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ABSTRACT
Password-composition policies are intended to increase re-
sistance to guessing attacks by requiring certain features
(e.g., a minimum length and the inclusion of a digit). Sadly,
they often result in users’ passwords exhibiting new, yet still
predictable, patterns. In this paper, we investigate the us-
ability and security of adaptive password-composition poli-
cies, which dynamically change password requirements over
time as users create new passwords. We conduct a 2,619-
participant between-subjects online experiment to evaluate
the strength and usability of passwords created with two
adaptive password policies. We also design and test a feed-
back system that guides users to successfully create a pass-
word conforming to these policies. We find that a well-
configured, structure-based adaptive password policy can
significantly increase password strength with little to no de-
crease in usability. We discuss how system administrators
can use these results to improve password diversity.

1. INTRODUCTION
Reports of compromised password databases have become
increasingly common in recent years [4, 12, 26, 35, 43, 50].
Such breaches can have far-reaching implications as they al-
low attackers to perform offline hash cracking attacks with
virtually unlimited time. Because people commonly reuse
passwords across accounts [11, 14], a breach of one account
can compromise other accounts [14, 21]. While computa-
tionally expensive password-hashing functions are available,
they are not always practical to implement or may be imple-
mented ineffectively, and do not completely remove the ex-
istence of easy to exploit patterns. For high-value accounts,
it remains imperative that users choose passwords that are
hard for attackers to guess.

Password-composition policies, such as requiring a minimum
length and inclusion of special characters, are commonly
used to discourage users from choosing weak passwords. The
usability and security of password-composition policies has
been studied in depth [32, 45]; however, even under strict
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requirements, passwords still often have predictable pat-
terns [23,24,45].

To increase a password set’s resistance to guessing attacks,
rather than focusing on the strength of individual passwords,
researchers have proposed adaptive password-composition
policies, which automatically evolve over time to encourage
password diversity [34, 42]. For example, once some num-
ber of users of a given system have created passwords fitting
a specific pattern, that pattern is banned and subsequent
users may not create passwords fitting that pattern [34,42].
While these proposed adaptive password systems may have
strong potential benefits for security, their impact on pass-
word strength and usability has yet to be empirically tested.

In this work, we evaluate the security and usability impact
of making password-composition policies adaptive. We focus
on two implementations of this approach that do not require
storing a copy of the plaintext (or reversibly encrypted plain-
text) passwords, and which can operate with a traditional
(non-adaptive) password policy. Adaptive policy systems
that store plaintext or reversibly encrypted passwords are
insecure in real-world situations, where one must assume
attackers may gain access to the password store.

Our primary focus, Leininger et al.’s PathWell [33,34], pro-
hibits users from creating passwords with the same character-
class structure (pattern of symbols, digits, and letters) as
another user’s password. When a new password is created,
its structure is deemed “in use” and is not allowed during
future password creation attempts. To increase the usabil-
ity of the PathWell structure-based approach, we designed
and tested a feedback system that guides users to choose a
password with a permitted structure. The second approach,
introduced by Schechter et al. [42], instead uses a specialized
Bloom filter to probabilistically prevent users from creating
passwords that are deemed too popular.

To evaluate the security and usability of these approaches,
we conducted a two-part, between-subjects online study.
2,619 participants created a password under one of twelve
conditions, designed to study: how adding adaptive require-
ments to traditional password policies affect security and
usability; whether participants are confused by the extra re-
quirements; how security and usability change as the strin-
gency of adaptive policies increase; and the effect of graph-
ical feedback.

We found that the passwords created under structure-based
adaptive password-composition policies can be several or-



ders of magnitude more secure than those created with-
out an adaptive password-composition policy. More surpris-
ingly, we found that, structure-based adaptive policies can
be applied without a significant usability cost, according to
numerous usability metrics. We observed no statistically
significant differences in creation time, password recall, or
password storage (how often passwords were written down)
between pairs of conditions that differed only in whether
an adaptive policy was used. The only noteworthy usabil-
ity downside of applying structure-based policies was that
participants needed (on average 0.58–1.58) more attempts
to create their passwords; however, this neither significantly
impacted the overall time to create a password (of which
a single attempt is a small fraction) nor affected user sen-
timent, except for the condition which simulated the most
extreme numbers of disallowed structures. Our attempts to
provide additional feedback to overcome the expected usabil-
ity penalty of structure-based adaptive policies were largely
superfluous; little usability had been lost to begin with.

2. BACKGROUND AND RELATED WORK
We first discuss the types of password-guessing attacks that
adaptive policies aim to mitigate. We then detail the man-
ner in which password-guessing approaches exploit common
patterns in the absence of adaptive policies. Finally, we dis-
cuss related work on password-composition policies.

2.1 Password-Guessing Attacks
Password-guessing attacks fall broadly into one of two cat-
egories: those for which guessing is limited to a relatively
small number of attempts, and those for which large-scale
guessing is possible. An example of the former category
is an online attack, in which an attacker submits password
guesses to a running system. Because a well-configured sys-
tem will have a policy that rate-limits guessing or locks
accounts following a small number of incorrect authentica-
tion attempts, attackers are limited to making some of the
most likely guesses. Measurements of fraudulent SSH lo-
gin attempts revealed that some of the most common pass-
words that attackers guess are passwords often found in data
breaches, as well as passwords related to system administra-
tion (e.g., variants of “root”) [1]. If the adaptive system is
bootstrapped, these types of common passwords could be
banned initially by an adaptive policy. If not, the threat of
password guessing is minimized to only the small number
of accounts permitted to pick such a password before that
password is banned.

Large-scale guessing attacks also present a major threat in a
number of different circumstances. One such situation is an
offline attack aimed at discovering credentials reused from
other sites. If an attacker obtains a store of hashed pass-
words, which has become unfortunately common in recent
years [4, 12, 26, 35, 43, 50], the attacker can perform offline
hash cracking, limited only by his or her time and resources.
Because users often reuse passwords across accounts [11,14],
attackers can use the credentials obtained in an offline attack
to compromise other accounts [14,21].

Password-specific hash functions are designed to be compu-
tationally expensive in order to limit the number of guesses
an attacker can make. Unfortunately, their deployment has
proven error-prone in practice [25], is difficult to implement
on some popular platforms that support backwards compati-

bility with legacy systems [38], and does not remove the exis-
tence of some easily exploitable patterns. Researchers have
proposed systems to prevent offline cracking attacks [29],
though these systems have yet to be deployed in practice
and rely on having accurate models of generating artificial,
yet plausibly human-chosen, passwords.

Even if system administrators were to follow all best prac-
tices to prevent offline password cracking for web accounts,
other situations in which passwords are used would still be
vulnerable to offline guessing. Encrypted file containers and
full-disk encryption, as well as password stores from pass-
word managers (encrypted with a key derived from a mas-
ter password), would remain vulnerable to offline guessing
if an attacker gains access to the relevant file or device. Be-
cause adaptive schemes would not adapt over time in these
single-user systems, these schemes could be bootstrapped
with likely password patterns.

Despite the ability for system administrators to rate-limit
online attacks and employ some technical mechanisms to
minimize, but not completely eliminate, the threat of offline
attacks, a user concerned about his or her high-value ac-
counts is incentivized to practice defense in depth. Rather
than relying exclusively on a system administrator to fol-
low all best practices perfectly, which is far from guaranteed
in practice, a user should choose unique passwords that are
hard for attackers to guess. As we show in this paper, adap-
tive policies better enable users to do so.

2.2 Guessing Common Patterns
The types of common password characteristics adaptive poli-
cies aim to avoid can be exploited by password-cracking ap-
proaches. For example, Weir et al. proposed a probabilis-
tic context-free grammar (PCFG) to model passwords [53].
Based on training data of previously observed passwords,
PCFG assigns probabilities to both password structure (e.g.,
princess111 has the structure {8 letters}{3 digits}) and con-
stituent strings (e.g., “111”). Kelley et al. proposed improve-
ments to this method [30], e.g., to treat uppercase and low-
ercase letters independently. Other researchers have advo-
cated using grammatical structures and semantic tokens as
non-terminals [40, 51]. Komanduri recently offered several
PCFG improvements, including string tokenization and as-
signing probabilities to terminal strings not seen in training
data [31]. The PCFG and its variants have been used in a
number of prior studies to gauge password strength [10, 13,
16, 30, 36, 37, 45, 48]. Structure-based adaptive policies [34]
make the PCFG approach less effective because the PCFG
relies on the commonality of password structures to guess
likely passwords.

Markov models also effectively model human-chosen pass-
words. Narayanan and Shmatikov first proposed using a
Markov model of letters in natural language with finite au-
tomata representing password structures [39]. Castelluccia
et al. used a similar method as part of their password me-
ters [8]. Recently, Dürmuth et al. [15] and Ma et al. [36]
evaluated the effectiveness of multiple variations of Markov
models for cracking passwords, finding that Markov models
were more accurate than PCFG at guessing passwords under
certain circumstances. Popular password-cracking software



packages, such as John the Ripper11and Hashcat,22 offer
variants of a Markov model.

Adaptive policies have two conceptual advantages that aid
in resisting guessing by Markov models. Structure-based
adaptive policies encourage passwords with unpredictable
structures, which are likely to foster character-level unpre-
dictability that in turn may be hard to capture in a Markov
model. Furthermore, string-based adaptive policies forbid
the predictable passwords that a Markov model would eas-
ily guess.

Adaptive policies also provide conceptual difficulties for the
guessing approaches of common password-cracking software
tools. For example, the Hashcat toolkit implements a “mask
attack,” in which password guesses are generated by pro-
gressively exhausting the keyspace of each structure in an
attacker-defined ordered list.33 Despite its brute-force com-
ponent, this approach can be effective in real-world cracking
because many users craft passwords matching popular struc-
tures [41,46].

2.3 Password-Composition Policies
Human-chosen secrets frequently share predictable, and thus
exploitable, characteristics [5]. To discourage such patterns,
organizations like the National Institute of Standards and
Technology (NIST) recommend that system administrators
employ password-composition policies, such as mandating a
minimum length and the inclusion of a digit [7]. However,
passwords created under these guidelines still frequently have
exploitable patterns, such as consisting of a dictionary word
followed by a number and symbol [37]. Furthermore, while
some policies are better than others at balancing the tradeoff
between leading users to create passwords that are harder to
guess and improving the usability of password creation [45],
particularly onerous password-composition requirements can
unduly burden and annoy users [32].

Beyond requiring that passwords be at least a particular
length and contain particular classes of characters, policies
can also prohibit (blacklist) the most popular or predictable
passwords. A judiciously chosen blacklist can lead users to
pick passwords that are far harder to guess than those cre-
ated without a blacklist [27, 32, 52]. String-based adaptive
policies essentially build a blacklist that expands over time
to reflect new password patterns.

Common patterns can make passwords easy to guess, yet
they also can make them easy to remember. However, a
recent study by Bonneau and Schechter showed that people
are capable of remembering a large set of random characters
if they are presented using spaced repetition [6]. Adaptive
policies strive to capitalize on this discovery and, by intro-
ducing more complexity, to find a way to prompt users to
create passwords with fewer exploitable patterns and thus
higher resistance to guessing attacks.

3. METHODOLOGY
We conducted a two-part online study to examine how par-
ticipants create and use passwords under two adaptive pass-
word policies in multiple configurations. In the first part of

11 www.openwall.com/john/
22 hashcat.net
33 hashcat.net/wiki/doku.php?id=mask_attack

the study, we asked participants to create a password un-
der a specific policy, take a survey, and then recall their
password. Two days later, we asked participants to return
and recall their password, in addition to completing a sec-
ond survey. We recruited participants through Amazon’s
Mechanical Turk crowdsourcing service (MTurk). We re-
quired that participants be at least 18 years old and located
in the United States. Our overall methodology is based on
techniques used to compare password-composition policies
in prior work [30, 32, 44, 45, 47, 48]. Our protocol was ap-
proved by our institution’s IRB.

In part one of our study, we asked participants to imagine
their main email account had been compromised, and they
must create a new password. Prior work suggests that asking
participants to imagine creating a password for their email
account leads to stronger passwords than simply creating
passwords for a study [30,32]. We informed them that they
would be asked to re-enter their password in a few days, and
instructed them to do whatever they would normally do to
remember and protect a new password.

We then showed participants one of twelve sets of password-
creation instructions, depending on their assigned condition,
described in Section 3.4. After creating a password, partic-
ipants completed a survey on the password creation expe-
rience, as well as how they chose their password. We then
asked participants to recall their password. Participants who
typed their password incorrectly five times were then shown
their password.

Two days later, we invited participants via email to return
for part two of the study in which we asked participants to
recall their password. After five incorrect attempts, partici-
pants were shown their password. Participants could follow
a “Forgot Password” link to be emailed a link to their pass-
word. Next, we administered another survey about the steps
the participant took to remember their password, including
whether and how participants stored their passwords (e.g.,
writing it down or saving it electronically).

Our data-collection method enables us to measure several
quantitative usability metrics during password creation and
recall. We collect timing information and the number of
password creation/recall failures. We use electronic copy-
paste/autofill detection during the recall phase to augment
the self-reported survey data. We also ask participants senti-
ment questions about the ease of both creating and recalling
a password.

3.1 Adaptive Policies
We evaluated two adaptive password-policy systems. Both
of these systems have two characteristics that we consider
essential for an adaptive system. First, a secure system must
not store passwords in plaintext or reversibly-encrypted ci-
phertext, as this creates a new avenue of attack. Second, an
effective system must integrate with traditional password-
composition policies for ease of deployment.

The first adaptive policy we evaluate operates on password
structures, the password’s sequence of character classes (up-
percase, lowercase, digit, or symbol). We implement KoreL-
ogic’s Password Topology Histogram Wear-Leveling (Path-
Well) [33], which is designed to enforce password structure
diversity, and refer to this system as the structure-based ap-



proach. In its simplest form, PathWell would require that
all passwords in a set must have a unique structure. For
example, if the password ‘passWord11!’ is in the set, then
‘asdfQwer99#’ would not be allowed for future passwords,
because they both have the same character-class structure.

However, blacklisting a character-class structure after a sin-
gle use could potentially help attackers by letting them know
that, once they have successfully found a hash preimage, no
other passwords in the set have the same character-class
structure, obviating additional guesses within that struc-
ture. Additionally, it can decrease the usability of the sys-
tem as more passwords are created. Therefore, PathWell
also enables a structure to be blacklisted after some number
of passwords use that structure, and this is the approach
we use. PathWell’s structure blacklist is designed to be
preloaded with commonly used structures, and to grow over
time as users are added to a system.

The second adaptive policy operates on passwords as a whole,
rather than their character-class structure. In particular,
we evaluate Microsoft Research’s “Popularity is Everything”
system, which prevents a given password from being used
too many times in a system [42]. To do so, this approach
uses a specialized database based on a Bloom filter [3] to
record how many times a password is used without storing
the password itself. As with PathWell, this database grows
over time. We refer to this as the string-based approach.

3.2 Password-Composition Policies
To prevent users from creating passwords that are very weak
or especially short (and vulnerable to brute-force attacks),
adaptive policies should be used together with password
composition requirements. Because early adopters of adap-
tive password policies in the real world are most likely or-
ganizations with high security needs, we chose to focus on
stronger-than-average password-composition policies com-
monly employed in organizational and government settings,
rather than for run-of-the-mill online accounts.

Historically, password-composition policies for higher secu-
rity settings have mandated many different character classes.
For example, in what we term the 4class8 (4c8 for short)
policy, passwords must contain at least eight characters,
including all four character classes (lowercase letters, up-
percase letters, digits, and symbols). This policy was rec-
ommended by NIST guidelines in 2011 [7] and once repre-
sented the de facto industry best practice. Such a policy
is still popular, leading us to study it. Recently, however,
password-composition policy guidance has begun to empha-
size password length, rather than including character classes.
Such a shift is evident both in the academic research litera-
ture [19, 45], as well as in the mass media [2]. U.S. govern-
ment accounts have begun to deploy policies that emphasize
password length [9].

We focus most of our experiments on a password-composition
policy which we term 3class12 (3c12 for short). This policy
requires that passwords contain at least twelve characters,
as well as three of the four character classes. This partic-
ular 3class12 policy has been found in prior work to bet-
ter balance the security-usability tradeoff than policies like
4class8 [45] and is similar to policies in use on U.S. govern-
ment systems [17].

# Structures # Passwords
Size PCFG 3c12 4c8 3c12 4c8

M 105 2,141 2,236 1.62E56 4.64E28
L 106 8,940 — 1.65E56 —

XL 107 48,199 — 4.39E59 —

Table 1: Description of the blacklists we used. The first two
columns show the how many password guesses were modeled in
generating that blacklist. The remaining columns describe how
many structures and passwords each blacklist disallows for the
3c12 and the 4c8 polices.

3.3 Systematically Testing Adaptive Policies
Evaluating an adaptive policy experimentally poses a unique
challenge: if participants are working with an adaptive pol-
icy on a real-world system, each participant’s password will
modify the blacklist, thereby creating a unique environment
for each participant. Instead, we opted to use pre-calculated
blacklists of different sizes, allowing us to collect results from
hundreds of participants exposed to the exact same situa-
tion. As such, we effectively compare passwords created at
different points in the adaptive process, and those without
an adaptive policy.

For this evaluation to succeed, it is critical to build black-
lists that capture the most popular passwords. We gathered
a total of 32,965,921 passwords from public leaks [22,43,50].
However, relatively few passwords from these sets meet the
requirements of our stringent baseline policies (Section 3.4),
limiting the size of the blacklists we could generate. To com-
pensate, we trained a PCFG guesser [30] with these leaks
and used it to enumerate the most probable guesses that
conform to the minimum requirements. Using these guesses,
we computed blacklists of the most common structures and
passwords. This process simulates initial users in an adap-
tive system choosing highly probable passwords, with the
corresponding structures subsequently being blacklisted. In
Table 1, we summarize the blacklists we evaluated. Note
that the M blacklist serves two purposes: Its corresponding
2,141 unique character-class structures are used to configure
the structure-based adaptive approach; the 105 passwords
used to generate the blacklist are the passwords that are
banned in the string-based approach.

3.4 Conditions and Research Questions
We assigned participants to one of twelve conditions, each
with different requirements, instructions, and feedback. Be-
cause of the large number of possible factors, it was not fea-
sible to test all combinations of factors in isolation. Instead,
we chose to run a set of conditions spanning five research
questions (RQs) detailed below.

RQ1: Impact of Structure-Based Adaptive Policy
How are the usability and security of passwords affected when
using a structure-based adaptive policy in addition to a tradi-
tional policy? To answer this question, we evaluate two tra-
ditional password-composition policies: 3c12 and 4c8. We
test each policy both with and without a medium-sized black-
list of character-class structures. The following conditions
address our first research question:

• 3c12: Passwords must contain at least 12 characters
and include at least three character classes. This policy
has been recommended in the academic literature [45]



Figure 1: The interface shown to participants in standard
structure-based blacklist conditions (StructM, StructL, StructXL,
StructMIns, StructMSub, and StructM4c8) when their password
was rejected by the structure blacklist. The suggested modifica-
tion in this example was randomly chosen as insert a “Z” char-
acter. The StructM3Hint interface is similar, but instead shows
three different suggested modifications.

Figure 2: The interface shown to participants in StructMS when
their password was rejected by the structure blacklist. The inter-
face shows the character-class structure of the attempted pass-
word, rather than the password itself. The StructMSV interface
was similar, except the structure was displayed in real time as it
was typed. The StructMHyb interface was also similar, except
only the inserted or substituted characters were obfuscated.

and is similar to policies for many U.S. government
accounts [9] (e.g., [17]).
• StructM: The 3c12 policy plus a structure-based adap-

tive policy with 2,141 banned structures (correspond-
ing to the first 105 PCFG guesses, as shown in Table 1).
• 4c8: Passwords must contain at least 8 characters and

include all four character classes. This policy was rec-
ommended by NIST guidelines in 2011 [7] and once
represented best practice. Note that this condition
is unique in that data for it was collected as part of
an earlier study that used the same data-collection
methodology. The condition does not contribute to
any of our main results, but we include it here as an
additional, informative baseline.
• StructM4c8: The 4c8 policy plus a structure-based

adaptive policy with 2,236 banned structures, as shown
in Table 1.

As part of this work, we designed and implemented a feed-
back system for the structure-based adaptive policies. If a
participant’s attempted password used a banned structure,
the feedback system displayed a randomly selected modifica-
tion (either insertion or substitution of a random character
or character class) at a randomly selected location to their
initial password such that the new password is guaranteed
to have a legal structure. We informed participants that us-
ing the feedback was optional. For most conditions, we used
a configuration of the structure-based adaptive policy feed-

back system that we expected to provide the most usability
benefits, as shown in Figure 1.

RQ2: Structure-Based vs. String-Based Adaptive-
ness What security and usability impact do structure-based
and string-based adaptive policies have relative to each other,
as well as relative to a non-adaptive policy? To analyze this
question, we studied only the higher security 3c12 policy
in three versions: no adaptiveness; structure-based adap-
tiveness; and string-based adaptiveness [42]. However, the
string-based adaptive policy does not include a feedback sys-
tem. In contrast to a structure-based system, how to craft a
minimally different password securely in a string-based sys-
tem is non-obvious. The following three conditions address
this research question:

• 3c12: Previously introduced.
• StructM: Previously introduced.
• StringM: 3c12 with 105 passwords banned.

RQ3: Varying Blacklist Sizes What are the usability and
security consequences of different size blacklists? As users
create accounts on a structure-based adaptive system, more
structures will be banned, potentially making password cre-
ation more frustrating for users whose desired structures are
banned. As detailed in Section 3.3, we created blacklists
of varying sizes to simulate different points in time in the
adoption of an adaptive system, as the number of banned
structures increases.

To measure the increasing difficulty of creating valid pass-
words in the presence of larger blacklists, as well as the the-
oretical security benefits of larger blacklists, we compared
the following conditions. All are based on 3c12. Blacklist
details are shown in Table 1.

• 3c12: Previously introduced.
• StructM: Previously introduced.
• StructL: 3c12 with 8,940 banned structures (corre-

sponding to banning 1,000,000 passwords).
• StructXL: 3c12 with 48,199 banned structures (cor-

responding to banning 10,000,000 passwords).

The remaining research questions involve different modes of
feedback to the user when password creation fails.

RQ4: Number of Suggested Modifications What are
the usability and security consequences of presenting the user
with more or fewer suggested modifications to their rejected
password? Whereas StructM shows one suggested modifi-
cation, we also tested a condition that shows (at the same
time) three suggested modifications. A participant could
choose among the three hints, or choose a completely dif-
ferent password. We also evaluated a condition with hints
disabled.

• StructM: Previously introduced (one hint).
• StructM3Hint: Identical to StructM, but with the

feedback system showing three examples of possible
modifications to the rejected password that lead to a
permitted structure.
• StructMNoHint: Identical to StructM, but with no

suggested modifications shown to the user.

RQ5: Insertion vs. Substitution Feedback Our stan-
dard method of suggesting modifications to a banned struc-
ture would either propose inserting a character or substitut-



ing a character. The standard implementation chose among
those two possibilities with equal probability. Does suggest-
ing just insertions or just substitutions affect usability?

• StructM: Previously introduced.
• StructMIns: Identical to StructM, but only offering

feedback with suggestions of character insertions.
• StructMSub: Identical to StructM, but only offering

feedback with suggestions of character substitutions.

RQ6: Preventing Shoulder Surfing of Suggestions
We speculate that suggesting modifications to banned struc-
tures could potentially aid in shoulder-surfing or screen-
scraping attacks because both the rejected password itself
and the suggested character to be inserted/substituted are
displayed (see Figure 1). Can the usability of the feedback
system be preserved while limiting the potentially sensitive
information shown on screen? To answer this, we compare
four conditions with different amounts of potentially sensi-
tive information shown in the feedback interface.

• StructM: Previously introduced.
• StructMHyb: Like StructM in that the rejected pass-

word is still shown on screen. However, suggestions
instead relate to inserting or substituting a particular
class of characters (e.g., a digit) rather than a specific
character.
• StructMS: Like StructMHyb, except all characters (re-

jected password and suggested modification) are re-
placed with a representation of their character class.
See Figure 2.
• StructMSV: Identical to StructMS, except the inter-

face displays the password’s structure in real time as
the participant types it, rather than only when a pass-
word is rejected. The intention was to help users un-
derstand the concept of character classes via a real-
time example during creation.

3.5 Measuring Password Strength
To evaluate the passwords created in each condition, we an-
alyze general password-composition characteristics, such as
average length, inclusion of a variety of character classes, as
well as password guessability [49], which models how many
guesses a simulated attacker would make to guess a given
fraction of a password set. To compute password guessabil-
ity, we use the Password Guessability Service (PGS) in its
recommended configuration (including the cracking meth-
ods: Probabilistic Context Free Grammars, Markov Mod-
els, Neural Networks, John the Ripper, and Hashcat), which
combines several guessing attacks. This approach has previ-
ously been shown to be a conservative estimate of an expert
in password forensics [49].

Modeling how an attacker would optimally attack a set of
passwords created under an adaptive policy raises a num-
ber of subtle issues. In a structure-based adaptive policy
configured such that a single usage causes a structure to be
banned, successfully guessing a password with a particular
structure implies that an attacker should avoid making ad-
ditional guesses with the same structure. Similarly, if an
attacker could somehow learn the list of used/banned struc-
tures, an attack could be refined by only attempting guesses
with those structures. In our tests, we assume that black-
listed structures are unknown to the attacker, and that a
structure is banned only after multiple passwords with the

same structure are created, making it difficult for an at-
tacker to determine that all passwords with a given structure
were guessed and thus benefit from ceasing to make guesses
with that structure. With this, we assume that sufficient
rate-limiting and/or CAPTCHA solutions are implemented
to prevent an attacker from abusing the password creation
process to learn details about the adaptive policy’s blacklist.

Because an attacker will not know at what point during the
adaptive process a particular password was created, they
will not be able to exclude potential guesses with particular
character-class structures. Thus, we intentionally did not
modify the computed PGS results to account for different
blacklist sizes. Similarly, PCFG results that were used to
create the blacklists may still be valid guesses for passwords
created early in the adaptive process, yet the attacker does
not know which passwords those are.

Hence, our guessability results compare the strength of pass-
words created earlier during the use of an adaptive policy
(e.g., in StructM) to those created later during the use of an
adaptive policy (e.g., in StructL) to those created without
an adaptive policy (e.g., in 3c12).

3.6 Statistical Testing
For our usability metrics, we first performed omnibus sta-
tistical tests across all conditions. For omnibus compar-
isons, we use Kruskal-Wallis (KW) tests for quantitative
data and Pearson’s Chi-squared tests for categorical data.
If the omnibus test was significant, we performed pairwise
tests of pre-selected contrasts that correspond with each of
our research questions. For pairwise comparisons, we use
the Mann-Whitney U tests for quantitative data and Chi-
squared tests (Fisher’s Exact test when there are small bins)
for categorical data. We use non-parametric statistical tests
to avoid making assumptions about our data’s distribution.

In particular, we made pairwise comparisons between each
of the following groups of conditions: varying blacklist sizes
(3c12, StringM, StructM, StructL, StructXL); the number of
hints (StructMNoHint, StructM, StructM3Hint); the type of
suggestion (3c12, StructMIns, StructMSub, StructM); stop-
ping shoulder-surfing and screen-scraping (StructMNoHint,
StructM, StructMSV, StructMS, StructMHyb). In each set,
we compared each condition to all other conditions in that
group. For all set of pairwise contrasts, we corrected for
multiple testing using Holm-Bonferroni correction (HC).

For comparing the results of our simulated cracking attacks,
we used a Log-Rank test, a statistical method used in sur-
vival analysis [28]. This test compares two guessing curves
and takes into account whether a password was guessed, as
well as at what point guessing stops. In this way, we can use
all the data in our guessing curves for the statistical tests.
All statistical tests use a significance level of α = .05.

3.7 Limitations
Our methodology, which is similar to that employed by prior
password research [30, 32, 45, 47, 48], has a number of limi-
tations. By testing password recall once after a few min-
utes and once again after a few days, our study investigated
password use that lies in between frequent and rare use. As
such, we are not able to make strong statements about par-
ticipants’ ability to remember passwords in our study over
long periods of time.
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3c12 163 13.9 1.6 7.9 3.1 1.3 49.1 28.2 1.50 47.9 9.82 1.80 26.2

StringM 216 13.6 1.7 7.4 3.2 1.3 46.8 26.4 1.50 48.5 6.94 1.82 23.3

StructM 213 14.1 1.8 7.5 3.5 1.3 25.4 31.5 2.08 50.4 9.39 1.57 25.3
StructL 159 14.1 1.6 7.3 3.8 1.4 17.6 43.4 2.51 48.4 19.5 1.86 26.6
StructXL 247 14.0 1.8 7.2 3.6 1.4 14.1 36.8 2.58 50.8 21.5 1.64 30.3

StructM3Hint 216 14.2 2.0 7.6 3.3 1.3 25.0 32.4 1.96 49.2 12.0 1.73 26.5
StructMNoHint 163 13.9 2.0 7.3 3.3 1.3 19.6 40.5 2.12 48.0 17.8 1.67 24.9

StructMIns 207 14.4 1.9 7.9 3.3 1.4 23.1 32.9 1.97 54.3 13.5 1.78 27.0
StructMSub 202 14.0 1.8 7.7 3.2 1.3 23.3 37.1 2.06 56.0 11.4 1.76 33.6

StructMHyb 206 14.0 2.0 7.6 3.1 1.2 29.1 45.1 2.17 51.7 14.1 1.68 30.1
StructMS 209 13.8 2.1 7.0 3.6 1.3 31.1 33.0 2.00 54.3 12.9 1.90 28.2
StructMSV 204 14.0 1.9 6.9 3.7 1.5 25.5 32.4 1.88 58.5 14.7 1.98 28.3

StructM4c8 214 11.1 1.6 5.4 2.8 1.3 60.3 26.2 2.39 42.5 12.6 1.84 23.7

Table 2: Properties of passwords and study measurements, by condition. The second column shows participants who finished part two
within three days.

Across our conditions, a relatively high number of partici-
pants did not return for part two. We excluded them from
our analyses, except for analyzing the dropout rate as an in-
dicator of dissatisfaction with a condition. Users who drop
out of a study may behave differently than those who do
not, potentially biasing our results.

All of the passwords in our study were collected for this
study and were not used to protect real accounts, limit-
ing ecological validity. In contrast to real-world, high-value
passwords, study participants would not suffer consequences
if they chose a weak password or forgot their password, nor
were they incentivized to adopt their normal password be-
havior beyond our request that they do so. Two recent
studies investigated the degree to which passwords collected
for research studies resemble real, high-value accounts, and
both concluded that passwords created during studies can
resemble real, high-value passwords, yet are not a perfect
proxy [18,37].

While password-guessing approaches are most successful at
modeling passwords given closely matched training data [30,
36], no major leaks of passwords contain passwords created
under 3c12 and 4c8 policies. To compensate, we trained a
probabilistic context-free grammar on the subset of pass-
words from large-scale leaks that fit those policies. We also
used this grammar to model large numbers of likely pass-
words to create the blacklists. While having very large sets
of real 3c12 and 4c8 passwords would have been strictly more
accurate, no such sets are currently available to researchers.

For the reasons described in Section 3.5, we believe PGS
models a reasonable attacker even for adaptive policies. Con-
ceivably, however, some other strategy for ordering guesses
against adaptive policies could prove to be more effective.
That said, we are not currently aware of any such attack.

4. RESULTS
We find that an adaptive policy with a large blacklist dra-
matically increased the security of passwords. Surprisingly,
this large increase in security is accompanied by only a small
impact on usability. We tested numerous interface modifi-

cations to mitigate the decrease we expected in usability.
In the absence of substantial usability decreases, however,
these interface modifications have minimal impact on either
security or usability. We detail general password character-
istics by condition in Table 2; guessability in Figure 3; and
usability in Table 3.

Participants received 55 cents for the first part of our study
and 70 cents for the second. Of the 3,391 participants who
began our study, 2,619 finished part one, 1,975 returned for
part two within three days of receiving our invitation to re-
turn, and 1,799 finished part two of the study within three
days of receiving that invitation. Other than the discussion
of dropout rates, our analysis focuses only on the 1,799 par-
ticipants who finished the entire study. Participants for
whom we detect electronic copy-pasting from keystroke tim-
ing data almost without exception report that they wrote
down their password in the survey, which suggests that par-
ticipants truthfully disclosed rates of password storage. The
number of participants per condition is shown in Table 2.
53% of participants reported being male, 46% female, and
the remaining 1% declined to answer. Participants’ mean
age was 29 years (median 29).

4.1 Impact of Structure-Based Adaptation
To examine the effect of implementing an adaptive policy,
we compared 3c12 to StructM and 4c8 to StructM4c8. These
two pairs each compare a password-composition policy with
a structure-based adaptive blacklist to one without.

The inclusion of structure-based blacklists had a profound
effect on security for both the 3c12 and 4c8 policies. As
shown in Figure 3a, after 1016 guesses, PGS had correctly
guessed roughly half as many passwords in StructM and
StructM4c8 (with the adaptive policy) compared to 3c12
and 4c8 (without the adaptive policy), respectively. The
difference between 3c12 and StructM is statistically signif-
icant (Log-Rank test, X2(1) = 23.9, p < 0.001). Because
the data for 4c8 was collected for a prior study, we did not
perform statistical testing on that comparison.
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(a) Traditional policies and adaptive policies.
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(b) Structure-based adaptive policy conditions with differ-
ent blacklist sizes.
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(c) Varying number of hints for the
structure-based adaptive policy condi-
tions.
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(d) Varying suggestion type with
structure-based adaptive policy.
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(e) Conditions with interface changes to
prevent shoulder-surfing.

Figure 3: The guessability of each password set. The x-axis shows the guess number (logarithmic scale). The y-axis shows the percent
guessed at that guess number. Lines that are lower represent passwords that are more resistant against guessing attacks.

Along with our hypothesis that adaptive policies would re-
sult in more secure passwords, which was supported by our
data, we also hypothesized that adaptive policies would re-
sult in decreased usability. Surprisingly, the structure-based
approaches with medium-sized structure blacklists in StructM
and StructM4c8 had only minimal impact on usability over
3c12 and 4c8.

We found no significant differences in our omnibus compar-
isons across all 12 conditions for these usability metrics. For
instance, we did not find the inclusion of an adaptive pol-
icy to cause participants to perceive password creation as
significantly more difficult or confusing. Similarly, we did
not find the inclusion of an adaptive policy to make par-
ticipants significantly more likely to store their passwords
on paper or electronically. Nor did we find the inclusion of
an adaptive policy to significantly impact the proportion of
participants who were able to recall their password or how
many attempts it took them to do so.

The only usability decrease that resulted from the structure-
based adaptive policy with a medium-sized blacklist was in-
creasing the number of attempts required to create a pass-
word. Specifically, participants required significantly more
attempts to create compliant StructM passwords than 3c12
passwords (KW, H(1) = 22.9, p < 0.001) and StructM4c8
(KW, H(1) = 46.8, p < 0.001). That adaptive policies cause
users to require more attempts to create a compliant pass-
word is unsurprising, though. By design, adaptive policies
must reject candidate passwords to have any effect. Be-
tween the adaptive policies, we again observed differences

in the number of attempts participants required to create a
compliant password. For participants to create a compliant
password, StructM4c8 required significantly more attempts
than StructM (KW, H(1) = 5.48, p < 0.019). StructM4c8
also required significantly more time to submit a first at-
tempt, whether compliant or not, than StructM (KW, H(1)
= 7.34, p < 0.020).

4.2 Structure-Based vs. String-Based
Our experimental design allows for some limited comparison
between the StructM and StringM approaches. Because op-
timal configurations for the Leininger et al. [33] and Schecter
et al. [42] approaches have not yet been established, results
of these comparisons should not be generalized beyond our
particular configurations.

Under the configurations we tested in StructM and StringM,
whose blacklists were built using the same source passwords,
we find that StructM produces passwords roughly twice as
difficult to guess as StringM (46.8% vs 25.4% cracked at
cutoff, LogRank, X2(1) = 20.9, p < 0.001), with similar
usability results. In fact, the guessability of the string-
based StringM did not differ significantly from 3c12 (49.1%
vs 46.8% cracked at cutoff, LogRank, X2(1) = 0.431, p <
0.735), which did not have an adaptive component.

Intuitively, the security improvement occurs because black-
listing a structure eliminates many potentially common pass-
words at once, whereas blacklisting a string eliminates only
one. In terms of usability, a key factor is that it is trivial
to quickly and automatically suggest a modified password



Agree password creation confusing Omni. χ2
13=43.3, p<.001

cond.1 % cond.2 % χ2
1 p-value

StringM 6.94 StructL 19.5 12.3 .003
StructXL 21.5 18.2 <.001

StructM 9.39 StructL 19.5 7.03 .040
StructXL 21.5 11.6 .005

Agree password creation difficult Omni. χ2
13=39.1, p<.001

cond.1 % cond.2 % χ2
1 p-value

StringM 26.4 StructL 43.4 11.1 .009

StructM 31.5 StructMHyb 45.1 7.75 .032

Password creation attempts Omni. KW χ2
13=143, p<.001

cond.1 mean cond.2 mean χ2
1 p-value

3c12 1.50 StructM 2.08 22.9 <.001
StructM4c8 2.39 46.8 <.001

StringM 1.50 StructL 2.51 33.3 <.001
StructXL 2.58 68.0 <.001

StructM 2.08 3c12 1.50 22.9 <.001
StructM4c8 2.39 5.48 .019
StructXL 2.58 11.2 .004

StructMSV 1.88 StructMHyb 2.17 6.96 .05

Password entry time during creation (s) Omni. KW χ2
13

=33.9, p=.001

cond.1 median cond.2 median χ2
1 p-value

StructM 50.4 StructM4c8 42.5 7.34 .020

Password entry time during recall (s)
Omni. χ2

13=37.8, p<.001

cond.1 median cond.2 median χ2
1 p-value

StructXL 30.3 StringM 23.3 11.5 .006

% Cracked (Log-Rank test)

cond.1 % cond.2 % χ2
1 p-value

3c12 49.1 StructM 25.4 23.9 <.001
StructL 17.6 42.7 <.001
StructXL 14.1 73.3 <.001
StructM3Hint 25.0 23.9 <.001
StructMNoHint 19.6 27.9 <.001

StringM 46.8 StructL 17.6 38.9 <.001
StructM 25.4 20.9 <.001
StructXL 14.1 68.6 <.001

StructM 25.4 StructM4c8 28.5 16.2 <.001
StructXL 14.1 11.2 <.003

Table 3: The statistically significant pairwise differences among our metrics.

that is close to the user’s original attempt but still guaran-
teed to pass the structure check. Because any string-based
password that is rejected is itself already a popular pass-
word, how one might automatically generate a minimally
different, yet secure, password is non-obvious.

Although passwords created under StructM were significantly
more secure than those created under StringM, we did not
observe significant differences between these two conditions
for any of our usability metrics. As we describe later, how-
ever, we did find StringM to have significant usability ad-
vantages over the structure-based policies configured with
larger blacklists.

While more research comparing these approaches is neces-
sary, our results suggest that a system administrator with
access to a limited list of passwords with which to generate
an initial blacklist should use a structure-based, rather than
string-based, approach.

4.3 Varying Blacklist Sizes
Having found that implementing an adaptive system led to
far more secure passwords while incurring minimal usability
cost, we also explored how varying the size of the blacklists
would impact security and usability. As we detailed in Sec-
tion 3.4, these blacklists of different sizes should primarily
be interpreted as proxies for different points in time during
the life cycle of an adaptive policy, rather than configuration
options. We also evaluated how these structure-based black-
lists of different sizes compared to the medium size string-
based blacklist. To do so, we compare the following four
conditions: 3c12, StringM, StructM, StructL, StructXL.

The security of the passwords generally increased with the
size of the blacklist, as shown in Figure 3b. Compared to
3c12, significantly fewer StructL and StructXL passwords
were guessed (Log-Rank test, 3c12 vs StructL, X2(1) = 42.7,

p < 0.001; 3c12 vs StructXL, X2 = 73.3, p < 0.001). Sur-
prisingly, the guessability of StructL and StructXL did not
differ significantly, suggesting that at structure blacklists of
those sizes, the probability of a user creating a password with
the next most common structure over any other permitted
structure is very small.

Unsurprisingly, password creation generally required less ef-
fort in conditions with smaller blacklists. In essence, pass-
word creation becomes harder over time in an adaptive sys-
tem. StructM required significantly fewer creation attempts
than StructXL (KW, H(1) = 11.2, p < 0.004). In contrast,
the time to create passwords on the first attempt did not dif-
fer significantly across conditions. This finding makes sense
because participants in all conditions were shown the same
text and interface during the first creation attempt.

Participants in conditions with smaller blacklists found pass-
word creation less difficult than those in conditions with
larger blacklists. Participants in StructM rated password
creation as less confusing than participants in StructL (Chi-
squared, X2(1) = 7.03, p < 0.040) or in StructXL (Chi-
squared, X2(1) = 11.6 p < 0.004).

Despite these differences during password creation, we ob-
served few differences across conditions in terms of password
recall, suggesting that password memorability does not de-
crease significantly for users who create passwords later in
the adaptive process. More precisely, the rate at which par-
ticipants stored their passwords did not differ significantly
across conditions (omnibus X2(13) = 16.3, p = 0.233).
The number of attempts participants required to recall their
password also did not differ significantly across conditions
(omnibus KW, H(13) = 9.21, p = 0.757).

All structure-based blacklists we tested resulted in more se-
cure passwords than the string-based blacklist we tested.



That is, compared to StringM, fewer StructM, StructL, and
StructXL passwords were guessed (Log-Rank test, StringM

vs StructM, X2(1) = 20.9, p < 0.001; StringM vs StructL,
X2(1) = 38.9, p < 0.001; StringM vs StructXL, X2(1) =
68.6, p < 0.001).

Although it was less secure than the structure-based adap-
tive conditions, the string-based adaptive condition was gen-
erally more usable, requiring significantly fewer creation at-
tempts than condition StructL (KW, H(1) = 44.0, p < 0.001)
or StructXL (KW, H(1) = 68.0, p < 0.001). Participants in
StringM rated password creation as significantly less difficult
(Chi-squared, X2(1) = 11.1, p < 0.008) and less confusing
(Chi-squared, X2(1) = 12.3, p < 0.003) than participants
in StructL. Participants in StringM required less time to
recall passwords than StructXL participants (Chi-squared,
X2(1) = 11.5), p = 0.006) even though, as stated earlier, we
did not observe significant differences in the memorability
of those passwords.

4.4 Number of Suggested Modifications
We initially hypothesized that structure-based adaptive poli-
cies would cause a profound loss in usability. Therefore, we
focused a number of conditions on the feedback given to
users when their password was rejected. In those cases, the
system would suggest modifications to the user’s rejected
password to make it compliant.

We tried varying the number of suggested modifications (one
suggested modification versus three), as well as not suggest-
ing any modifications. However, varying the number of sug-
gested modifications did not have an impact on either secu-
rity or usability.

In particular, we made pairwise comparisons across condi-
tions StructMNoHint, StructM, and StructM3Hint. We did
not observe statistically significant differences in the rela-
tive guessability of any of the following three condition pairs
(Log-Rank test, StructM3Hint vs. StructM X2(1) = 0.06, p
= 1.0; StructMNoHint vs. StructM X2(1) = 1.887, p =
0.678; StructMNoHint vs. StructM3Hint X2(1) = 1.415, p
= 0.703). Similarly, we did not find any pairwise compar-
isons for our usability metrics to have statistically significant
differences.

We also calculated how many participants saw a hint, as
well as how many accepted the hint’s advice. In condition
StructM, 75 of 213 participants saw at least one hint gener-
ated by the adaptive password policy during password cre-
ation, similar to the hint shown in Figure 1. Of those 75,
slightly less than half (34) did not accept the advice shown in
the hint and attempted to create an entirely new password,
while the remaining 41 participants followed the guidance
provided by the feedback.

4.5 Insertion vs. Substitution Feedback
We also examined the type of suggestions the adaptive sys-
tem makes for rejected passwords. We compared StructMIns,
StructMSub, and StructM, which respectively gave partici-
pants feedback that suggested either inserting a character,
substituting a character, or one of the two (with equal proba-
bility). The locations of the character insertion/substitution
suggestions were chosen randomly. We did not observe any
significant differences in usability across these conditions.

4.6 Shoulder Surfing of Suggestions
As detailed in Section 3.4, we varied the suggested modifi-
cations in ways designed to minimize the information shown
on screen, experimenting with showing structures instead of
the actual password in either the suggestions, and as the
user types their password. We expected that minimizing
this information would decrease usability, yet would min-
imize the advantage to a shoulder-surfing adversary. To
evalute this, we compared StructM, StructMHyb, StructMS,
and StructMSV. Because the extra information gleaned from
shoulder surfing is not modeled in our guessability analyses,
we did not expect to observe differences in guessability.

As expected, these conditions did not differ significantly in
guessability. Surprisingly, though, we also observed mini-
mal impact on usability. Although 45% of participants in
StructMHyb said creating a password was difficult, which
was marginally higher than the proportion of participants
StructM (32%) who shared the same sentiment (Chi-squared,
X2(1) = 7.75, p < 0.032), we did not observe any other sig-
nificant differences in usability.

5. DISCUSSION
Overall, we found that applying a structure-based adaptive
policy to 3c12 was beneficial, substantially increasing secu-
rity with a comparatively mild negative effect on usability.
The effect on security was dramatic; about half as many
passwords were cracked in condition StructM as in 3c12. Sur-
prisingly, although participants on average required more at-
tempts to create compliant passwords in condition StructM
than 3c12, participants did not rate password creation as
significantly more difficult. More importantly, the number
of attempts required to recall their password, password en-
try time, and the fraction of participants who stored their
password did not differ between conditions, suggesting that
the structure-based adaptive policy does not negatively af-
fect password memorability.

Varying the structure blacklist size, our proxy for an increase
in the number of users of a given adaptive system, had pro-
found effects on the security of passwords. As more users
join the system and more structures are banned, new users
are creating far more secure passwords than the initial users
of the system. As expected, larger blacklists caused partici-
pants to require more creation attempts, yet this mostly did
not increase participants’ perceived difficulty of the task,
in contrast to prior experiments (e.g., [45]). Interestingly,
StructXL had no security benefits over StructL, suggesting
that the security benefits may have diminishing returns as
the structure blacklist grows. Taking into account these di-
minishing returns, as well as the security disadvantages of
blacklisting a structure after a single use (Section 3.5), we
recommend blacklisting a structure only after multiple uses.
Based on the diminishing returns of blacklisting structures,
it could be beneficial to increase the number of uses before
a structure is blacklisted as the number of passwords in the
system increases. For systems with huge user bases (e.g.
Google, Facebook, Twitter) this concept may become more
important. We also suggest bootstrapping this system with
the few thousand most common structures and letting the
blacklist grow over time; this significantly increased resis-
tance to guessing attacks with minimal usability sacrifices.

Neither varying the number nor removing hints altogether
had a significant impact. Only about half of participants



who saw a hint (34 of 75) in condition StructM used the
suggested password. This could be because participants felt
they could make passwords that were more memorable, yet
would still satisfy the requirements, or felt it would be more
secure to use their own changes.

Based on prior work [20], we expected participants to find
insertion suggestions more usable than substitution sugges-
tions. However, we did not find this to be the case. At the
same time, we found no significant differences with respect
to the resistance of such passwords to guessing attacks.

A drawback of any password-creation feedback interface is
that it could risk revealing information to attackers about
the password through shoulder-surfing attacks. We hoped to
minimize the impact of shoulder surfing by providing some-
what obfuscated feedback to participants. With minor ex-
ceptions, we found no significant differences according to our
strength and usability metrics. As a result, we recommend
the techniques used in StructMS, or StructMSV if real-time
feedback is desired.

6. CONCLUSION
We evaluated string- and structure-based adaptive password
policies, finding that adaptive policies provide significant se-
curity benefit with seemingly little usability cost, and should
be considered for use in environments with large numbers
of users. To balance usability and security, we recommend
augmenting a strong password-composition policy with a
structure-based adaptive system.

Surprisingly, the feedback system we tested did not improve
usability as we had expected. Regardless of the type of feed-
back provided, participants made significantly stronger pass-
words with structure-based blacklists than without them,
leading us to speculate that simply instructing participants
who attempted to create blacklisted passwords to try to cre-
ate a password with an uncommon sequence of character
classes was sufficient; this should be investigated in future
work. We find that obfuscating suggested passwords by their
character-class representations, or not giving feedback at all,
to be as usable as feedback approaches that are more vul-
nerable to shoulder surfing.
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