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Abstract
Internet of Things (IoT) platforms often require users to
grant permissions to third-party apps, such as the ability to
control a lock. Unfortunately, because few users act based
upon, or even comprehend, permission screens, malicious
or careless apps can become overprivileged by requesting
unneeded permissions. To meet the IoT’s unique secu-
rity demands, such as cross-device, context-based, and
automatic operations, we present a new design that sup-
ports user-centric, semantic-based “smart” authorization.
Our technique, called SmartAuth, automatically collects
security-relevant information from an IoT app’s descrip-
tion, code and annotations, and generates an authorization
user interface to bridge the gap between the functionalities
explained to the user and the operations the app actually
performs. Through the interface, security policies can be
generated and enforced by enhancing existing platforms.
To address the unique challenges in IoT app authorization,
where states of multiple devices are used to determine the
operations that can happen on other devices, we devise
new technologies that link a device’s context (e.g., a hu-
midity sensor in a bath room) to an activity’s semantics
(e.g., taking a bath) using natural language processing
and program analysis. We evaluate SmartAuth through
user studies, finding participants who use SmartAuth are
significantly more likely to avoid overprivileged apps.

1 INTRODUCTION

The rapid progress of Internet of Things (IoT) technolo-
gies has led to a new era of home automation, with numer-
ous smart-home systems appearing on the market. Promi-
nent examples include Samsung’s SmartThings [49],
Google’s Weave and Brillo [23, 25] and Apple’s Home-
Kit [5]. These systems use cloud frameworks to integrate
numerous home IoT devices, ranging from sensors to
large digital appliances, and enable complicated opera-
tions across devices (e.g., “turn on the air conditioner
when the window is closed”) to be performed by a set
of applications. Such an application, called a SmartApp
in Samsung SmartThings or generally an IoT app, is in-

stantiated in the cloud. A user interface (UI) compo-
nent on the user’s smartphone enables monitoring and
management. Like mobile apps, IoT apps are dissemi-
nated through app stores (e.g., the SmartThings Market-
place [47]), which accept third-party developers’ apps
to foster a home-automation ecosystem. Unlike mobile
apps, IoT applications control potentially security-critical
physical devices in the home, like door locks. Without
proper protection, these devices can inflict serious harm.

A recent study on Samsung SmartThings brought to
light security risks of such IoT apps, largely caused by
inadequate protection under the framework [19]. Most
concerning is the overprivilege problem in SmartApp au-
thorization. Each SmartApp asks for a set of capabilities
(the device functionality the app needs), and the user must
choose the IoT devices to perform respective functions
for the app (for example, see Figure 1). In mapping capa-
bilities to devices, the user allows the IoT app to perform
the set of operations defined by those capabilities (e.g.,
turn on a light, unlock the door) based on event triggers
(e.g., the room becomes dark, a valid token is detected
near the door). However, this implicit authorization suf-
fers from issues related to coarse granularity and context
ignorance, namely that an app given any capability (e.g.,
monitoring battery status) of a device (e.g., a smart lock)
is automatically granted unlimited access to the whole
device (e.g., lock, unlock) and allowed to subscribe to all
its events (e.g., when locked or unlocked).

In addition to the overprivilege that results from conflat-
ing all capabilities of a single device, malicious IoT apps
can overprivilege themselves by requesting unneeded, and
sometimes dangerous, permissions. While asking users to
authorize third-party apps’ access to IoT devices would,
in concept, seem to prevent this sort of overprivileging,
prior work on permissions systems for mobile apps has re-
peatedly documented that users often fail to act based on,
or even understand, these permission screens [18, 32, 33].

Even worse, unlike the Android permission model,
which asks the user for permission to access specific re-
sources on a single device (e.g., location, audio, camera),
access control in a smart home system is much more
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Figure 1: The installation interface of SmartApp SAFETY

WATCH lists configuration options without connecting to higher-
level app functionality. There is also no guarantee the app’s
actual behavior is consistent with its description.

complicated. The policy applies across devices, defin-
ing the operations of certain devices in certain scenarios
based on observations of other devices (e.g., “ring the bell
when someone knocks on the door”). Explaining such
complicated policies to users is challenging, and effec-
tive authorization assistance should certainly go beyond
what is provided by SmartThings (illustrated in Figure 1).
In particular, it may be difficult for a user to understand
what is being requested in the capability authorization UI,
due to the gap between the app’s high-level mission and
the technical details of capabilities across devices. For
example, a user may have no idea how reading from an ac-
celerometer relates to detection of someone knocking on
a door. Furthermore, in the absence of robust monitoring
and enforcement by the platform, the authorization system
provides little guarantee that the capabilities requested by
an app actually align with the app description.

As a result, despite the existing authorization system
for IoT platforms, there can exist a crucial gap between
what a user believe an IoT app will do, and what the app
actually does. The idea that privacy is context-sensitive
has been widely studied [41]. For example, providing an
individual’s sensitive health information to a doctor for the
purpose of treating the individual would often not violate
the notion of contextual integrity, whereas providing the
same information to the individual’s financial institution
would likely violate his or her privacy. A similar principle
holds in the IoT ecosystem. If an IoT app describes its
own purpose as unlocking the door when a visitor arrives,
it is likely no surprise to a user that the app can unlock
the door. If, however, the same app had advertised itself
as a temperature-monitoring app, a user would likely find
the app’s ability to unlock the door to be a security risk.

In this paper, we propose new user-centered autho-
rization and system-level enforcement mechanisms for
current and future IoT platforms. We designed our ap-
proach, SmartAuth, to minimize the gap between a user’s

expectations of what an IoT app will do and the app’s
true functionality. To this end, SmartAuth learns about
each IoT app’s actual functionality by automatically har-
vesting and analyzing information from sources such as
the app’s source code, code annotations, and capability
requests. Because the natural-language description devel-
opers write to advertise an app in the app store is the key
source of users’ expectations for what the app will do, we
use natural language processing (NLP) to automatically
extract capabilities from this description.

SmartAuth then compares the app’s actual functionality
(determined through program analysis) to the functional-
ity developers represent (determined through NLP). This
automated process is far from trivial because an in-depth
understanding of the app focuses not only on the seman-
tics of the app activities, but also their context among
the app’s broader goals. Our approach for achieving this
level of contextual understanding relies on program anal-
ysis of the SmartApp’s source code and applying NLP
techniques to code annotations (e.g., the constant string
for explaining the position of a sensor). We use further
NLP to analyze the app description provided by the devel-
oper to extract higher-level information about the stated
functionality, including entities (e.g., “a coffee machine”),
actions (e.g., “taking a shower”), and their relationships
(e.g., “turn on the coffee machine after taking a shower”).
SmartAuth then compares such descriptions against in-
sights from program and annotation analysis to verify that
the requested capabilities and called APIs match the stated
functionality, leveraging semantic relations among differ-
ent concepts and auxiliary information that correlates
them. For example, an annotation indicating a “bathroom”
and the activity “take a shower” are used to identify the
location of the humidity sensor of interest.

To minimize user burden, SmartAuth automatically al-
lows functionality that is consistent between the app’s
natural-language description and code, yet points out dis-
crepancies between the description and code since these
are potentially unexpected behaviors. SmartAuth employs
natural-language-generation techniques to explain, and
seek approval for, these unexpected behaviors. The out-
come of this verification analysis is presented to the user
through an automatically created interface that is built
around a typical user’s mental model (for example, as in
Figure 4). SmartAuth then works within the platform to
enforce the user’s authorization policy for the IoT app.

We incorporated SmartAuth into Samsung Smart-
Things as a proof of concept and evaluated our imple-
mentation over the 180 apps available in the Smart-
Things marketplace. SmartAuth successfully recovered
authorization-related information (with 3.8% false posi-
tive rate and no false negatives) within 10 seconds. We
found that 16.7% of apps exhibit the new type of overpriv-
ilege in which some functionality is not described to the
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user despite passing Samsung’s official code review [51].
Examples of cases found stem from vague descriptions
(e.g., an app stating it can “control some devices” in your
home) or hidden security-sensitive functionality (e.g., ac-
cessing and actuating an alarm without consent).

We also performed user studies to evaluate SmartAuth’s
impact on users’ decision-making process for installing
IoT apps1. In a 100-participant laboratory study, we found
that SmartAuth helped users better understand the implicit
policies within apps, effectively identify security risks,
and make well-informed decisions regarding overprivi-
lege. For instance, given two similar apps, one of which
was overprivileged, using the current Samsung Smart-
Things interface, 48% of participants chose to install the
overprivileged app in each of five tasks. With Smart-
Auth, however, this rate reduces to 16%, demonstrating
the value of SmartAuth in avoiding overprivileged apps.

We also generated automated patches to the 180 Smart-
Apps to validate compatibility of our policy enforcement
mechanism, and we found no apparent conflicts with
SmartAuth. Given our observations of the effectiveness
of the technique, the low performance cost, and the high
compatibility with existing apps and platforms, we believe
that SmartAuth can be utilized by IoT app marketplaces
to vet submitted apps and enhance authorization mecha-
nisms, thereby providing better user protection.

Our key contributions in this paper are as follows:

• We propose the SmartAuth authorization mechanism
for protecting users under current and future smart
home platforms, using insights from code analysis
and NLP of app descriptions. We provide a new
solution to the overprivilege problem and contribute
to the process of human-centered secure computing.

• We design a new policy enforcement mechanism,
compatible with current home automation frame-
works, that enforces complicated, context-sensitive
security policies with low overhead.

• We evaluate SmartAuth over real-world applications
and human subjects, demonstrating the efficacy and
usability of our approach to mitigate the security
risks of overprivileged IoT apps.

The remainder of this paper is organized as follows.
In Section 2, we present the models and assumptions
for our work. In Section 4, we describe the high-level
design of SmartAuth. We present the details of our design
and implementation in Section 5, and our evaluation of
SmartAuth follows in Section 6. We highlight relevant
related work in Section 7 and conclusions in Section 9.

1Our user studies were conducted with IRB approval.
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Figure 2: Users install IoT apps through mobile devices, allow-
ing the vendor’s IoT cloud to interact with the user’s locally
deployed devices. IoT apps pair event handlers to devices, issue
direct commands, and enable external interaction via the web.

2 BACKGROUND

2.1 Home Automation Systems
Home automation is growing with consumers, and many
homeowners deploy cloud-connected devices such as ther-
mostats, surveillance systems, and smart door locks. Re-
cent studies predict home automation revenue of over
$100 billion by 2020 [31], drawing even more vendors
into the area. As representative examples, Samsung
SmartThings and Vera MiOS [54] connect smart devices
with a cloud-connected smart hub. Such vendors typically
host third-party IoT apps in the cloud, allowing remote
monitoring and control in a user’s home environment.

Figure 2 illustrates a typical home automation system
architecture. We use Samsung SmartThings to exemplify
key concepts and components of such a system.

IoT apps written by third-party developers can get ac-
cess to the status of sensors and control devices within a
user’s home environment. Such access provides the ba-
sic building blocks of functionality to help users manage
their home, for example turning on a heater only when
the temperature falls below the set point. Figure 2 depicts
cloud-based IoT apps BEACON CONTROL and SIMPLE
CONTROL installed by a user from their mobile device
and with access to the user’s relevant IoT devices.

Current IoT platforms use capabilities [36] to describe
app functionality and request access control and autho-
rization decisions from users. Unlike permissions, capa-
bility schemes are not designed for security, but rather
for device functionality. A smart lighting application,
for example, would have capabilities to read or control
the light switch, light level, and battery level. Due to
complexity, capabilities in home automation platforms
are often coarse grained. One capability might allow an
app to check several device attributes (status variables) or
issue a variety of commands. This functionality-oriented
design creates potential privacy risks, as granting an app
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a capability for a device allows it to access all aspects of
the device’s status and fully control the device.

An IoT app can also act as a web service (an endpoint in
Samsung Smartthings) to interact with the outside world.
Such an app handles remote commands from servers and
reacts accordingly. Many home automation platforms
support standard authentication and authorization mecha-
nisms such as OAuth [4, 50] to grant permission to third
parties for commanding or accessing devices.

2.2 NLP Technologies
Since our approach analyzes app descriptions and gaps
in users’ mental models, we rely on several existing tools
and techniques for natural language processing (NLP).
The following tools are employed in our work.

Word2Vec [22] is a state-of-the-art tool used to pro-
duce word embedding that maps words to vectors of real
numbers. Specifically, Word2Vec models are neural net-
works trained to represent linguistic contexts of words.
We use Word2Vec to determine the relation between two
words by calculating the distance between the words in
the embedding space. Word2Vec has many advantages
over previous approaches, including catching syntactic
and semantic information better than WordNet [39] and
achieving lower false positive rates than ESA [21].

Part-of-speech (POS) tagging is used to identify a
word’s part of speech (e.g., noun or verb) based on defi-
nition and context. A word’s relations with adjacent and
related words in a phrase, sentence, or paragraph impact
the POS tag assigned to a word of interest. In our work,
we rely on the highly accurate Stanford POS Tagger [38].

We also rely on the typed dependencies analysis [27]
to understand the grammatical structures of sentences,
grouping words together to recognize phrases and pair
subjects or objects with verbs. The Stanford parser applies
language models constructed from hand-parsed sentences
to accurately analyze sentences of interest.

3 IOT APP SECURITY CHALLENGES

Beyond basic overprivilege where an app requests an un-
necessary capability, previous IoT research has studied
two additional types of overprivilege [19]: coarse capa-
bility and device-app binding. In the former, a capability
needed to support app functionality also allows unneeded
activities. In the latter, a device is implicitly granted
additional capabilities that are not needed or intended.

We have identified an additional type of overprivilege
that relates not only to the functionality of the IoT app, but
also to the user’s perception of the app functionality, as
seen through the app description. We observe that several
IoT apps exhibit capability-enabled functional behaviors
that are not disclosed to the user, causing a discrepancy
between the user’s mental model and the actual privilege
of the app. We refer to this problem as undisclosed over-

privilege. This kind of overprivilege has been discussed in
mobile apps, but was never studied in the IoT space. An
example of this type is an IoT app that describes the ability
to control lights while requesting capabilities to read and
control a door lock. Previous approaches may not flag this
app as overprivileged, as long as the capabilities are used.
In fact, even after a majority of Samsung SmartThings
apps were removed from the market due to the previously
reported overprivilege issues [19], we found that 16.7%
of the remaining apps still exhibit overprivilege risks.

Remote access is also an important security risk, as it
enables apps to send sensitive data to and receive com-
mands from third-party servers. In our study, we found 27
cases of such behavior, including cases where data was
shared without user consent, a clear privacy concern. A
SmartApp’s ability to act as a web service expands the
attack surface and potentially allows a malicious server to
send dangerous commands to an app running on a user’s
smart devices, even though users may not expect such
remote control. We observed 17 apps with this behavior.
Similar to the undisclosed overprivilege, remote access
does not match the user’s mental model, which illustrates
a gap in the current configuration and approval process.

Based on these observations, a general threat in the IoT
app landscape is the ability for a malicious or compro-
mised IoT app to steal information from sensors or home
appliances or to gain unauthorized access to IoT device
functionality. Even if the IoT platform itself is secure
and trustworthy and previous issues of authentication and
unprotected communication are patched [7, 19, 40], such
issues with malicious apps may remain.

4 SMARTAUTH DESIGN OVERVIEW

We next present the high-level design of SmartAuth, in-
cluding design goals, architecture, and security model.

Given the unique security challenges of smart home
systems, we believe that an authorization system for IoT
apps should be designed to achieve the following goals.

• Least-privilege: The system should grant only the
minimum privileges to an IoT app, just enough to
support the desired functionality.

• IoT-specific: Compared with authorization models
for mobile devices, which are designed to manage a
single device, the authorization system for a smart
home framework should meet the needs for multi-
device, context-based, automatic operations. Permis-
sion models based on manifest permissions or run-
time prompts, such as those employed in Android or
iOS, either do not allow users to make context-based
decisions or cannot satisfy real-time demands (e.g.,
approval to actuate an alarm when fire is detected).

• Usable: The authorization system should be human-
centric, minimizing the burden on users while sup-
porting effective authorization decisions.
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Figure 3: We provide a high-level block diagram to illustrate
the design overview of our SmartAuth system.

• Lightweight: The authorization approach should not
inhibit performance with significant overhead.

• Compatible: The authorization approach should be
compatible with existing smart home platforms and
applications without breaking app functionality.

Since authorization decisions are made by humans, pro-
viding a human-centric design to help users to make well-
informed decisions is critical. Toward this goal, we design
an intelligent authorization system that recovers adequate
semantic information from IoT apps and presents it to
users in an understandable way. We leverage semantic
analysis techniques to automatically interpret the descrip-
tion, code, parameters, and annotations of an IoT app.
We analyze the semantic meaning of these components to
discovery inconsistency, then automatically generate an
authorization interface explaining the findings to the user.

Based on these design principles, our SmartAuth sys-
tem includes five components: a program analyzer, a
content inspector, a consistency checker, an authoriza-
tion creator and a policy enforcer, as illustrated in Fig-
ure 3. The code analyzer extracts the semantics of an
IoT app through program analysis and NLP of app code
and annotations, creating a set of privileges that support
the app functionality. In parallel, the content inspector
performs NLP on the app description to identify the re-
quired privileges explained to the user. The consistency
checker compares the results of code analysis and content
inspection to generate security policies and identify dis-
crepancies between what is claimed in the description and
what the app actually does. These policies and informa-
tion needed to support user decisions are then presented
through an authorization interface produced automatically
by the authorization creator. The resulting policies are
then implemented by the policy enforcer.

Our security policy model for the smart home architec-
ture is described in the form of a triple (E,A, T ). Item E
represents the events, inputs, or measurements involving
IoT devices and describes the context of the policy. Item
A represents the actions triggered by elements of E, in-
cluding commands such as “turn on”. Item T represents
the group of targets of the actions in A, such as a light

Figure 4: We illustrate the security policy generated for the
HUMIDITY ALERT app, which is communicated to the user
to request authorization. The indication of behavior type is
discussed in more detail in Section 5.3

receiving a command, noting that an empty target implies
broadcast of a message or command. This model captures
typical IoT app functionality, as apps are designed to issue
commands to respond to observed state changes.

This model describes not only the policy produced by
the authorization process, but also the privileges both
claimed in an app’s description and recovered from its
code. Analysis of the policy actions thus allows identi-
fication of overprivilege and presentation of conflicts or
situations that require the user to make a policy decision.
Figure 4 illustrates an example of such policies.

5 DESIGN AND IMPLEMENTATION

In this section, we detail our design and implementation
of SmartAuth.

5.1 Automatically Discovering App Behaviors
To extract an app’s security-critical behaviors, we perform
static analysis on the app’s source code and use NLP
techniques on code annotations and API documents.

We collected the source code for 180 Samsung
SmartThings apps from an source-level market in May
2016 [48]. This represents 100% of open-source Smart-
Apps and 80.2% of all SmartApps at that time.

For each app collected, we parse its code and create
an Abstract Syntax Tree (AST) from the code, resolving
classes, static imports, and variable scope. We choose
to do AST transformation for the app analysis for two
reasons. First, we have access to the source code which
is suitable for AST transformation. To enable further
analysis, we extract the key components of method names,
variable names and scope, a variety of statements. Second,
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SmartThings apps are written in Groovy, which transfers
method calls into reflective ones and creates challenges
for existing binary analysis tools to deal with reflections.
Therefore, binary analysis is not suitable.

We first extract capabilities, which are directly associ-
ated with security behaviors, by searching for the term
“capability” in the preference block. We incorporate any
search results into the list of requested capabilities col-
lected from the IoT app documentation.

To further understand how the IoT app is intended
to make use of the requested capabilities, we analyze
the commands and attributes associated with each re-
quested capability. To enable this analysis, we main-
tain a global mapping of capabilities to commands
and attributes, noting that one capability may involve
multiple commands and attributes. Since a SmartApp
gets status updates by subscribing to events, namely as
subscribe(dev,attr,hndl) for relevant IoT de-
vice dev, device attribute attr, and invoked method
hndl, we use this global mapping to search the AST for
relevant commands called and attributes subscribed.

We then generate the security policy, starting from
the method invoked on event subscription and perform
forward tracing. We first analyze the invoked function’s
code blocks to determine whether it contains conditional
statements, which we analyze immediately. Otherwise,
we trace into the called function. Within condition blocks,
we look for (1) the event and (2) the object and action.
The invoked function of the event subscription takes a
subscription parameter that carries information about the
event. Combining this information with the variables
in the AST, we identify both the event and associated
capability. We further identify the action triggered by
the event. For example, for an app that controls a heater
based on a threshold temperature setting, it is critical to
distinguish whether the app turns the heater on or off.
We thus search the result statement for commands that
control a device. If found, we continue our analysis to
match the capability through variable analysis. Otherwise,
we record the event and trace into the called function.

The previous analysis covers an app’s direct access to
IoT devices, which we use to identify overprivilege. We
also analyze whether the app has remote access to servers
other than the SmartThings cloud. We consider two types
of remote access: whether the app sends data to the re-
mote server and whether the app works as a web service
to take commands from the remote server. Both cases
are privacy-invasive and may violate user expectations.
We search the AST to match patterns including OAuth,
createAccessToken, and groovyx.net.http.

We also examine clues from code annotations (e.g.,
comments and text strings) to gain further information
about context and device state. We apply Stanford POS
Tagging and analyze the nouns to determine whether they

represent location or time contexts. We find that most
context clues in smart homes relate to a place in the home,
such as a bedroom. For example, we can extract that
the humidity sensor is associated with bathroom from un-
derstanding the annotation in the following code snippet.

Listing 1: Code Snippet about Device Selection

section("Bathroom humidity sensor") {
input "bathroom", "capability.

relativeHumidityMeasurement", title:
"Which humidity sensor?"

}

5.2 Analyzing App Descriptions
A key goal of our project is revealing any discrepancy
between what the app claims to do and what it actually
does. To find such discrepancies, we use NLP techniques
to extract the security policy from the app’s free-text
description and program analysis to compare it with the
security policy extracted from the code. We extract and
correlate the behaviors in three layers: (1) entity, (2)
context and action, and (3) condition.

We infer the security policy based on human-written,
free-text app descriptions. To do this, we first identify the
parts of speech of the words used, then analyze the typed
dependencies in the description. Nouns and verbs are
often related to entities; for example, movement might be
related to a motion sensor. From the structure of the de-
scriptions, we can then infer relationships between entities
by identifying the typed dependencies. For instance, in
the phrase “lock the door”, the noun door is the accusative
object of the verb lock (written as dobj(lock, door)). In
the corresponding security policy, lock is the action and
door is the target. Most cases are more complex than this
example, and our more comprehensive analysis follows.

Specifically, we use the Stanford POS Tagger to iden-
tify parts of speech and the Stanford Parser to analyze
sentence structure, including typed dependencies, as il-
lustrated in Figure 5. We follow standard NLP practices,
such as removing stop words (e.g., “a,” “this”) [11].

We analyze noun and verb phrases to pinpoint the rele-
vant entities, as these phrases usually describe core app
functionality. However, as discussed later, analyzing a
developer’s description comes with non-trivial challenges.
In addition, the device’s context can significantly impact
the implications of the entities. To overcome these diffi-
culties, we design and implement the following process.

The most straightforward case is when the description
explicitly includes the name of the entity (e.g., humidity
sensors). If so, we match words directly.

Because of language diversity, the first step may not
produce meaningful results. However, even when the
description does not contain the device name, the descrip-
tion might contain contextual clues related to specific
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Figure 5: We illustrate example NLP analysis for the COFFEE

AFTER SHOWER description: “This app is designed simply to
turn on your coffee machine while you are taking a shower.”
Red and blue characters respectively indicate parts of speech
(e.g., “VB” for verb) and typed dependencies (e.g., “advcl” for
adverbial clause modifier).

devices. For example, mention of flood detection hints to
a humidity or moisture sensor. We evaluate relationships
between words in the descriptions to the relevant devices
through a word distance model that combines Word2Vec
with a language model. Our language model includes a
vocabulary of three million words and phrases, trained on
roughly 100 billion words from Google News [24].

The most challenging case is when the words in
the description are not directly related to the entity
in the generated security policy. In this case, we
compare the description to the context clues from
code annotations. In the example in Figure 6, we first
extract the entity “bathroom” (the context clue) from
the annotation for the humidity sensor (capability.
relativeHumidityMeasurement) identified
through code analysis (Section 5.1). We link this entity to
the entity “shower” using the semantic relation revealed
using Word2Vec. In this way, we link “taking a shower”
to the humidity sensor. Similarly, our technique relates
“coffee machine” in the description to the switch device
(capability.switch) recovered from the code.

However, simply connecting an entity in the description
to a device in the code is insufficient to determine whether
only expected behaviors (as specified in the description)
happen. For example, “lock the door when nobody is at
home” and “unlock the door when nobody is at home”
have starkly different security implications. To compare
the semantics of an activity in description to the operation
of a device, we utilize a knowledge-based model. Specifi-
cally, we parse the API documentation of SmartThings to
generate the attribute and command models, namely the
keyword sets for attributes and commands that represent
their semantics. We thus parse words and phrases in the
description connected to the entity-related word. This can
be done by going through the typed-dependency graph.

Entity :   
Coffee machine 
Shower 
 

Description analysis Program analysis 

Entity :   
Switch 
Humidity sensor 
 

Context clue: 
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Coffee for the switch  

Context:  
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Figure 6: We illustrate the three-step policy correlation for the
COFFEE AFTER SHOWER app. 1) We apply the context clues
“bathroom” and “coffee” for entity correlation. 2) We use the
attribute model and command model to extract and correlate
the context and action. 3) We use typed-dependency analysis
and causal relationship model to correlate the policies generated
from the description and program analysis.

For example, in Figure 6, we have identified that “cof-
fee machine” is an entity related to the phrase “turn on”.
Such phrases will be compared with the keywords in the
attribute and command models to find matches.

After comparing the devices used in the code to those
mentioned in the description, we also need to know
whether the actual control flow matches that of the policy
model. The causal relationship is critical for multi-device
management where devices have impacts on each other.
For example, two IoT apps may both ask for access to a
door lock, motion sensor on the door, and presence sen-
sor. A benign app might unlock the door when a family
member is at the door and locks it when someone other
than a family member is there. A malicious app might
unlock the door anytime anyone is there. These two apps
use the same devices, but with different control flow.

To perform causal analysis, we analyze the typed
dependencies and build knowledge-based models of
causal relationships. The causal relationships model is
built with sentence structures and conjunctions related to
conditional relationships. We apply the initial models to
the descriptions to identify which devices caused other
devices to change status. For example, the sentence
“turn on the light when motion is sensed” represents
that motion status is the cause, and turn on the light
is the result. At the end of this process, we obtain
verified behaviors that match in code and descriptions
and unexpected behaviors that exhibit a mismatch.

5.3 Authorization Interface Generation
Towards making usability a first-order concern in design-
ing our authorization scheme, we first conduct an online
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survey to understand users’ mental models related to IoT
app installation and the overprivilege problem. Using
Amazon Mechanical Turk, we recruit adult participants
who have experience using smartphones. To avoid bias-
ing participants towards fraudulently claiming experience
with SmartThings to participate in the survey, we do not
require that participants have used any smart home plat-
forms to take the survey. However, we only analyze data
from the 31.6% of the survey participants who have pre-
vious experience with SmartThings. Please refer to the
appendix refquestion1 for the sample survey questions.

Our survey asked about: (1) experience using IoT plat-
forms and demographics, (2) the factors considered when
installing third-party IoT apps, and (3) perspective on
smart home capabilities. We received responses from 300
participants who had used SmartThings, identified by an
average age of 30.8 years old (age range is 18-60) with a
gender breakdown of 32% female, 67% male.

We asked participants to respond using a five-point
scale (strongly care, care, neither care or not care, not
care, strongly not care) about factors they consider when
deciding whether or not to install a SmartThings app.
App functionality (66% strongly care and 24% care) and
privacy (57% strongly care and 28% care) were the factors
participants stated they cared about most in their decision.

To understand participants’ perspectives on smart home
capabilities, we asked them to rate the sensitivity of differ-
ent IoT device functions and to compare the sensitivity of
SmartThings capabilities and Android/iOS permissions.
To ensure that participants understood what we meant by
smart home capabilities, we both formally defined the
concept and demonstrated it using an example screen shot
from a SmartThings device permission screen.

We asked participants to rate the sensitivity of eight
IoT device behaviors on a four-point scale (from “not sen-
sitive” to “very sensitive”). We find that participants have
very different risk perceptions for different behaviors of
the same IoT device. For example, we find the average
sensitivity rating for app’s ability to unlock their door
is 3.28, whereas reading the battery level of their door
is only 1.87 (Mann–Whitney U = 21350, n1 = n2 =
300, P < 0.001 two-tailed) [8]. These sharp distinctions
highlight the importance of increasing the transparency
to users about what precise behaviors an app will perform
in the home, rather than considering all behaviors for a
particular device monolithically. Our approach of auto-
matically identifying discrepancies between the actual
behavior of an app determined through program analysis
and the free-text app descriptions that users generally rely
on when considering whether to install apps [32] better
supports these distinctions.

To this point, most work on app permissions focuses
on smartphones. We thus asked participants to specify
whether they considered Android/iOS permissions and

smart home capabilities equally sensitive, Android/iOS
permissions to be more sensitive, smart home capabilities
to be more sensitive, or whether they were unsure. In sup-
port of our continued study, 69% of participants indicated
that they considered smart home capabilities to be more
sensitive than Android/iOS permissions. Participants pro-
vided a free-text explanation of why, and we performed
qualitative coding on these responses by two researchers
(with an agreement rate of 90.3%). The leading reason
participants found IoT apps more sensitive is that they
perceived the home environment to inherently present
greater risks. One participant wrote:

“Smart home compromises can inflict serious
damage or injury. Imagine being locked in your
house, with the heat cranked up. Or an in-
vader monitoring your location in the house,
or studying your patterns. The risk involved in
a smartphone knowing your location or access-
ing the devices hardware, like reading contents,
contacts or accessing the camera are far more
limited in potential effects by an attacker.”

In generating the user interface, we aim to minimize the
burden on the user and provide information that matches
the user’s mental model of the system. We rely on a policy
model that links app functionality with authorization. We
first automatically summarize the security policy, remov-
ing redundant logic, and then create language models to
translate the security policy into a human-understandable
description. We achieve this task using state-of-the-art
natural language generation tool SimpleNLG [1], a re-
alization engine that generates and linearizes syntactic
structures. The automatically generated description de-
tails what device attributes and commands are being used,
and why. For example, the app monitors the temperature
from the temperature sensor and whether someone is at
home by the presence sensor to turn on a heater when it
is cold and someone is home.

We designed our authorization approach to better align
users’ mental models with the actual behaviors of smart
home apps, as well as to reduce user burden during the
authorization process. Because many users rely on app
descriptions, rather than permissions screens, to evaluate
smartphone apps [32], one way of reducing user burden
is to assume that a user would implicitly grant an app the
permission to perform actions stated in the app descrip-
tion. While any assumption that a user’s actions with an
app perfectly follow the user’s intent is necessarily flawed,
prior work on smartphone permissions [32] suggests that
assuming a user would permit an app to perform the be-
haviors described in its app description is practical. The
assumption of a user would permit an app to perform the
behaviors in its description is likely at least as robust as
assuming that a user intended to grant the permissions
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specified on a permissions screen. We therefore minimize
users’ burden by automatically granting the attributes in-
ferred from the app description. For the attributes absent
from the app description, we present the user with our
automatically generated description of the policy model
rather than potentially confusing settings.

To help users understand the potential risky behaviors,
we use risk level indicators with corresponding colors and
icons in the user interface, as illustrated in Figure 4. We
define three indicator categories: verified behaviors that
match the claimed functionality, unexpected behaviors
that are not sensitive, and dangerous behaviors that are
unexpected and risky. We determine these risk levels by
asking security experts and average users to rate their per-
ceived risk based on status changes and device operations.
Specific parameters are further described in the Appendix.

5.4 Policy Enforcement
Once a user sets his or her policy settings through the user
interface, we enforce the policy end-to-end by blocking
unauthorized command and attribute access.

Our proof-of-concept implementation of the policy
enforcement mechanism operates locally on the device
through the use of REST APIs, mimicking the ideal inte-
gration directly into the SmartThings Cloud. We patched
existing SmartApps by substituting each command or at-
tribute function call with an equivalent REST API call to
the module that includes the device handler, command or
attribute name, and any additional parameters. After the
module processes the request, a return value is sent back
to the patched app and handed to the code that invokes
this command or attribute, which is transparent to the
original app. Similarly, the patched app also subscribes
to events by connecting to the enforcement module. Ap-
pendix A further details how we patch existing Groovy
apps to interact with our policy enforcement module.

The policy enforcement mechanism starts when the
user begins to install a SmartApp. The user is directed to
our enhanced interface to set up the relevant devices and
policies for the app. This information is transmitted to
the policy enforcement module to ensure that the app can
only access what the user allows. Based on the policies,
the module will make two type of decisions.

First, whenever the module receives a command or
attribute request from a patched app, it will extract the
device ID and actions and check the associated policies
from the database for proper authorization. If allowed, the
module will forward the request to the cloud service to
execute and respond, after which the module will forward
the response to the patched app. If denied, the request
will be dropped and an error message will be returned to
the patched app. We expect that SmartApps will already
be designed to handle error messages, so the denial of
requests should not impede normal operation. We further
analyze compatibility in Section 6.3. Second, whenever

there is an event reported by the SmartThings Cloud, the
module will retrieve the associated app IDs and policies
from the database and forward the event only to the apps
that are allowed to access the event according to the app
policy. The module thus blocks all unauthorized sub-
scribe, command, and attribute requests.

6 EVALUATION

We evaluate SmartAuth in several dimensions, finding
SmartAuth is effective at automatically extracting secu-
rity policies, significantly helps users avoid overprivileged
apps, and adds minimal performance overhead when en-
forcing users’ desired policies.

6.1 Effectiveness in Extracting Policies
We first evaluate SmartAuth’s ability to accurately identify
unexpected behaviors. To this end, we manually analyze
the description and the code of the 180 available Smart-
Apps and compare the results to those of the automatic
analysis. In this process, we do not observe any false
negatives, though we identify seven false positives (3.9%)
in which SmartAuth flagged a behavior as unexpected
though manual analysis of these cases suggests otherwise.

In two of these cases, the app uses a product name
to represent a device, but the product name is not rel-
evant to its functionality; for example, the MINI HUE
CONTROLLER app uses the Aeon Minimote2 device. In
two other cases, the app references another app by name
to explain its functionality; for example, the KEEP ME
COZY TWO app claims that it “works the same as KEEP
ME COZY, but enables you to pick an alternative tem-
perature sensor in a separate space from the thermostat.”
These cases could be eliminated using named entity anal-
ysis to identify the referred app and merge the behaviors
and descriptions accordingly. In another case, the de-
scription has complicated logic spread through several
sentences, causing the description to be ambiguous. In
the two remaining cases, the correlation of the context
is not intuitive, even for a human reader; for example, a
relationship between vibration of the floor with someone
waking up at night is not immediately clear.

6.2 Impact on Users
We first describe our user study to evaluate how Smart-
Auth impacted users’ app-installation decisions, followed
by additional data on the usability of SmartAuth itself.

We performed a between-subjects user study with 100
participants recruited from across our institutions. Partic-
ipants completed app installation tasks in our lab using
phones we provided and answered several relevant ques-
tions. We required participants to be adults who regularly
use a mobile device and are knowledgeable about home
automation systems. We verify participants understand

2http://aeotec.com/homeautomation
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key concepts of smartphones and home automation us-
ing screening questions. For example, we ask them how
IoT apps are installed and what purposes IoT apps serve.
We also ask questions about demographics, as well as
questions about their experiences installing IoT apps. The
protocol takes around 20 minutes. For the 100 partici-
pants in our study, their ages ranged from 19 to 41 years
with a mean age of 25.7 years, and 59% of participants
reported as male and 41% as female. The participants
have education backgrounds ranging from high school
to graduate school. 68% of participants have a technical
background (engineers or students in computer science or
related field).We carefully avoid the IoT developers when
we recruit in the company because they are very familiar
with the system and their results might be biased.

The study’s primary task is a series of selection tasks
for IoT apps using the phone we provide. For five different
types of IoT apps, the participant chooses between one of
two similar apps. Each of the two apps in a pair has iden-
tical functionality, yet only one of the two apps in a pair is
overprivileged. To prevent this difference in permissions
from being the obvious variable of interest, we used apps
whose titles and descriptions were roughly comparable.
For example, participants choose between “Lights Off
with No Motion and Presence (by Bruce Adelsman)” that
will “Turn lights off when no motion and presence is de-
tected for a set period of time” and “Darken Behind Me
(by Michael Struck)” that will “Turn your lights off after
a period of no motion being observed.”

Each participant is randomly assigned into one of
two groups, specifying whether they will see Samsung
SmartThings’ authorization interface or SmartAuth while
completing all tasks. For each of the five app-selection
tasks, participants saw the app installation page with two
choices. We asked the participant to choose only one of
the two apps to install, and to explain why.

For each of the five tasks, between 48% and 60% of
participants who saw the current SmartThings interface
chose the overprivileged app, as shown in Figure 7. Even
though the current Samsung SmartThings authorization
interfaces shows users a list of the devices the app can
access, including potentially unexpected devices, this cur-
rent interface did not help users avoid overprivileged apps.

In contrast, 84% of participants who saw the Smart-
Auth interface successfully avoided the overprivileged
app, differing significantly from the current SmartThings
interface (Holm–Bonferroni corrected χ2, p ≤ .022 for
all five tasks). Note that for two of the tasks (A and B in
Figure 7), the overprivilege was a potentially dangerous
behavior (e.g., unlock a door), whereas the overprivilege
for tasks C–E was potentially less risky (e.g., learn the
temperature). For tasks A and B with dangerous over-
privilege, only 10% and 6% of SmartAuth participants,
respectively, chose the overprivileged app, compared to
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Figure 7: For 5 tasks, participants chose between two similar
IoT apps, one of which was overprivileged. This graph shows
the proportion of participants who chose the overprivileged app.
Similar to what one would expect from random selection, around
half of participants who saw the Samsung SmartThings interface
chose the overprivileged app. In contrast, only between 6% and
26% of SmartAuth participants chose the overprivileged app.

48% and 56% for the current SmartThings interface. Even
when they still chose the overprivileged app, we found
that many SmartAuth participants were aware of the over-
privilege, yet said they either did not care about the unex-
pected behaviors or thought the app might benefit from
these behaviors in the future.

In addition to evaluating SmartAuth’s impact on user
behavior, we also measure the usability of SmartAuth
itself. In the laboratory study, after users choose among
pairs of apps and answer questions about privacy, we ask
questions to elicit their perceptions of what the interface
communicated to them. For some of these questions,
participants respond to statements on a five-point Likert
scale (from “1: strongly disagree” to “5: strongly agree”).

The first statement gauges the apparent completeness
of explanations (“I feel that the app interface explains thor-
oughly why the app can access and control these sensors/-
doors”); SmartAuth participants were more likely than
those who used Samsung SmartThings to agree (Smart-
Auth mean 4.06, SmartThings mean 2.40, Mann–Whitney
U = 337.5, n1 = n2 = 50, P < 0.001 two-tailed). The
second statement measures user comfort in making deci-
sions (“I feel confident to make a decision whether or not
to install the app after reading the interface”); SmartAuth
participants were significantly more confident in their de-
cisions (SmartAuth mean 4.12, SmartThings mean 2.46,
Mann–Whitney U = 320.5, n1 = n2 = 50, P < 0.001
two-tailed). The third statement evaluates perceived dif-
ficulty of finding information (“It is difficult to find the
information from the interface”); SmartAuth participants
were more likely to disagree with this difficulty, mean-
ing they found it easier (SmartAuth mean 2.72, Smart-
Things mean 3.56, Mann–Whitney U = 713, n1 = n2 =
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50, P < 0.001 two-tailed).
We also asked open-ended questions about what fac-

tors participants consider when deciding to install an app.
Both SmartAuth and Samsung SmartThings participants
focused on two factors in common: functionality and ease
of configuration. However, SmartAuth participants also
discussed privacy and unexpected or dangerous behaviors
as a major factor. In comparison, only one of the 50 Sam-
sung SmartThings participants pointed out a mismatch
between the description and the authorization screen.

6.3 Performance and Compatibility
To evaluate the performance impact and ease of deploy-
ability for SmartAuth, we collected all 180 open-source
SmartApps in the Samsung SmartThings marketplace
at the time of research. In order to demonstrate that
SmartAuth is both lightweight and backward compatible,
we performed two performance tests: (1) pre-processing
performance comprising program analysis, description
analysis, behavior correlations, and policy description
generation and (2) run-time performance comprising au-
thorization interface generation and policy enforcement.

For testing the pre-processing performance, we timed
the generation of the policy description for each of the
180 apps, averaging over 10 trial runs. On a 3.1 Ghz Intel
Core i7 CPU with 16 GB memory, the pre-processing
overhead for an app is 10.42 seconds on average. Since
pre-processing is a one-time cost and can be done offline,
we believe that the performance is reasonable even for
vetting a large number of applications.

For the run-time performance test and compatibility
test, we instrumented the SmartApp to interact with our
policy server running on the Amazon EC2 cloud, which
enforces the rules defined by the user. Given our purpose
of evaluating the compatibility of our technique with ex-
isting SmartApps, we set the authorization policies (grant-
ing permissions to certain commands, attributes and event
handlers) ourselves, instead of letting the user do that, as
would happen in practice. We designed our experiments
to test the technique in the worst-case scenarios. That is,
we assume users would reject all unexpected and danger-
ous behaviors, requiring the maximum amount of policy
enforcement. To enable large-scale testing without requir-
ing the purchase of every physical SmartThings device,
we used Samsung’s online SmartApp simulator platform3.
Instrumented apps are then installed on the simulator, and
their functionalities are tested with simulated IoT devices.

As shown in Figure 8, we recorded the delay incurred
by different command, attribute, and event handler ac-
tions. We performed 1800 experiments among the 180
SmartApps on a cloud server with 3.1 Ghz Intel Core i7
CPU and 1 GB memory. SmartAuth incurs an average de-
lay of 35.4 msec, which is small relative to the dominant

3https://graph.api.smartthings.com/
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Figure 8: We plot the average delay of various functions in the
SmartThings platform. The darker bar in each pair represents the
delay in the unmodified platform with virtual devices, while the
lighter represents the delay in our customized platform with the
additional overhead introduced by SmartAuth. Event handlers
incur the highest incremental overhead, while commands incur
the highest proportional overhead (almost double the base case).

network latency in cloud-based IoT platforms.
Next, we test the degree to which SmartAuth policies to

mitigate overprivilege and block third-party remote access
impact backward compatibility with existing SmartApps.
As with our performance analysis, we test the worst case
of users blocking all unexpected and dangerous behaviors
and all remote access. We again test patched apps on Sam-
sung’s online simulator environment. We trigger events at
least five times and insert debug messages into the modi-
fied apps’ source code to observe apps’ behaviors while
they gather data from the cloud or when events have been
triggered. To evaluate backward compatibility, we both
observe app behaviors and analyze the debugging mes-
sages. For tests related to overprivilege policy, we focused
on the 30 apps that exhibit undisclosed overprivilege. For
the interested reader, these 30 apps are listed in the Ap-
pendix as Table 2. These apps either request capabilities
not mentioned in their descriptions (unexpected capabil-
ity), or even worse, request capabilities that could do
harm (e.g., unlocking the door). For example, the SMART
SECURITY app presents a description: “alerts you when
there are intruders but not when you just got up for a glass
of water in the middle of the night.” After scanning the
source file, this app requests access to motionSensor,
contactSensor, and alarm capabilities, satisfying
the description, but also requests sensitive commands in-
cluding turning on/off a switch, which is not mentioned
in its description. Therefore, we mark this access as an
unexpected behavior. For the remaining 150 apps, we fur-
ther patch them to comply with our policy enforcement
mechanism. Specifically, apps with coarse capability over-
privilege and device-app binding overprivilege are also
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constrained to ensure least privilege.
In our compatibility tests, none of the 180 apps crash

after patching, even with overprivilege security rules en-
forced. Even after they are patched to remove overpriv-
ilege, the 180 apps behave the same as their original
versions. In other words, patching does not break the
functionalities claimed in the app’s description.

We further test how apps function if we block all third-
party remote access, an extreme case where the user de-
nies all such requests. Of the 180 apps, only six apps
suffer from a loss of valid functionality. For example,
VINLI HOME CONNECT allows remote services to con-
trol IoT devices, and this functionality breaks entirely
when we block remote access. We believe such examples
will continue to be rather rare, especially when users are
given clear information and useful options to configure
the app’s security policy. In addition, we envision the
possibility of a cloud-based reference monitor that could
check run-time remote access and filter out dangerous ac-
cess, but such a design is beyond the scope of this work.

6.4 Limitations
Although SmartAuth advances user-centered IoT app au-
thorization, our design has limitations. A malicious de-
veloper could use custom-defined methods and property
names mirroring SmartThings commands and attributes to
fool the program analysis. A future version of SmartAuth
could better recognize this technique. Our static analysis
tool is based on Groovy AST transformation. If handled
correctly, the tool can detect obfuscated logic (which can-
not evade AST transformation), and obfuscated dynamic
variable/function names can be handled with define-use
analysis citenielson2015principles. Furthermore, a ma-
licious developer could craft app descriptions for which
SmartAuth mistakenly extracts a malicious behavior from
the description, even when humans would not perceive
such a behavior. Future work could focus on recogniz-
ing such adversarial descriptions. External services like
IFTTT could be the future work for our project. Our
approach can be applied if we know the control flow
information from IFTTT. External devices, if they are
approved by Samsung, will be included in the capability
system and covered by our project.

In addition, dynamic method invocation from remote
servers is a threat that requires future investigation. How-
ever, this is less of a concern because Samsung bans
dynamic method execution through code review [51].

Our user studies also have important limitations. While
we did not draw attention to this fact, particularly attentive
participants might have recognized that SmartAuth was a
novel interface. This recognition might have biased partic-
ipants to be complimentary of an interface they assumed
was being tested, as well as to pay particular attention to
the interface in the absence of habituation effects. Fur-
thermore, users will not always have a choice between

an overprivileged app and a less privileged variant, and
it is an open question whether users might still install
an overprivileged app if it is the only option. We have
one assumption that users will read the app description
when they decide to install apps. However, we did not
run a formal user study to verify the assumption. We did
observe in the lab study that most users payed attention
to the app description, but it would be better to verify the
assumption formally. Currently, the smart home market
is still at an early stage, and most of the users are with a
technical background. Many participants in our lab study
have good technical background, which is representative
for the current users. However, when the smart home
systems get much more popular, our participants might
not be representative for future users.

7 RELATED WORK

We next compare our work with previous research.

7.1 Mobile Permission Studies
Many researchers have studied permission systems for
mobile devices. While some insights apply in both do-
mains, the unique features of IoT platforms introduce
new security and privacy challenges. Most similarly to
SmartAuth, the Whyper system identifies Android permis-
sions that might be used from the app’s description [42].
The researchers do an extensive analysis of app descrip-
tions and match them with permissions, but they do not
evaluate the real security behaviors from the code of the
applications. Even for analyzing descriptions, SmartAuth
is fundamentally different because Android permissions
and APIs have very specific privacy implications. In con-
trast, reasoning about implications in the IoT is much
more context-sensitive, necessitating our further use of
NLP. Zhang et al. instead analyze Android apps using
static analysis, generating descriptions for the security
behaviors in the applications [57]. These descriptions are
helpful for users to understand the app’s behavior. How-
ever, users are burdened with reading the long logs and
still need to use the original Android interface to autho-
rize. In contrast, we remove many overprivilege cases
automatically and both design and test a new scheme that
minimizes user burden.

Many approaches build on this prior work. AutoCog
compares descriptions with permissions requested [43].
AsDroid analyzes the text in the user interface and the cur-
rent behavior to see whether it is a stealthy behavior [29].
Appcontext analyzes context that triggers security behav-
iors and compares the context among apps to differenti-
ate benign and malicious apps [56]. Other researchers
compare app behaviors to app descriptions by clustering
applications with similar functionality and finding apps
that use uncommon APIs [26]. Besides mobile permis-
sions, researchers also look into the privacy policies to
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identify privacy inconsistency of the code and the privacy
policy [58].

Another line of work studies users’ mental model about
permissions, focusing on users’ perceived risks [17, 18].
For example, Egelman et al. investigate user’s percep-
tions of sensitive data stored on their phones, including
banking information and home address [13]. However,
our study about users’ mental model about IoT permis-
sion makes new contribution because the perceptions and
requirements in IoT platfroms are different from mobile
platforms. Many researchers have sought to improve mo-
bile permissions. For example, Liu et al. propose privacy
profiles to ease user burden [37]. Almuhimedi et al. pro-
pose information visualization to improve user awareness
of risks [3], Harbach et al. suggest using personal exam-
ples to better explain permission requests [28], and Tan
et al. suggest using developer-specified explanations for
understanding [52]. Researchers have also provided gen-
eral guidelines for designing permission systems [16, 44].
Users’ perceptions of mobile permissions and IoT permis-
sions share some characteristics. For instance, Wijesekera
et al. observe through a field study that mobile apps some-
times violate contextual integrity by accessing unexpected
resources [55]. However, due to the differing privacy and
security implications for IoT platforms, SmartAuth fur-
ther rethinks the design of authorization systems.

7.2 IoT Security and Privacy
IoT security and privacy is an emerging area. Previous
research has largely focused on identifying security and
privacy vulnerabilities. Naveed et al. discuss the security
binding problems of smart devices that are external to the
mobile phone [40]. Fernandes et al. run a black-box anal-
ysis of Samsung SmartThings, pinpointing the overprivi-
lege problem [19]. We instead reconceptualize overprivi-
lege to be more practical and user-centered. To enhance
security and privacy goals in IoT and home automation
systems, FlowFence [20] uses information flow control
and explicitly isolates sensitive data inside sandboxes.
This approach requires intensive modification to Smart-
Apps, and the enforcement is done on Android instead of
a real smart home hub. Jia et al. [30] gather information
before a sensitive action is executed, and ask for user
approval through frequent run-time prompts. However,
in-context prompts cannot satisfy the real-time automa-
tion of IoT apps (e.g., users need to be awake to approve
a permission when an emergency happens). Users will
likely become habituated to approving these prompts, mis-
takenly approving unexpected behaviors. Furthermore,
the information they provide to users is directly dumped
from code, whereas we generate natural language to im-
prove communication with users. BLE-Guardian [15]
controls who can discover, scan, and connect to an IoT
interface. CIDS [10] designs an anomaly-based intrusion
detection system to detect in-vehicle attacks by measuring

fingerprints from deployed ECUs based on clock behav-
iors. Sivaraman et al. [45] propose managing IoT devices
through software-defined networking (SDN) based on
day-to-day activities.

Beyond framework or architecture solutions, enhancing
the security of smart devices is also a common counter-
measure against attacks from remote or near field com-
munication surfaces. For example, SEDA [6] proposed
their attestation protocol for embedded devices. Through
software attestation and showing states gathered from
booting sequences, SEDA can construct a security model
for swarm attestation. Similar approaches to ensure IoT or
smart device integrity [2,7,9,10] complement our system.

Some researchers have also examined IoT privacy from
a usability perspective. For example, Egelman et al. sug-
gest using crowdsourcing to improve IoT devices’ privacy
indicators [14]. Further, Ur et al. investigate parents’
and teens’ perspectives on smart home privacy [53] and
Demiris et al. study seniors’ privacy perspectives for
smart homes [12]. Kim et al. study the challenges in
access control management in smarthome and present
usable access control policies [34, 35]. In contrast, beside
understanding user’s mental model about smarthome pri-
vacy. we design a new usable IoT authorization scheme.
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9 CONCLUSION

In this paper, we have identified the fundamental gap
between how users expect an IoT app to perform and
what really takes place. We rethink the notion of au-
thorization in IoT platforms and propose an automated
and usable solution called SmartAuth to bridge the gap.
SmartAuth automatically collects security-relevant infor-
mation from an IoT app’s code and description, and gen-
erates a user-friendly authorization interface. Through
manual verification and in-lab human subject studies, we
demonstrate that SmartAuth can enable users to make
more well-informed authorization decisions for IoT apps
compared to the current approach.
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A SMARTAPP PATCHING

Our patching script is written in roughly 600 lines of
python code to modify the original Groovy source file
by the following steps. A toy example for a patched app
TURN IT ON FOR 5 MINUTES is given in Listing 2.

Listing 2: We provide a code snippet for patched IoT app TURN

IT ON FOR 5 MINUTES. Text in blue indicates statements
that need to be patched, and text in red indicates either new
code instrumented by the script or replaced with our wrapped
functions. The appSetting section added after the definition
block is used for OAuth configuration.

definition(
name: "Turn It On For 5 Minutes",
namespace: "smartthings",
author: "SmartThings",
description: "When a SmartSense Multi is

opened, a switch will be
turned on, and then turned off after 5

minutes.",
category: "Safety Security",
... \\

) {
appSetting "client_idFPS" // used to config

app identifier for OAuth.
appSetting "client_secretFPS" // used to

config app secret for OAuth.
appSetting "http_serverFPS" // we configure

cloud server url here.
}
...
mappings { // act as end-points for policy

enforcement module to deliver event data
path("/post_event") {

action: [
POST: "handleEventFromProxyServer"

}
}

}
preferences {

section("When it opens...") {
input "contact1",

"capability.contactSensor"
}
section("Turn on a switch for 5

minutes..."){
input "switch1", "capability.switch"

}
}
def installed() {

log.debug "Installed with settings:
\${settings}"
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subscribe(contact1, "contact.open",
contactOpenHandler)

subscribeToServer(contact1, "contact",
"open", contactOpenHandler)

}
def updated(settings) {

log.debug "Updated with settings:
\${settings}"

unsubscribe()
unsubscribeToServer()
subscribe(contact1, "contact.open",

contactOpenHandler)
subscribeToServer(contact1, "contact",

"open", contactOpenHandler)
}
def contactOpenHandler(evt) {

switch1.on()
sendCommandToProxyServer(switch1, "on", NULL,

NULL, NULL, NULL)
def fiveMinuteDelay = 60 * 5
runIn(fiveMinuteDelay, turnOffSwitch)

}
def turnOffSwitch() {

switch1.off()
sendCommandToProxyServer(switch1, "off",

NULL, NULL, NULL, NULL)
}
...

To enable authorization in the for policy enforcement
module, the script automatically inserts dynamic pages
and prepares a URL for the patched app to enable an
OAuth authentication flow at install time. The Smart-
Things platform provides a trigger for an OAuth autho-
rization flow via the URL containing an app identifier and
its cloud-generated app secret. When the user navigates
to the URL, they will be redirected to the SmartThings lo-
gin page to enter credentials and receive an authorization
token for later use.

The script next scans all devices on the SmartThings
capability list4 by parsing all input labels from the
preferences section and its corresponding child
pages, e.g., mainPage page section. The script builds
an internal structure called DL, maintaining a pair of in-
formation (input label, device capability), for later code
substitution for command or attribute statements.

The script then parses event handler subscription and
unsubscription statements by scanning the keywords. A
subscription statement consists of its input label, associ-
ated attributes, and the corresponding event handler func-
tion. For instance, subscribe(motionSensors,
"motion.active", motionActive) means the
app subscribes an event handler for status activity of in-
put motionSensors which has motion capability, and
assign function motionActive as callback handler.
Therefore, our patching engine replaces this statement
with an internal function subscribeToServer() to
send all corresponding parameters to the policy enforce-
ment module along with its app identifier. The module

4http://docs.smartthings.com/en/latest/
capabilities-reference.html

will determine whether this subscription is allowed de-
pending on user’s rules. If successful, the module will
forward the event data to the registered SmartApp. Unsub-
scription is much easier to implement, namely by remov-
ing all subscriptions registered on the policy enforcement
module.

The last step is to search all statements for possi-
ble command issuing or attribute retrieving associated
with those device labels collected above. For example,
the structure DL may contain an input device called
switch1 which has a switch capability. When the
script parses a statement containing the label switch1,
e.g., switch1.on(), the script catches the function
call on() and checks against a capability structure de-
fined based on the list of capabilities and their associated
functions and attributes5. Once the script confirms the
call or attribute, it replaces the original statement with the
internal API call sendCommandToProxyServer()
by sending the request to the policy enforcement module
with its app identifier, device label (switch1), command
label (on()) and any corresponding parameters.

After patching, each Groovy source file will contain
around 128 new lines to provide endpoint interfaces for
the policy enforcement module.

B SMARTAUTH WORKING EXAMPLE

Here we use one example to show how SmartAuth works.
THE FLASHER is an app that claimed to flash a set of
lights to notify user when motion, open/close event, or
switch event is detected. However, besides subscribing
to motion sensor, contact sensor, and switch, the app also
subscribes to the presence sensor and the acceleration
sensor. To bridge the gap between what the users think
the app do and the app’s real behaviors, we generate the
security policy from the code and from the description.
We display the verified capabilities according to their
functionality, and notify users about the unexpected be-
haviors, similar to Figure 4. On the interface, we further
classify the unexpected actions into “unexpected” and
“dangerous”, according to the user perception measured
through our crowd-sourcing result. We present the se-
curity policy and unexpected/dangerous behaviors in a
usable authorization interface. After getting the response
from the users, we enforce the policy so that the app only
gets what it needed for the functionality and what the user
understand and would like the app to access.

C APPS USED IN THE LAB STUDY

We show the participants five group of apps in the Smart-
Auth and SmartThing interface, as shown in Table 1.In-
terfaces used in the experiments can be found at [46].

5http://docs.smartthings.com/en/latest/
capabilities-reference.html
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Table 1: Apps in the lab study

App
ID

App Name Description Overprivileged? If
so, Behavior Type

1A SMART HU-
MIDIFIER

Turn on/off humidifier based on relative humidity from a sensor. NO

1B HUMIDITY
ALERT

Notify me when the humidity rises above or falls below the given threshold. It will turn on a
switch when it rises above the first threshold and off when it falls below the second threshold.

YES, Lock (Danger-
ous)

2A VIRTUAL
THERMOSTAT

Control a space heater or window air conditioner in conjunction with any temperature sensor,
like a SmartSense Multi.

YES, Motion Sensor
(Dangerous)

2B SMART
HEATER

Turn on/off the heater based on the temperature. NO

3A LIGHTS OFF Turn lights off when no motion and presence is detected for a set period of time. NO
3B DARKEN BE-

HIND ME
Turn your lights off after a period of no motion being observed. YES, Temperature

Sensor (Unexpected)
4A FLASH A NO-

TICE
When something happens (open/close, switch on/off, motion detected), flash lights to indicate. NO

4B THE
FLASHER

Flashes a set of lights in response to motion, an open/close event, or a switch. YES, Presence Sen-
sor (Unexpected)

5A LEFT IT OPEN Turn lights off when no motion and presence is detected for a set period of time. YES, Power Meter
(Unexpected)

5B SMART WIN-
DOW

Compares two temperatures - indoor vs outdoor, - then sends an alert if windows are open (or
closed). If you don’t use an external temperature device, your zipcode will be used instead.

NO

D EXAMPLE SURVEY QUESTIONS

We list a few representative survey questions.

D.1 Example questions in the Mturk study
1. What factors will you consider when making deci-

sion of whether to install a third party app or not?
And please indicate how much you care on each
factor that you will consider. {Strongly care, care,
neither care or not care, not care, Strongly not care}
() The source / author of the app
() The popularity of the app
() The functionality of the app
() The privacy aspect of the app
() The smarthome capabilities that the app request
() The relation of capability requests to the app’s
functionality
() Others:

2. Third-party apps can access devices in the smart
home after they are installed. Please rate the risk
levels of the different behaviors to access devices.
{Very sensitive, sensitive, a bit sensitive, not sensi-
tive}
() Unlock your door
() Lock your door
() Read the input of your door lock
() Read the battery level
() Read your motion sensor
() Control your water pump
() Turn on/off your light
() Adjust the level of your light

3. Similar to smarthome capabilities, Android or iOS
also provide permissions to third-party apps to con-
trol the access to resources in the mobile phone such
as your location and contact book. Which one do

you think is more sensitive?
A) Smarthome capabilties are more sensitive
B) Android or iOS permissions are more sensitive
C) I think they are the same
D) I don’t know

4. Please explain your reasons for the last question:

D.2 Example questions in the in-lab study
Please choose how much you agree with the following
statements. {Strongly disagree, disagree, neither agree or
disagree, agree, strongly agree}.

1. I feel that the app description explains thoroughly
why the app can access and control these sensors and
devices.

2. I feel confident to make a decision whether or not to
install the app after reading the description.

3. It is difficult to find information from the description.

E CROWDSOURCING FOR UNEXPECTED
BEHAVIOR SENSITIVITY

We evaluate how sensitive the unexpected behaviors are
by combining expert reviews and crowdsourcing together.
In particular, we have two security experts and 100 Mturk-
ers to look into the apps’ unexpected behaviors and eval-
uate how sensitive the unexpected behavior is given the
context of the app. We asked the participants to clas-
sify whether these unexpected behaviors are dangerous
or not(dangerous is counted as 1, and not dangerous is
counted as 0). From the expert and Mturk responses, we
assign each security expert a weight of 0.25, and each
Mturker a weight of 0.005. If the weighted sum is over
0.5, we consider the behavior as dangerous.
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Table 2: Compatibility test results among 30 SmartApps exhibiting undisclosed overprivilege, meaning they contain capabilities
for functionality not disclosed in the app description. Of these undisclosed overprivilege cases, we refer to the low-risk cases as
unexpected capabilities and the high-risk cases as dangerous capabilities. Note that the risk levels are crowd-sourced via online
surveys. We remove the access to all the unexpected and dangerous capability to test whether the apps can still perform correctly.

App Unexpected Capability Dangerous Capability Compatible
ALFRED WORKFLOW switch lock Not if block re-

mote access
BRIGHT WHEN DARK AND/OR
BRIGHT AFTER SUNSET

switchLevel Yes

CAMERA POWER SCHEDULER switch Yes
CURLING IRON motionSensor Yes
FORGIVING SECURITY contactSensor, switch alarm, motionSensor Yes
GOOD NIGHT switch Yes
JENKINS NOTIFIER colorControl switch Yes
NOTIFY ME WHEN button, contactSensor, accelerationSensor,

presenceSensor, smokeDetector, waterSensor
motionSensor, switch Yes

PHOTO BURST WHEN accelerationSensor, contactSensor imageCapture, motion-
Sensor, switch, presence-
Sensor

Yes

PREMPOINT imageCapture, switch,
lock, garageDoorControl

Yes

RISE AND SHINE motionSensor Yes
SAFE WATCH contactSensor, accelerationSensor, threeAxis,

temperatureMeasurement
motionSensor, presence-
Sensor

Yes

SEND HAM BRIDGE COM-
MAND WHEN

contactSensor, accelerationSensor, switch,
waterSensor, smokeDetector

motionSensor, presence-
Sensor

Yes

SIMPLE CONTROL switch, lock, thermostat, doorControl, color-
Control, musicPlayer, switchLevel

lock, doorControl Not if block re-
mote access

SMART LIGHT TIMER contactSensor motionSensor Yes
SMART SECURITY switch Yes
SMART WINDOWS contactSensor Yes
SMARTBLOCK NOTIFIER switch Yes
SPEAKER CONTROL contactSensor, accelerationSensor, switch,

waterSensor, button
motionSensor, presence-
Sensor

Yes

SPEAKER MOOD MUSIC contactSensor, accelerationSensor, button,
waterSensor,musicPlayer

motionSensor, presence-
Sensor, switch

Yes

SPRAYER CONTROLLER 2 switch Yes
SPRUCE SCHEDULER contactSensor Yes
TALKING ALARM CLOCK switchLevel, temperatureMeasurement, ther-

mostat, relativeHumidityMeasurement
Yes

THE FLASHER presenceSensor Yes
TURN IT ON FOR 5 MINUTES contactSensor Yes
UNDEAD EARLY WARNING contactSensor switch Yes
VINLI HOME CONNECT switch,lock Not if block re-

mote access
VIRTUAL THERMOSTAT motionSensor Yes
WEATHER WINDOWS contactSensor Yes
WHOLE HOUSE FAN contactSensor Yes

F APPS WITH UNDISCLOSED OVERPRIV-
ILEGE

Table 2 tabulates the 30 apps that exhibit undisclosed
overprivilege. These apps either request unexpected capa-

bilities not mentioned in their descriptions or dangerous
capabilities that could cause harm.
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