graph shows the number of guesses made in log scale. The y-axis shows the percent
of passwords guessed. Higher lines on the graph represent more accurate guessing. “Neural”
shows the performance of our neural-network approach; “Markov” the Markov model approach;
“PCFG” probabilistic context free grammars; “JTR” John the Ripper; “Hashcat” shows the perfor-
mance of Hashcat; and “MinGuess” shows a combination of all approaches, where a password
receives the minimum guess number from all approaches. Each graph shows passwords created
under a different policy—requiring a different minimum length and different mix of character
classes (uppercase and lowercase characters, digits, and symbols).

When designing our neural-network guessing method, we tested it against the best tunings of
other methods for guessing passwords. In addition, during development of our neural-network
guesser, we comprehensively tested various different versions of the neural-network guesser against
each other to find the best method. We measured the performance of our guessing approaches
both on real passwords collected in recent password leaks and on passwords we have collected
in our research studies, allowing us to compare the performance of guessing methods in a wide
variety of password policies and situations. To train our guessing methods in our experiments we
require large numbers of real passwords, which we obtained from leaked password lists. In to-
tal, our dataset of passwords contained over 100 million passwords from more than 20 password
leaks. This huge amount of data on real-world passwords allows machine-learning techniques to
infer deep insights into password construction and to have the predictive power to model com-
mon password patterns.

We found that the neural networks guessed passwords more accurately than any other individ-
ual method for guessing passwords. However, while our best performing neural networks often
performed close to an optimal guessing strategy, the combination of all methods including neu-
ral networks (MinGuess in Figure 1), performed better than just neural networks alone, showing
that a combination of many models is still better than any individual method. Nonetheless, if
one is limited to only one method for estimating password strength, neural networks are the most
accurate. Figure 1 shows a selection of some of our results on guessing accuracy for different
conditions; the neural network approach guesses a larger proportion of passwords over the same
number of guesses as other methods. This finding holds to various degrees across all of our test
sets; although, we find that neural networks are particularly accurate when guessing passwords
made under the more exotic, stronger password policies, which are becoming increasingly com-
mon as password guessing abilities increase.

3



Design of a client-side password strength estimator

Besides increasing the accuracy of existing password strength models, we also strove to develop
more practical models. Previous methods for modeling adversarial password cracking require
large amounts of disk space or bandwidth—hundreds of megabytes or gigabytes—and take hours
or days to calculate measures of password strength. In contrast, to give real-time feedback to users
during password creation, models must be smaller to download and give quick results. For this
application, we wanted a model that was less than one megabyte to download, which is roughly
half the size of an average web page. Additionally, in the context of real-time feedback, a model
must calculate a measurement of password strength within a fraction of a second—ideally below
the threshold of human recognition, which is roughly 100ms. In addition to these properties, the
measurement should be accurate, and the model should run inside of a web browser, which means
that JavaScript is the most viable execution platform.

Given the challenges of implementing accurate password-strength measurement on resource-
constrained clients, it might be tempting to use a system architecture where the password model
is stored on a server and only measurement results are communicated to the client. However, in
many situations the user’s password should never be sent to the server for security reasons, for
example, in the case of device encryption software, keys that protect cryptographic credentials,
or the master password for a password manager. Even in cases where the user’s password is
eventually sent to an external server, using a remote password-strength measurement mechanism
may allow powerful side channels based on keyboard timing, message size, and caching [7]. For
these reasons, we preferred architectures where password modeling and strength estimation are
done entirely on the client side. This design decision has the added benefit of being easier for web
administrators to deploy.

To summarize our technical approach to meeting these goals: We started by training a neural
network with fewer parameters—the features of the model that define how to predict the next
character. Using this less complex model made the network smaller, but did not sacrifice much
accuracy compared to our best-performing network. Then, we reduced the precision of the already
shrunken neural network’s parameters, again trading off space for some accuracy. Finally, we used
standard lossless compression methods to further shrink the size of the model, eventually reaching
a model size of 850KB. To make our network produce low-latency results, we pre-computed an
approximate mapping for estimating the strength of the password, which is sent to the client
along with the network. In addition, we cached specific intermediate computations, so that the
common case, in which a character is added to the end of the password, is quicker because the
strength estimator only needs to update its previous computation. We were able to get the average
response time to be 17ms for this common case. Some of our optimizations sacrificed accuracy for
the sake of quicker results or a smaller model; we empirically measured the impact that such
optimizations introduced and found the error rate to be small enough to be acceptable for our
purposes. In addition, we tuned the network so that it was much more likely that we would make
safe errors—underestimating a password’s strength—than unsafe errors.

We compared the accuracy of our client-side strength estimation based on neural networks to
existing password meters: zxcvbn and Yahoo’s password meter. zxcvbn, in particular, measures
password strength using a number of highly tuned heuristics for password strength. We found
that our method of measuring password strength to be more accurate—correlating more highly
with password strength measured by simulating a guessing attack—than either meter, having
between 39% and 83% fewer unsafe errors, depending on the meter and the password policy.

4



At the same time, our strength measurement also had fewer safe errors. In addition, our more
principled method of simulating adversarial guessing entirely on the client-side has the benefit
that it can be easily reconfigured—by re-training the neural network—for new password policies
or new situations. We know that certain password sets often have special patterns that are unique
to that set, for example, passwords for a sports website may contain more sports terminology than
other password sets. Our method would be able to be easily retargeted to learn such patterns.

Design of a password meter

Figure 2: Screenshot of our password
meter’s interface. The bar shows the
strength estimate of the user’s pass-
word. The popup dialog shows spe-
cific password feedback based on the
user’s password.

While the development of an accurate client-side
strength-estimation tool is necessary for a password me-
ter, it is not sufficient. There is a gap between a practical
measurement of strength and providing effective real-
time feedback about how to make a better password.
We wanted to bridge this gap. Our main goal was to
give human-understandable feedback about password
creation; our neural-network strength estimation by it-
self can tell the user that a password is weak or strong,
but it cannot say how to improve the password to be
more resistant to guessing. To accomplish this, we aimed
to give two types of suggestions: First, we wanted to
be able to provide concrete suggestions for specific pass-
words that are stronger. Second, we wanted to provide
high-level guidance to users that is specific to their exact
situation, for example, notifying users that using capital
letters at the beginning of the password is a common pat-
tern, and does not meaningfully improve the strength of
their password.

We developed a password meter that achieves these goals. Our meter combines the accuracy
of our neural-network strength measurement with a series of data-driven heuristics that provide
human-understandable feedback about the user’s password. Figure 2 shows an example of our
meter in use. Our meter uses the neural network to control the bar that shows how strong the
user’s password is, while using the data-driven heuristics additionally give the user specific feed-
back about how to improve their password. The meter can also provide a concrete suggestion for
how to change the password so that it will be stronger. It does so by creating several candidate
suggestions that are similar to the user’s chosen password and then using the neural network to
gauge their strength. Only those candidate passwords that are judged stronger by the network
are shown to the user.

We tested whether the meter helps users to create stronger passwords. We recruited partici-
pants to create a password for a hypothetical high-value, online account in a variety of different
conditions—some participants used our meter during password creation, some used modified
versions of our meter, and some did not have the benefit of any meter. Similar methodology has
been used in prior work by our group for measuring the impact of a variety of different conditions
on the security and usability of human-chosen passwords [8, 9].

We found that participants who used the meter created passwords that were 44% more resistant to

5



guessing attacks than those who did not. Interestingly, we also found that participants who saw
the human-readable suggestions produced even stronger passwords than those who only saw the
measurement of strength. This implies that not only does providing real-time strength estimates
help users make stronger passwords, but also that providing actionable suggestions about what
users should do provides additional benefit.

Conclusion

We showed how neural networks can be used to guess passwords, and that they can do so more
accurately than other methods for adversarial password guessing. We also showed how lever-
aging neural networks can lead to more practical estimations of password strength on resource-
constrained client machines in real time. Finally, we built and tested a password meter, based
on neural networks, that gives human-understandable feedback and guides users to make bet-
ter passwords. We have released our meter as open source software (at https://github.com/
cupslab/neural_network_cracking and https://github.com/cupslab/password_meter), and
invite people to use it.

Acknowledgments

We would like to thank Mahmood Sharif for participating in discussions about neural networks and Dan
Wheeler for his feedback. This work was supported in part by gifts from the PNC Center for Financial
Services Innovation, Microsoft Research, John & Claire Bertucci, and a gift from NATO through Carnegie
Mellon Cylab.

References

[1] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. “Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks.”
In Proceedings of 25th USENIX Security Symposium. 2016.

[2] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer, Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor,
Harold Dixon, Pardis Emami Naeini, Hana Habib, Noah Johnson, and William Melicher. “Design and
evaluation of a data-driven password meter.” In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, 2017.

[3] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya
Kurilova, Michelle L. Mazurek, William Melicher, and Richard Shay. “Measuring Real-World Accuracies
and Biases in Modeling Password Guessability.” In Proceedings of the 24th USENIX Security Symposium. 2015.

[4] Xavier de Carné de Carnavalet and Mohammad Mannan. “From Very Weak to Very Strong: Analyzing
Password-Strength Meters.” In Proceedings of the 18th Network and Distributed System Security Symposium.
2014.

[5] Ilya Sutskever, James Martens, and Geoffrey E. Hinton. “Generating text with recurrent neural net-
works.” In Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011.

[6] Matteo Dell’Amico and Maurizio Filippone. “Monte Carlo strength evaluation: Fast and reliable pass-
word checking.” In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Secu-
rity. ACM, 2015.

6

https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/password_meter


[7] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. “Timing Analysis of Keystrokes and Timing
Attacks on SSH.” In Proceedings of the 10th USENIX Security Symposium. 2001.

[8] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, and Serge Egelman. “Of passwords and people: measuring the effect of
password-composition policies.” In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011.

[9] Richard Shay, Saranga Komanduri, Adam L. Durity, Philip (Seyoung) Huh, Michelle L. Mazurek, Sean
M. Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. “Can long passwords be secure
and usable?” In Proceedings of the 32nd annual ACM conference on Human factors in computing systems. ACM,
2014.

7


	Design of a neural network guesser
	Design of a client-side password strength estimator
	Design of a password meter
	Conclusion
	Acknowledgments
	References

