
Reasoning Analytically About
Password-Cracking Software

Enze Liu, Amanda Nakanishi, Maximilian Golla†, David Cash, Blase Ur
University of Chicago, † Ruhr University Bochum

Email: {alexliu0809, anakanishi, davidcash, blase}@uchicago.edu, maximilian.golla@rub.de

Abstract—A rich literature has presented efficient techniques
for estimating password strength by modeling password-cracking
algorithms. Unfortunately, these previous techniques only apply
to probabilistic password models, which real attackers seldom
use. In this paper, we introduce techniques to reason analytically
and efficiently about transformation-based password cracking in
software tools like John the Ripper and Hashcat. We define two
new operations, rule inversion and guess counting, with which
we analyze these tools without needing to enumerate guesses.
We implement these techniques and find orders-of-magnitude
reductions in the time it takes to estimate password strength. We
also present four applications showing how our techniques enable
increased scientific rigor in optimizing these attacks’ configura-
tions. In particular, we show how our techniques can leverage
revealed password data to improve orderings of transformation
rules and to identify rules and words potentially missing from
an attack configuration. Our work thus introduces some of the
first principled mechanisms for reasoning scientifically about the
types of password-guessing attacks that occur in practice.

I. INTRODUCTION

Humans use predictable patterns in passwords [1], [2]. Mod-
ern password cracking exploits these patterns using data-driven
methods relying on large corpora of leaked passwords [3]–
[5]. It has become typical to measure password strength by
simulating such password cracking [6]–[9]. Many password-
cracking algorithms are probabilistic, creating a model and
then assigning a probability to each possible password. Assum-
ing the attacker rationally guesses passwords in descending
order of likelihood, the strength of a password is proportional
to the number of passwords with higher probability by that
model. Researchers have developed efficient algorithms for
estimating this mapping for the major probabilistic algorithms:
Markov models [10]–[12], neural networks [13], and proba-
bilistic context-free grammars [7], [10], [14].

Unfortunately, real-world attackers rarely use probabilistic
tools; they use software like John the Ripper (JtR) and
Hashcat [15]. Their reasons are pragmatic. In offline attacks,
the wall-clock time to make and check a guess includes the
time to generate a candidate, as well as the time to hash
the candidate and see if it appears in the target store. While
probabilistic algorithms perform well on a guess-by-guess
basis, they impose a high computational cost for generating
a guess [8]. Thus, for all but the slowest hash functions, it
is faster to crack a comparable number of passwords using
these software tools. While the likelihood of a password by
a probabilistic model may correlate with the order in which
software tools guess passwords [8], this proxy is imperfect.

JtR and Hashcat’s mangled-wordlist attacks are their most
commonly used [15] and most intellectually interesting. These
attacks leverage the insight that passwords tend to differ in
small and predictable ways; while one person may append
a digit to a word, another might append a symbol to that
same word. In a mangled-wordlist attack, the attacker creates a
wordlist of common passwords and natural-language content,
as well as a rule list of mangling rules (e.g., replace ‘s’ with
‘$’ and append a digit) written in a transformation language
specified by the tool. The full attack applies each mangling
rule to each word in the order specified by the input lists.

Thus, the practical strength of a password pw is strongly
affected by if and when JtR/Hashcat would guess pw, yet it
is difficult to compute this information. To date, one would
simply run JtR/Hashcat on a given rule list and wordlist,
enumerating guesses and recording when pw is generated [8].
This has several limitations. Generating a huge number of
guesses is computationally expensive, and when one stops the
attack it is not known which unguessed passwords would ever
be guessed. Moreover, it is unclear which rule list and wordlist
an intelligent attacker should choose, and how they should be
ordered. Re-running JtR/Hashcat on the myriad possible lists
is intractable. Knowledge of these tools’ complex behaviors is
limited to glimpses obtained via expense computations.

Our first contribution: An analytical approach to modeling
transformation-based password guessing. We develop a
more efficient approach for studying mangled-wordlist attacks
without actually running them. We design and implement
tools that analytically compute properties of JtR and Hashcat,
including whether they would generate a particular password
and how many guesses each rule generates. These techniques
enable estimation of a password’s strength by accurately and
efficiently computing how many passwords would be guessed
before it in an attack using these tools in a particular con-
figuration. We term this process a guess-number calculator.
While prior work has developed guess-number calculators for
Markov models [10], probabilistic context-free grammars [7],
and neural networks [13], ours is the first computationally
efficient approach for modeling widely used cracking software.

In particular, we develop modules for rule inversion and
guess counting. Rule inversion efficiently computes a compact
representation describing the preimage set of a rule for a
password pw (the set of words the rule will mangle into pw).
This allows one to easily see whether a rule would generate

a target password with a given wordlist. Guess counting
computes the number of guesses generated by a rule without
running it. Both modules run much faster than naive execution.

For example, consider the task of determining whether
passwords password156 and monkey! would be generated
by a rule that appends two digits to every entry of a given
wordlist. One could first invert that rule by attempting to
remove two digits from the end of the password. If this inver-
sion is successful (password156 becomes password1),
then the task is reduced to a constant-time lookup of whether
password1 is in the wordlist. If (and only if) it is,
password156 would be guessed. Because monkey! does
not end in two digits, we determine it cannot be guessed by
that rule. We can also determine how many guesses this rule
issues: 100 times the number of entries in the wordlist.

While these computations were straightforward for this
simple rule, JtR and Hashcat support dozens of more complex
transformations (e.g., substitutions, purging classes of charac-
ters, conditionally rejecting candidate guesses). Furthermore,
a rule can compose many individual transformations. We
formally analyze both tools’ full rule languages, building
efficient algorithms for handling most complex rules. Our tool
can invert and guess count the vast majority of transformations
supported by JtR/Hashcat, as well as arbitrary compositions of
transformations. However, for some rules (e.g., character purg-
ing), we must resort to brute-force execution of JtR/Hashcat.

Given a password pw, our guess calculator determines how
many guesses JtR/Hashcat would issue before guessing pw.
Doing so efficiently enables quick estimation of a password’s
strength. After some moderate precomputation, our calculator
responds in only a few seconds even for attacks making
300 trillion guesses, enabling the first real-time estimation of
password strength against common mangled-wordlist attacks.

Our second contribution: Configuration tools/experiments.
Probabilistic password-cracking algorithms use training data
(typically huge sets of passwords) to model the probability
of previously unseen passwords. While each probabilistic
algorithm is somewhat sensitive to tweakable configuration
parameters (e.g., the amount of smoothing [11] or the number
of features [13]), tools’ mangled-wordlist attacks are highly
sensitive to their configuration [8]. This configuration encom-
passes what words and rules are included in the wordlist and
rule list, as well as how those words and rules are ordered.
What words and rules are included impacts whether passwords
would be guessed at all, and the ordering impacts how quickly
they will be guessed. In practice, attackers order rules based
on intuition or taste, and experienced attackers closely guard
personal lists they have developed and refined over years of
cracking passwords [15]. The academic community gets small
glimpses into these lists, such as through example lists [16] re-
leased as part of password-cracking contests [17] or distributed
with the JtR and Hashcat software. Experienced attackers’
lists, however, outperform those released publicly [8].

We extend our analytical approach to design, implement,
and evaluate four optimization techniques that collectively en-

able data-driven configuration of transformation-based attacks.
These optimizations make configuration more principled and
less ad-hoc, and they also better align academic models with
passwords’ vulnerability to real-world attacks by experts using
non-public lists. These four applications optimize both the
order and the completeness of both rule lists and wordlists.

First, we present a principled way to order the rules in a
rule list. Applying this optimizer to six real-world rule lists, we
estimate the best possible guessing effectiveness of an attacker
who might have sorted the rules differently. We find that the
optimal order is fairly consistent across sets of passwords
created under similar composition policies, but notably less
consistent otherwise. Interestingly, we find that the order of
one well-known rule list (SpiderLabs [18]) can be substantially
improved, while another rule list (Megatron [19]) is already in
nearly optimal order. We then apply an analogous process to
optimizing the order of words in a wordlist, finding that doing
so generally overfits to data and worsens configurations.

Finally, we use our tools to analyze the completeness of
these lists in a principled way. We generate 15,085 JtR rules
and integrate them into existing rule lists. Doing so results in
passwords being guessed more quickly, and a larger fraction
of passwords being guessed overall. We then analyze the
completeness of our wordlists. We apply rule inversion to
identify words that would have generated target passwords
in evaluation sets had they been in wordlists, adding those
that appear most often. This method suggests semantically
meaningful words and short strings that collectively enable
guessing passwords that otherwise would not be guessed.

In sum, we introduce some of the first techniques for rea-
soning analytically about the transformation-based password-
guessing attacks that actually occur in the wild. Our guess-
number calculator enables real-time, server-side password
checking, while our optimizations better align academic mod-
els with experts’ closely guarded configurations. To encourage
further scientific modeling, we are open-sourcing our code.1

II. RELATED WORK

We first present prior work using password-cracking al-
gorithms as metrics of password strength. We then discuss
probabilistic models of passwords and ways of analyzing
them. Finally, we discuss the limited prior work analyzing
transformation-based password-cracking software. Our work
focuses on trawling password-guessing attacks. While pass-
word guessing on live servers can be rate-limited, large-scale
(offline) guessing remains an important threat for three rea-
sons: (1) humans often reuse credentials across accounts [20];
(2) rate-limiting is not always implemented correctly [21]; and
(3) guessing against encrypted files (where cryptographic keys
are derived from passwords) cannot be rate-limited without
proportionally increasing the cost of legitimate accesses.

A. Metrics of Password Strength

Entropy was historically used as a metric of password
strength. However, entropy is calculated for distributions, not

1https://github.com/UChicagoSUPERgroup/analytic-password-cracking

https://github.com/UChicagoSUPERgroup/analytic-password-cracking

individual passwords, and ad-hoc attempts to estimate entropy
for single passwords using heuristics are often inaccurate [7],
[9], [22]. In response, Bonneau introduced partial guessing
metrics that model attackers who guess optimally based on
statistical properties of passwords in a target set [1]. While
such methods have advantages, they require huge amounts of
data and do not model actual attacks [8].

Many researchers thus model password strength by running
or simulating password cracking [2], [7], [9], [11], [23]–[29].
This metric, parameterized password guessability, considers
the strength of a given password against a trawling, non-
targeted attack to be proportional to the number of other
passwords that would be guessed before it [7]–[9]. We use
the term guess number to refer to the number of passwords
guessed before a given password in an attack.

B. Password-Cracking Algorithms

Large corpora of passwords are the best source of guesses.
However, attacks can make billions of guesses per second [5],
yet only a few billion real passwords have been leaked [30].
Thus, after guessing previously seen passwords in descend-
ing order of frequency, attackers turn to password-cracking
algorithms. Academic studies of password cracking focus on
the following probabilistic algorithms, which construct models
mapping passwords to probabilities based on training data:

1) Markov Models: In 2005, Narayanan and Shmatikov first
proposed using Markov models of natural language to guess
passwords [31]. Researchers subsequently proposed adaptive
Markov Models trained on passwords [6] and mechanisms for
more efficiently enumerating guesses [12]. Ma et al. analyzed
Markov models’ ability to guess different password sets,
finding 6-gram Markov models with additive smoothing to
guess English-language passwords most effectively [11].

2) Probabilistic Context-Free Grammars: In 2009, Weir
et al. proposed using a probabilistic context-free grammar
(PCFG) to guess passwords [14]. Training on sets of pass-
words, a PCFG models a password’s probability as the
probability of its character-class (or semantic [32]) structure
multiplied by the probabilities of its component strings.

3) Neural Networks: In 2016, Melicher et al. proposed
recurrent neural networks composed of long short-term mem-
ory (LSTM) units to guess passwords [13]. Like Markov mod-
els, this approach calculates the probability of a subsequent
character in a candidate password based on the preceding
characters, yet does so using a multi-layer neural network.

C. Efficiently Analyzing Password-Cracking Algorithms

Because calculating a guess number requires running or
simulating a password-cracking algorithm, it is crucial to do so
efficiently. Researchers have developed efficient techniques for
the three main probabilistic algorithms. Kelley et al. proposed
fast lookups of a password’s guess number by accepting a
time-space tradeoff, precomputing very large lookup tables of
probabilities of structures and terminal strings for PCFGs [7].
Dell’Amico et al. relied on Monte Carlo methods to esti-
mate the mapping between a given password’s probability

and the number of passwords with higher probability [10],
efficiently computing guess numbers for Markov models and
PCFGs. Melicher et al. extended this Monte Carlo approach
to neural networks, further leveraging a very small model
size to perform client-side password-strength evaluation [13].
Finally, Ma et al. introduced probability-threshold graphs,
which can be computed efficiently and enable comparisons
of the relative strength of password sets [11]. This technique,
however, cannot be used directly to calculate guess numbers.

While these techniques enable efficient analysis of prob-
abilistic models, real attackers rarely use such models [5].
Sadly, these techniques cannot be applied to the software at-
tackers actually use because such tools do not model probabil-
ities [15]. We fill this gap by introducing analytical techniques
to reason efficiently about password-cracking software.

The password-cracking community has developed anec-
dotal and informal best practices for configuring cracking
software [5], [15]. Little work, however, has attempted to
optimize, or even reason about, these tools in a principled
or scientific way. Chrysanthou presents a multi-stage attack
for Hashcat based on numerous empirical experiments on
one test set [33]. These experiments require enumerating
guesses and thus preclude efficient analysis at scale. Absent
methods of reasoning about such tools, many researchers use
them in their default configuration [9], [27], [34]–[36]. Ur et
al. [8] found these configurations to severely underestimate
passwords’ vulnerability to attacks. In Section VIII, we show
that Ur et al.’s approach itself underestimates vulnerability.

III. BACKGROUND

Best practice dictates storing passwords salted and hashed
using a computationally expensive hash function (e.g., scrypt,
Argon2), though fast hash functions (e.g., MD5) are widely
used [30]. When data breaches occur, attackers generate likely
candidates, hash them, and compare these hashes to those
revealed in the breach. A similar process occurs when cracking
password-protected files. In targeted attacks, which are out of
scope, the best sources for guesses are the user’s personal
information [37] and passwords associated with the same
username in prior breaches [20]. For the trawling attacks we
model, the best sources of guesses are any real passwords
that have been previously revealed in descending order of
frequency [8]. To date, over 5 billion accounts have been
breached [30]. Attacking fast hashes with GPUs, however,
takes under one second to make 5 billion guesses [15]. To gen-
erate vastly more guesses, attackers use data-driven approaches
perturbing leaked data. In this section, we explain JtR and
Hashcat’s transformation-based approaches. Our techniques
enable the first principled analysis of such approaches.

A. Transformation-Based Mangled-Wordlist Attacks

Password-cracking software is most frequently and canoni-
cally used to perform what we term mangled-wordlist attacks
(“wordlist mode” in JtR and “rule-based attacks” in Hashcat).
Our techniques focus on these attacks, which take both a
wordlist and a rule list as input. Wordlists typically contain

passwords from data breaches, words from dictionaries, and
natural-language data (e.g., phrases) [15]. Rule lists contain
rules, which are compositions of individual transformations
(including conditional logic) written in tool-specific languages
that we detail in the following section.

In a mangled-wordlist attack, each word from the wordlist
is mangled, or transformed, as specified by each rule from the
rule list. Note that JtR and Hashcat order guesses differently.
JtR proceeds in rule-major order, applying a given rule from
the rule list to all words on the wordlist before proceeding
to the next rule. Hashcat conceptually follows word-major
order, applying many rules from the rule list to a given word
before proceeding to the next word to minimize disk I/O.
In practice, Hashcat follows a more complex and hardware-
dependent batching strategy (see Section IV-D) to further
improve performance. To guess a larger fraction of passwords
more quickly, both wordlists and rule lists should be ordered
in descending order of likelihood for generating a successful
guess. Because of the ordering, however, JtR’s effectiveness is
particularly sensitive to the ordering of the rule list, whereas
Hashcat’s is more sensitive to the order of the wordlist.

Both JtR and Hashcat come with preliminary rule lists,
sample configuration files, and short sample wordlists. As they
gain experience, attackers augment and refine their own lists.
From the results of contests [17] and real-world hacks [15],
these closely guarded personal lists are far more effective
than these preliminary lists, or even others released publicly.
Most rules contained in rule lists were initially created by
human experts using their intuition about how humans create
passwords by transforming natural language or by manually
examining patterns within released password sets [18]. There
have been some limited attempts to automate this process.
For example, Marechal proposed ordering rules based on
the number of passwords they cracked in a given evaluation
set [38], while Hashcat’s generated2.rule was created
by randomly generating rules and testing their effectiveness
cracking sets of passwords [8]. Taking a data-driven approach,
Marechal automatically generated potential prepend and ap-
pend rules by searching for words on the wordlist as substrings
of passwords in evaluation sets [38]. Kacherginsky built on this
work, using the Reverse Levenshtein Path between wordlist
entries and passwords in evaluation sets to generate rules [39].
The techniques we introduce provide a more generalized
framework for data-driven rule creation (Section X).

B. Language of Transformation Rules

Password-cracking software tools have well-defined, well-
documented rule languages that enable rule creators to express
potential ways in which natural language or previously seen
passwords might have been transformed to create a password.
We use the term transformations to refer to the individual
commands that, when applied to a wordlist in a mangled-
wordlist attack, change an input word to generate a new
candidate guess or express conditional logic related to whether
or not to make that guess. Each individual transformation has a
unique function name. JtR supports 52 individual transforma-

tions [40], while Hashcat supports 55 individual transforma-
tions [41]. The two tools have 32 transformations in common.
Some transformations do not take parameters. For example,
C in both JtR and Hashcat lowercases the first character of
the input and uppercases the rest. Other transformations take
parameters that are either characters or numerical (a position,
length, or count). For example, both tools’ sXY transformation
replaces all instances of the character X with the character Y.

Each rule in a rule list consists of one or more trans-
formations and is parsed left to right. Table I gives our
categorization of the transformations each tool supports, in
addition to whether those transformations can be reasoned
about analytically (Section IV). As detailed below, some trans-
formations modify the input in ways that are straightforward
to describe, and many (but not all) of these are straightforward
to reason about. Some transformations express logic related to
rejection (choosing not to make a guess if certain conditions
are not met), and much of the complexity in the design of
our analytical techniques derives from how this conditional
rejection logic interacts with other transformations in a rule.

Some example JtR rules follow. Az"[0-9]" appends a
digit to the end of the input word, thus making ten guesses
(one per digit) for each input word. Slightly more complex,
/a saA >5 /?d /?a immediately rejects the guess unless
the input word contains “a,” and otherwise replaces every
“a” with “A.” It then rejects the guess unless it contains
more than 5 characters, as well as both a digit and a letter
(uppercase or lowercase). Accounting for parameterizations
(e.g., which characters are being substituted), there are over
15,000 JtR valid rules containing only a single transformation
(see Section X). This increases exponentially with length; there
are hundreds of millions of possible length-2 rules.

1) Straightforward Transformations: The transformations
most straightforward to describe directly modify some aspect
of the input word. These include transformations that shift the
case of letters in the input word (e.g., l lowercases the word),
insert or delete either a character or a set of characters (e.g., $c
appends “c” while D6 deletes the 7th character, zero-indexed).
Other transformations substitute characters (e.g., R shifts each
character one key right on a QWERTY keyboard) or rearranges
them (e.g., r reverses the input). Other JtR transformations use
heuristics to simulate English grammar rules for pluralization
and putting words into either the past tense or gerund form.

2) Rejection Transformations: To avoid making guesses
that have not modified the input word, that (after transfor-
mation) do not comply with a password-composition policy,
or that are otherwise redundant, both tools include rejection
transformations (not making a guess unless conditions are
met). For example, if an attacker previously brute-forced all
passwords of lengths 1–5 or if they knew all passwords
contained at least 6 characters, they might include >5 in rules
to reject guesses containing five or fewer characters. Similarly,
the transformation sa@ (replacing every ‘a’ with ‘@’) could be
prefixed with /a to reject inputs without an “a.” Other rejec-
tion transformations examine the nth character of a guess (e.g.,
=NX) or count the instances of a given character or character

TABLE I: Categorization of JtR and Hashcat transformation
rules and whether they can be reasoned about analytically.

Transformations

Fully
Invertible,
Countable

Regex-
Invertible,
Countable

Fully
Invertible,

Uncountable
Uninvertible,
Uncountable

John the Ripper
Shift Case 8 0 0 0
Insertion/Deletion 8 2 0 2
Substitution 5 0 0 0
Rearrangement 6 0 0 0
English Grammar 3 0 0 0
Rejection 14 0 0 0
Memory 0 0 0 4
Total 44 2 0 6

Hashcat
Shift Case 6 0 2 0
Insertion/Deletion 7 2 0 1
Substitution 8 0 0 0
Rearrangement 15 0 0 0
Rejection 9 0 0 0
Memory 0 0 0 5
Total 45 2 2 6

class (e.g., %NX). While JtR and Hashcat both support rejection
transformations, for performance reasons Hashcat only does
so in special cases (e.g., CPU-based hashcat-legacy). JtR also
minimizes redundancy by only making guesses that differ from
their immediate predecessor guess.

3) Memory Transformations: Both JtR and Hashcat provide
memory transformations that enable setting or querying vari-
ables in memory, enabling complex modifications to an input
and helping to avoid redundant guesses. Note that variables
can represent either substrings or numbers (e.g., positions or
lengths). While we support one frequent special case, we do
not support memory commands generally (see Appendix A).

4) JtR’s Rule Preprocessor: While Hashcat’s transforma-
tions generally cause an input word to generate a single guess
(or none, based on rejections), JtR has a rule preprocessor that
allows multiple similar rules to be expressed compactly as a
single rule. For example, the JtR rule r $[0-9] reverses the
input and then appends a number. Writing the equivalent in
Hashcat’s notation requires either ten rules or a hybrid attack
combining a mangled wordlist with selective brute-forcing.

C. Password-Cracking Software’s Other Attack Modes

While mangled-wordlist attacks are the most commonly
used and intellectually interesting, JtR and Hashcat support
other attacks. Brute-force attacks test all characters in a
given keyspace, while mask attacks are a subset in which
the keyspace is constrained. These are trivial to analyze by
checking if a password is in the given keyspace. Combinator
attacks concatenate two words and are trivial to reason about
because a given password can be split into parts, checking each
part for membership in the wordlist. Hybrid attacks combine
these approaches and can be reasoned about similarly.

IV. OUR TOOLS: RULE INVERSION AND GUESS COUNTING

In this section, we describe the two main components of
our analytical tools: rule inversion and guess counting. We
start with an overview of their interfaces and purposes, then
discuss their algorithmic design and implementation. We also

present how these components are combined into the higher-
level application of computing guess numbers for passwords.
We completed implementations for both JtR and Hashcat, but
we focus on JtR, discussing our Hashcat tool at the end.

1) Rule Inversion: Recall that JtR applies a rule to every
wordlist entry to generate a possibly large number of guesses.
To determine if particular target passwords are among these
guesses, one can run the tool and store the guesses, but this
is expensive in both computation and storage. We designed a
more efficient, analytical method that works for most, but not
all, rules. Specifically, we design and implement an efficient
function invert_rule with the signature:

regex← invert rule(rule, pw).

The function invert_rule takes as input a rule rule and a
target password pw. It outputs a regular expression regex that
decides the set of preimages of pw under rule (i.e., words
w that generate pw when mangled with rule). This set may
be empty (regex matches nothing). For uninvertible rules we
allow an error mode indicating no regex was computed.

Two types of regular expressions may be output. A simple
regex does not use ∗ or + operators, consisting only of a se-
quence of character classes. For example, s[3eE]cr[3eE]t
is a simple regular expression (matching 9 total strings), but
secret(0*) is not (matching an infinite set, as it allows any
number of trailing zeros). A non-simple regex uses ∗ and +.
When our tool can compute a simple regex for a rule, we term
the rule fully invertible. When a non-simple regular expression
is computed, we say the rule is regex-invertible to indicate a
general expression must be used in future computations. If no
regex can be output, we say the rule is uninvertible.

As discussed below and indicated in Table I, we compute
simple regexes for (possibly very complex) rules built from
44 of the 52 possible JtR transformations. For such rules, we
determine if a rule would guess a given password quickly (i.e.,
without a linear scan of the wordlist). For two transformations
(truncation and substrings), we produce non-simple regexes.
For six uninvertible transformations (two forms of character
purging and four memory commands), we do not produce a
regex. As detailed in Appendix A, for these we fall back to
enumerating guesses out of performance considerations (non-
simple regexes) and necessity (uninvertible transformations).

The primary usage of rule inversion is to determine if any
entry of a wordlist wlist would guess pw under rule. For
a non-simple regex, we test if the regex recognizes each entry
of wlist via a linear scan. A simple regex enables faster
checking, however, because we can enumerate the recognized
strings by filling in the possible choices and checking (via
a hash table) whether each possible string is a member of
wlist. For most simple regexes generated for practical rule
lists, the regex recognizes only a small number of possibilities,
so this enumeration is far faster than passing over wlist.

Unfortunately, in some corner-cases that depend on both pw
and rule, our tool will generate a regex that is simple, yet
enumerates a large number of values. For example, inverting
the password @@@@@@@@@@ under the rule “substitute @ for
a” results in the regex [a@]{10}, which enumerates 210

strings, all of which must be checked for membership in
wlist. In these cases, we avoid brute force enumeration of
the strings matched by the simple regex. Instead, we represent
wlist using a trie [42]. Because only a small number of
the matched strings will typically be in the wordlist, and the
strings will tend to share prefixes, most of those strings can be
skipped. That said, the theoretical worst-case complexity is not
changed. For example, the rule “delete the first four characters”
results in a regex like [anychar]{4}input_password,
which matches any string that has four arbitrary characters
prefixing the input password, causing either approach to be
slow. To address this, we built a proactive toolkit to find such
rules and mark these rules as uninvertible. In principle, there
exist pathological rules causing all three approaches to fail,
though we observed none in practical lists. For such rules,
human-in-the-loop tuning would be required.

2) Guess Counting: Our guess counting component an-
swers the question: Given wordlist wlist and rule rule,
how many guesses will JtR generate? An analogous question
is posed for Hashcat, which differs by guessing in word-
major order. We say a rule is countable if our tool can count
guesses faster than running the software, and uncountable
otherwise. Guess counting is significantly more complex than
rule inversion. We have factored it into three pieces:
feat_grps← extract_features(rlist),

aux_info← precompute(feat_grps,wlist),

num← guess_count(aux_info,rule).

We describe these starting with guess_count. Using some
precomputed information, it outputs the number of guesses
JtR generates running rule on wlist. This function itself
is fast, running in time independent of the wordlist size.

Functions extract_features and precompute
perform precomputation to make guess_count fast.
extract_features takes as input a rule list rlist and
outputs feat_grps, a data structure representing which
abstract word properties (e.g. length, the presence of a
digit) are relevant for counting the guesses made by rules in
rlist. Function precompute takes as input feat_grps
and a wordlist wlist and computes auxiliary information
aux_info. This information enables us to quickly count
words with combinations of properties via a lookup table
instead of making multiple passes on the entire wordlist.
guess_count estimates the runtime of JtR on rules

without executing them. Moreover, each run will be in time
sublinear in the size of wlist. To this end, we allow one-
time expensive precomputation in extract_features and
precompute. The precomputation of aux_info is done
up-front and only once, encoding information about the prop-
erties of wlist, such as the number of words of a given
length and the number of those that contain a digit. Computing
feat_grps is fast, but aux_info can take on the order of
hours, and it can be large (on the order of a few GB). This
is often still far faster and smaller than running JtR. With this
data, evaluating guess_count typically only takes seconds
per rule, which is crucial when there are thousands of rules.
In our higher-level applications, we only need the output of

guess_count, so we can delete aux_info after using it.
While many rules are easy to count analytically, they

quickly become complicated when rules (especially those with
rejections) are composed. Our tool handles the complexity of
arbitrary compositions of invertible transformations.

A. Rule Inversion

We describe how invert_rule works on single transfor-
mations, and then how it is extended to composed rules.

1) Single Transformations: For most rules consisting
of a single transformation, invert_rule(rule,pw) is
straightforward. For instance, if rule appends a character d,
then it outputs the empty regular expression if pw does not end
in d, and otherwise outputs the regular expression matching
exactly pw with the trailing d deleted. In either case, this
regular expression is simple (using our definition above).

For some transformation classes, this approach produces
more complicated, but still simple, regular expressions. Con-
sider the rule sXY that substitutes all X characters for Y.
To compute invert_rule, we replace each occurrence of
Y in pw with the regular expression [XY]. For example,
if pw = aYbY, invert_rule outputs regular expression
a[XY]b[XY], which is simple by our definition.

We applied this analysis to handle 44 of the 52 JtR single
transformations (see Table I). We omit tedious details from
the paper, but our open-source implementation fully specifies
the process. For two other transformations (truncate and sub-
string), our tool computes non-simple regexes. To see why this
was necessary, consider a rule that truncates a word down to 4
characters (or takes a substring of length 4). We can represent
the preimage set for such a rule using a general regular
expression, but there may be a huge number of preimages.

For the two purging rules (@X and @?C which purge all “X”
characters or characters from class C, respectively), our tool
does not produce a regex. The difficulty with these becomes
apparent when considering composition and we return to this
below. Finally, we do not compute regexes for the four mem-
ory access commands as doing so would require analyzing
what amounts to arbitrary programs (see Appendix A).

2) Composed Rules: We handle composed rules by adapt-
ing our single-transformation ideas to work on regexes, rather
than strings of literals only. This allows us to feed the regex
output of one single-transformation computation into another
single-transformation computation. Moreover, if two stages
individually produce a simple regular expression, then their
composition will also produce a simple regular expression.

For example, consider the composed rule {sXY, which
rotates the string one character left and then substitutes oc-
currences of X with Y. For aYbY, invert_rule proceeds:

1) Invert sXY on pw, getting a[XY]b[XY].
2) Invert { on a[XY]b[XY], getting [XY]a[XY]b.

The key observation is the second stage can unambiguously
manipulate the regex to arrive at the correct answer.

This process works for arbitrary compositions of all single
transformations that produce simple regexes. We can now
explain why we do not produce regexes for purge commands.

Consider the seemingly innocent rule $Y@X (“append Y then
purge all X”). Attempted inversion on pw = Y might proceed:

1) Invert @X on pw, getting (X*)Y(X*).
2) Invert $Y on (X*)Y(X*), which requires case analysis.

The second step is complicated in the sense that the inversion
depends on the actual string matched by (X*)Y(X*) and
thus requires a regex that handles cases separately. Even if
we handled one step of composition, the complexity grows
exponentially as rules are composed. Thus, we opted to limit
our inversion computations to simple regular expressions.

B. Guess Counting

We start by sketching guess_count for single trans-
formations. Guess counting for composed rules is far more
complicated. Similar to rule inversion, the four memory
commands are uncountable because they amount to arbitrary
computation. Both purge commands are also uncountable.
Appendix A gives further details. Note that truncation and
substring are only regex-invertible, yet countable.

1) Single Transformation Rules: After initial pre-
computation on wlist, we can count single transformations
in time independent of the size of wlist. For example,
consider $[0-9], which appends one digit. For this rule,
guess_count outputs num = 10 · |wlist|.

A slightly more complicated example is /?d, which rejects
if the input word does not a contain a digit. This rule will
generate at most |wlist| guesses since it is filtering words
from the list. This is of course easy to calculate by making
a pass on wlist. Our strategy, however, is to precompute
the needed information about such properties to avoid making
multiple passes. The 46 JtR transformations we handle were
done similarly, sometimes using auxiliary data (see below).

2) Feature Groups Extraction: To enable fast counting, we
first collect in extract_features the combinations of
features that need to be indexed for later counting. Examples
include the number of words of each length, the number that
contain a digit (or a particular character), and others. Based
on the rules, we will later want to quickly look up counts
for combinations of these features (e.g. how many words of a
given length contain the letter “N,” yet no digits). The output of
feature extraction is effectively a list of groups of features. The
next stage generates a lookup table for constant-time counting
of the number of words satisfying any combination of features
in the group. A table will be exponentially large in the number
of features in a group, so we must limit the size of groups.

Our actual implementation is a compromise between two
extremes. The first extreme is to include all features in one
group, but for real-world rule lists this produces a table too
large to store. The other extreme is to create a group for each
rule on its own. Each table will be very small (often between
2 and 16 entries), but populating that many tables is slow. We
instead create groups greedily until reaching a threshold size
(usually 20 in our experiments), at which point we close that
group and start another. As we iterate over rules, we check if
the needed feature combination is already contained in some
group. If so, we note this and move on without modifying the

groups. This intermediate approach generates a small number
of groups (e.g. 44, versus thousands in the second extreme)
that induce moderately sized look-up tables (e.g. 64MB per
table). We use heuristics to process rules containing “popular”
transformations first, resulting in more frequent table reuse.

3) Auxiliary Precomputation: For each group G1, . . . , Gn,
we include in the output aux_info a multidimensional array
Ai of dimension equal to the number of features in Gi. Each
dimension of Ai corresponds to one feature. We populate the
arrays by iterating over words and incrementing the cell of
each table corresponding to the features satisfied by the word.

For example, suppose a feature group has features length,
hasdigit, and hasB. We create an array A1, then for each pos-
sible length ` ∈ {1, . . . , 32}, and each possible boolean values
bhasdigit, bhasB ∈ {0, 1} we populate A1[`][bhasdigit][bhasB]
with the number of words in wlist that match that com-
bination of features. When we iterate over words, we check
its length and whether it contains a digit and a B, incrementing
the corresponding cell (e.g., T9A increments cell A1[3][1][0]).

4) Full Guess Counting: Guess counting for composed
rules is simple only for isolated cases. For example, $[0-9]
$[a-z] (“append a digit then append a letter”) is easy to
guess count via the “product rule” as num = 10 ·26 · |wlist|.
Typical rules, though, have more complicated dependencies
and do not obey the product rule. Consider the composed rule
$1 >4 /?d, which appends 1 and then rejects the guess
unless it has length greater than 4 and a digit. Appending
1 obviously generates wlist guesses, and we could easily
handle >4 and /?d individually via (compact) precomputed
data about wlist. Reasoning about the composed rule re-
quires tracking how they affect the composition of wlist.
Intuitively, the process works “backwards” as follows:

1) /?d: Remember that only guesses with a digit will count.
2) >4: Remember that only guesses of length 5+ will count.
3) $1: Modify the previous requirements. Since we append

a digit, /?d will be satisfied and >4 becomes >3.
Thus, guess_count looks up in the appropriate array Ai
of aux_info how many words in wlist are 4+ characters
long as each such word generates one guess by this rule.

Our selection of auxiliary data enables efficient guess count-
ing for arbitrary composed rules. Our implementation directly
extends the example above. Starting with a rule’s rightmost
transformation, we modify the state to record how the list will
be manipulated by that rule and then propagate left. Finally,
we perform a fast table lookup for the counting.

We encoded exactly how every supported transformation
will update state. For most rules this was simple, but for others
it was moderately complex. For example, the “reflect” rule f
appends a reversed string to itself (e.g. Frog is mapped to
FroggorF). Applying f updates length and the presence and
location of characters, both of which our tool handles.

5) Time/Space Analysis: To justify this design, we com-
pare its asymptotic runtime to naive brute-forcing (ignoring
log factors coming from data structure implementations and
assuming every rule is invertible and countable). The brute-
force approach to counting all of rlist takes time:

O(|wlist| · Σrulesize(rule))� O(|wlist| · |rlist|),
where size(rule) is the number of guesses rule generates
per word. In aggregate, this will typically be larger than 1.

In our approach, extract_features runs in time
O(|rlist|) as the number of relevant features per rule is
almost always small. The slowest part of our pipeline is
precompute, producing data structure aux_info of size

O(Σt
i=12|Gi|),

assuming the features are binary, where t is the number of
tables. After allocating the tables, we spend additional time
O(|wlist| · t) to populate their entries (a single pass on the
wordlist that increments one cell in each table for each word).

Finally guess_count performs a constant-time lookup
of the number of transformations in the rule being counted,
which we assume is constant (it is typically small). Thus, the
end-to-end runtime to compute guess counts for a rule list is

O(|rlist|+ |wlist| · t + Σt
i=12|Gi|).

When the last term is smaller than O(|rlist| · |wlist|)
and t is smaller than |rlist|, our method is faster. This
rough analysis is only meant to highlight the trade-offs in
our design and does not apply when rules are uninvertible.
Another inaccuracy comes from cases when guess_count
does more than a constant-time lookup in a table. For instance,
it may need to sum over the table. However, these operations
did not dominate processing in practice.

C. Putting it Together in a Guess-Number Calculator

We conclude by showing how to combine rule inversion
and guess counting to quickly compute a tight bound on the
number of guesses JtR issues before guessing a particular pass-
word. We define a function guess_number with signature:

num← guess_number(rlist, cnts, pw).

Input rlist is a rule list, pw is a password for which we want
to compute the guess number, and cnts is a precomputed
array indexed by rules, populated with their guess counts:
cnts[rule] is the output of guess_count for that rule.

Following precomputation of cnts, guess_number is
easy to implement. It initializes num ← 0 and iterates over
rules in the order specified by rlist. For each rule, it uses
rule inversion to test if the rule guesses pw. If not, it adds the
corresponding guess count to num. If so, then we know the
guess number is between the current value of num and that
value plus the current rule’s guess count. We can either output
the range or estimate where in that range the guess occurs.

D. Hashcat Implementation

We implemented invert_rule for Hashcat with minor
modifications. Since Hashcat guesses in word-major order,
knowing which word guesses a password is more important
than knowing which rule does. For uninvertible rules, we
extend a C implementation of Hashcat’s rule engine [43] to
enumerate guesses. Hashcat’s guess_count differs greatly
from JtR, though, due to this ordering. Conceptually, Hashcat
first applies all rules to the first word. In practice, for I/O

efficiency it batches this process, taking A words and B rules
at a time. A and B are autotuned based on the hardware.

Because we need the number of guesses induced by
each word w when B rules are applied, our matrix-based
approach to JtR does not apply. We instead compute
the number of guesses induced by a word w using only
extract_features, creating one group per rule. We cre-
ate bit strings to determine whether or not a guess is made by
a rule, given a word. If the bit string is all 1s, then a guess
is made, and we increment a counter for the word: cwi . To
count the total guesses made by all rules in a batch, we sum
the guesses over those rules. Conceptually, this approach is
slower than for JtR. However, Hashcat’s standard mode does
not support rejection rules except in special cases [41], and
Hashcat does not support character classes (e.g., JtR’s ?d
representing any digit) except in hybrid mode. Thus, guess
counting is often trivial as each rule makes |wlist| guesses.

V. EVALUATION DATA SETS

We analyze our techniques on three wordlists, six rule lists,
and six evaluation sets of passwords. We use these evaluation
sets alongside our analytical engine to tune the configuration
(both order and completeness) of the rule lists and wordlists.

a) Wordlists: While JtR and Hashcat include sample
wordlists, they are far smaller than those used in typical
attacks. Therefore, we selected three wordlists containing
password data and natural-language dictionaries that are more
typical of those used by experienced attackers [15]. XATO
is a set of 10 million passwords (5,189,378 unique entries)
sampled from thousands of leaked sets and released by a
security consultant in 2015 [44]. It has been used previously
in research [22]. PGS (19,436,159 entries) is a combina-
tion of passwords and dictionaries used in CMU’s Password
Guessability Service [8]. Lastly, LinkedIn is a set of pass-
words (60,169,992 unique entries) from the LinkedIn data
breach [45]. While hashes, not plaintext, were leaked, over
97% have been cracked. For XATO and LinkedIn, we took
the initial set, cleaned non-ASCII characters, and sorted them
by frequency, removing duplicates. PGS was already ordered.

b) Rule Lists: Since JtR and Hashcat do not use the
same rule language, we selected three typical rule lists for
each. The first three lists are for JtR. John (151 rules)
represents JtR’s default rules. SpiderLabs (5,146 rules) is a
version of a sample list KoreLogic released for a password-
cracking contest reordered by a human expert [16] in order
of anticipated effectiveness [18]. Megatron (15,329 rules)
combines the two sets of m3g9tr0n rules from Openwall [19].
The next three lists are for Hashcat, and all come with the
Hashcat software. Best64 (77 rules) functions as Hashcat’s
default best rules and was created and refined in community
contests. T0XlC (4,085 rules) and Generated2 (65,117 rules)
are more extensive sets created by members of Team Hashcat.

c) Evaluation Sets: We evaluate our techniques on six
sets of passwords (Table II). We chose four sets that represent
password-composition policies and characteristics typically
seen in leaked password sets. We also chose to include one

TABLE II: Description of evaluation sets.

Source # Passwords Apparent Requirements

000webhost [3] 13 million length ≥ 6 with letter & digit
Battlefield Heroes [49] 500,000 length ≥ 6
Brazzers [50] 800,000 length ≥ 6
Clixsense [51] 2.2 million length ≥ 6
CSDN [4] 6 million length ≥ 8
Neopets [52] 70 million length ≥ 6

set with a more strict composition policy (000webhost) and
one non-English, Chinese set (CSDN), whose characteristics
have been found to differ from English-language sets [46]. All
sets were leaked in plaintext except for Battlefield Heroes, of
which over 99% has been cracked. Because UTF-8 support
in cracking software introduces subtleties [47] or is missing
entirely [48], we converted non-ASCII characters to ASCII.
Because cracking software limits the length of guesses, we re-
moved lines longer than 32 characters. This cleaning removed
at most 0.6% of passwords per set. We also removed lines
that did not comply with the composition policy, which may
be legacy accounts or errors. For all sets besides Neopets, this
removed under 2% of passwords. So sets would be of equal
size, we randomly sampled 25,000 passwords from each set.

VI. ETHICS

Our evaluation sets and some of our wordlists contain
passwords that were previously stolen and then leaked online.
Using this data raises ethical questions. We clean the data
of everything other than passwords, meaning that there is no
identifying information in the data we analyze. Furthermore,
these password lists are already available publicly online, so
the harm already caused to users is not exacerbated by our use
of the data. Lastly, the guess-number calculator we develop
(Section VII) enables real-time password checking, which we
anticipate will help users make more secure passwords.

Our techniques enable data-driven optimization of the order
and completeness of rule lists and wordlists (Sections VIII–
XI). While attackers could use our techniques to improve
attacks, we do not believe that releasing our tools substantially
advantages attackers. Members of the cracking community
have already invested massive amounts of computation in
developing and refining their own rule lists and wordlists [38].
Experienced attackers’ curated lists are closely guarded se-
crets and are rarely shared publicly. In password-cracking
contests [17], prior academic evaluations [8], and media ar-
ticles [5], they substantially outperform lists released publicly.
While some attackers might benefit from our tools, we expect
our tools primarily to better align the academic community’s
models with experts’ non-public lists and configurations.

VII. EVALUATION OF A GUESS-NUMBER CALCULATOR

As detailed in Section IV-B, our analytical tools can be
applied directly to generate a given password’s approximate
guess number (the number of guesses it would take that
approach in that configuration to guess that password). Here,
we evaluate the proportion of rules in our six evaluation rule
lists that can be reasoned about analytically. We then present

TABLE III: Fraction of rule lists that are invertible/countable.

Rule List Rules
Invertible,
Countable

Invertible,
Uncountable

Brute-force
Enumerated

John the Ripper
SpiderLabs 5,146 5,146 (100%) 0 (0%) 0 (0%)
Megatron 15,329 14,840 (97%) 467 (3%) 22 (0%)
John 145 89 (61%) 0 (0%) 56 (39%)

Hashcat
T0XlC 4,085 3,980 (97%) 0 (0%) 105 (3%)
Generated2 65,117 50,781 (78%) 831 (1%) 13,505 (21%)
Best64 77 62 (81%) 0 (0%) 15 (19%)

performance benchmarks showing orders-of-magnitude im-
provement in the time it takes to compute guess numbers for
common rule lists. With less than a day of pre-processing on
a commodity machine, we can generate guess numbers for a
given password in under one second for most lists we evaluate.

A. Breadth of Application

Rules that are both fully invertible and countable provide the
greatest benefit for our approach because they can be analyzed
completely using our analytical tools, without enumerating
any guesses. Table III shows the fraction of each of our six
evaluation rule lists that are both invertible and countable. The
SpiderLabs rule list for JtR contains 5,146 rules, all of which
are both fully invertible and countable. Similarly, Megatron
contains 14,840 rules, of which over 97% are both fully invert-
ible and countable. These two large lists benefit substantially
from our approach. John, however, contains only 145 rules,
and only 61% are both fully invertible and countable.

For Hashcat, the T0XlC rule list contains 4,085 rules.
Because 97% of these are both invertible and countable, one
would again expect to see notable performance benefits from
our analytical approach. In contrast, only 78% of the 65,117
Generated2 rules are both invertible and countable, and only
81% of the 77 Best64 rules are both invertible and countable,
so the benefits of our analytical approach are more muted.

B. Performance Benchmarks

To gauge whether our analytical approach’s conceptual
advantages translate to reality, we benchmarked a Python im-
plementation of our approach and compared it with estimates
of naively enumerating guesses. We used a commodity server
with an Intel Core i7-4770 CPU (3.40GHz, 4 cores), 32 GB
of RAM, and 7200 RPM hard disks in RAID 1+0. We used
John the Ripper 1.8.0 and Hashcat v3.6.0. We calculated guess
numbers for all passwords in the 000webhost evaluation set
using a small (XATO) and a large (LinkedIn) wordlist.

We observed a performance benefit of many orders of
magnitude for the JtR SpiderLabs rule list. Using the LinkedIn
wordlist, this configuration incurred a one-time cost of
16 hours of pre-processing. Subsequently, calculating a given
password’s guess number took 0.367 seconds on average, and
a maximum of 2.074 seconds. In contrast, enumerating the
3.01×1014 guesses this configuration makes would have taken
approximately 4.7 years based on our benchmarked throughput
of ~12 million guesses per second piping JtR’s debug mode

TABLE IV: Performance comparison between naively enumerating guesses and our analytical approach. For enumeration, we
estimate the uncompressed size on disk for storing all guesses, as well as the time in seconds to pipe all guesses to stdout. For
the analytical approach, we present the pre-processing time (a one-time cost), as well as mean and max times for computing
a guess number in our tests. We also give the total size on disk of the auxiliary data, wordlist, and any enumerated guesses.

Enumerating Guesses Our Analytical Approach
Rule List Wordlist # Guesses Size Time (s) Size Pre-Processing (s) Mean Lookup (s) Max Lookup (s)

SpiderLabs (JtR) LinkedIn 3.01× 1014 3.3 PB 1.51× 108 10.2 GB 5.85× 104 0.367 2.074
SpiderLabs (JtR) XATO 2.79× 1013 306.9 TB 1.39× 107 4.9 GB 5.03× 103 0.367 2.011
Megatron (JtR) LinkedIn 7.27× 1011 8.0 TB 3.64× 105 12.8 GB 1.04× 104 0.718 2.536
Megatron (JtR) XATO 5.63× 1010 619.3 GB 2.82× 104 1.1 GB 9.69× 102 0.712 1.623
John (JtR) LinkedIn 3.57× 1010 392.7 GB 1.78× 104 145.7 GB 3.08× 104 0.133 2.846
John (JtR) XATO 3.05× 109 33.6 GB 1.53× 103 12.9 GB 2.71× 103 0.117 0.406

T0XlC (HC) LinkedIn 2.46× 1011 2.7 TB 2.46× 104 112.6 GB 1.79× 103 0.073 0.908
T0XlC (HC) XATO 2.12× 1010 233.4 GB 2.12× 103 8.7 GB 1.25× 102 0.071 0.388
generated2 (HC) LinkedIn 3.92× 1012 43.2 TB 3.92× 105 9.8 TB 2.24× 105 13.604 27.940
generated2 (HC) XATO 3.38× 1011 3.7 TB 3.38× 104 754.1 GB 1.75× 104 13.005 26.175
Best64 (HC) LinkedIn 4.03× 109 44.4 GB 4.03× 102 15.0 GB 5.77× 101 0.039 0.802
Best64 (HC) XATO 3.48× 108 3.8 GB 3.48× 101 1.2 GB 5.00× 100 0.038 0.120

to stdout. While one could imagine enumerating guesses once,
writing them to disk, and sorting them to enable fast lookups,
doing so requires ~3.3 petabytes of disk (uncompressed).

We also observed performance benefits, albeit smaller in
magnitude, for JtR’s Megatron rule lists and all three Hashcat
rule lists. Using the LinkedIn wordlist, our approach calculated
guess numbers in an average of 0.718 seconds for JtR’s
Megatron list and 0.073 seconds for Hashcat’s T0XlC list.
These approaches required pre-processing of 2.9 hours and
0.5 hours, respectively. This cost is amortized over looking
up guess numbers for many passwords. In contrast, writing
enumerated guesses to disk would require 8.0 terabytes and
2.7 terabytes (uncompressed), respectively. For fast lookups
in this naive approach, this data would also need to be sorted.

The benefits of the analytical approach were not fully
universal, however. For the smallest JtR rule list (John), the
pre-processing time exceeded the time to enumerate (but not
sort) guesses. The analytical approach nonetheless enables fast
lookups (mean of 0.133 seconds for LinkedIn) with smaller
storage requirements. At a high level, the analytical approach
provided substantial performance benefits for large rule lists in
which the vast majority of rules were invertible and countable,
particularly when paired with large wordlists.

Finally, our approach is highly accurate. We verified this
by randomly generating rules and comparing our analytical
evaluation to enumerated guesses, as detailed in Appendix B.

VIII. OPTIMIZATION 1: ORDERING RULE LISTS

Because JtR generates guesses in rule-major order (first
applying the first rule in its rule list to all words), the
order of rules is critical for JtR. Many publicly released
rule lists have been ordered through a combination of human
intuition [18] and empirical experiments [38] that are mostly
limited and undocumented. In such experiments, one collects
or creates large sets of rules, reordering the rules in descending
order of observed success against an evaluation set. Doing
so by enumerating guesses is highly time- and computation-
intensive. We use our novel analytical tools to do so efficiently.

TABLE V: Using the PGS wordlist, a comparison of the
original position of the first 15 John rules (excluding guessing
words verbatim) and their position after reordering based on
000webhost (000wh), CSDN, and the four English-language
sets with identical password-composition policies (Others).

JtR Rule Original 000wh CSDN Others

-s x** 1 93 85 109 – 110
-c (?a c Q 2 9 33 12 – 16
-c l Q 3 4 5 1 – 3
-s-c x** /?u l 4 94 86 110 – 111
>6 ’6 5 5 87 3 – 7
>7 ’7 l 6 6 88 8 – 12
-c >6 ’6 /?u l 7 3 89 2 – 25
>5 ’5 8 95 90 111 – 112
/?d @?d >4 9 96 3 6 – 23
/?d @?d M @?A Q >4 10 97 10 6 – 22
/?d @?d >4 M [lc] Q 11 98 29 33 – 38
/?d @?d M @?A Q >4 M [lc] Q 12 99 91 1 – 92
@?D Q >4 13 100 1 1 – 4
/?d @?d >3 <* $[0-9] Q 14 23 31 21 – 30
/?d @?d M >3 <* [lc] Q $[0-9] Q 15 54 54 44 – 70

A. Approach

We reorder rules in descending order of success density,
defined as the ratio of a rule’s successful guesses (those
matching a password in evaluation set S) to the total number of
guesses. To avoid prioritizing rules whose successful guesses
overlap with those of a previously prioritized rule, we reorder
iteratively. We assume attackers first guess all items in the
wordlist verbatim, which is often the best strategy [8]. We
then calculate the success density for each rule against the
evaluation set S, placing the rule with the highest success
density next. We remove all passwords guessed by that rule
from S, recalculating the success density for all remaining
rules. We repeat this process until all rules have been ordered.
In the case of ties, we prioritize the rule that made fewer
guesses. If the guesses made by rules are fully disjoint, this
strategy is provably optimal in maximizing the area under
the guessing curve. If the guesses are not disjoint, one can
construct pathological cases where this strategy is not optimal,
yet it is far more computationally tractable than alternatives.

000webhost

BField(self−optimized)

Brazzers

Clixsense

CSDN
Neopets

OriginalOrdering

40%

50%

60%

70%

80%

107
109 1011 1013

Guesses

P
e

rc
e

n
t
g

u
e

s
s
e

d

Fig. 1: The guessability of Battlefield Heroes under JtR using
the PGS wordlist and the SpiderLabs rule list in its original
order, reordered artificially based on itself (BField), and re-
ordered based on each of the five other evaluation sets. Each
reordering substantially improved on the original ordering.

B. Evaluation Procedure and Results

Using each of our three wordlists, we applied this approach
to reorder each of the three JtR rule lists using each of the six
evaluation sets in turn. Comparing rules’ original positions to
their reordered position, we found a number of rules whose
positions after reordering diverged consistently from their
original position in these widely distributed rule lists.

As Table V demonstrates, our reordering process consis-
tently suggests that some rules that appear early in the 145-
rule John list likely belong late in the list, and vice versa. For
example, three of the first ten rules never appear earlier than
the 85th position after reordering based on success density
for any of our six evaluation sets. Notably, John is widely
distributed in this non-optimal form as JtR’s default rule list.

We found trends that were similar, if not more stark, for the
other rule lists. For example, in the 5,146-rule SpiderLabs rule
list, none of the first 23 rules still appear within the top 100
rules after reordering based on any of our six evaluation sets.
This is particularly notable because SpiderLabs was already
manually reordered based on a password-cracking expert’s
intuition [18]. Appendix E shows the original and reordered
positions of the first 100 rules for two of the JtR rule lists.

Across the three rule lists, we observed that using any of our
four English-language evaluation sets with identical password-
composition policies – Battlefield Heroes, Brazzers, Clixsense,
and Neopets – resulted in rule reorderings that were similar
to each other. We therefore group these four sets together in
our tables. The reorderings tended to be distinct, however, for
both the 000webhost set, whose composition policy required
a digit, and the Chinese-language CSDN set.

Crucially, we found that our reordering procedure enables
many passwords to be guessed much earlier in an attack for
both the SpiderLabs and John rule lists. Figure 1 shows the
guessability of the Battlefield Heroes evaluation set using the
SpiderLabs rules in their original order (black line), artificially
reordered on itself as an upper bound (dashed red line), and
reordered based on each of the five other evaluation sets.
Reordering the SpiderLabs rule list based on any of the
four other English-language sets provides substantial improve-

ments in guessing. While rule reordering does not change
which passwords are guessed, a substantially larger fraction
of passwords are guessed earlier in the attack compared to
the original ordering. Notably, reordering based on any of the
other four English-language sets results in guessing success
approaching the artificial self-optimized ordering, highlighting
that reorderings generalize well across sets. While reordering
based on the Chinese-language CSDN set also provides sub-
stantial improvements over the original ordering, it performs
less well than any of the English-language sets. We observed
very similar trends for each of the five other evaluation sets.

We also observed similar trends reordering the much smaller
John rule list for all six evaluation sets. For the Megatron
rule list, however, we observed a different trend. As shown in
Figure 4a in Appendix E, the original ordering of the Megatron
rule list (black) is already relatively close to the artificial
self-optimized reordering (red). Guessing Battlefield Heroes
passwords using any of the four other English-language eval-
uation sets results in an attack that performs very similarly to
the original ordering, while reordering based on the Chinese-
language CSDN set results in a less effective attack. While
Megatron’s original ordering already seems near optimal, our
approach let us demonstrate this scientifically.

IX. OPTIMIZATION 2: ORDERING WORDLISTS

Given the performance benefits we observed reordering rule
lists for JtR, which guesses in rule-major order, we then
used our analytical tools to reorder wordlists for Hashcat,
which guesses in word-major order. We had hoped reordering
wordlists based on evaluation sets would improve guessing
performance on other sets, yet instead found this process to
worsen performance. Wordlists are typically already ordered
in descending frequency based on myriad prior password
leaks, and our data-driven optimization seemed to overfit. We
nonetheless describe our process because it might prove more
effective if extremely large evaluation sets were used.

A. Approach

We begin with a wordlist wlist containing words w. We
term wlist in its initial order wlistoriginal. Given an
evaluation set S, we run invert_rule on each password
pw in S to identify which passwords would be guessed, and
by which words. We split the wordlist wlist in two: one
wordlist, wlistsuccess, containing words wi that would guess
at least one password pw in S, and wlistfailure, containing
the remaining words. We rearrange wlistsuccess in descend-
ing order of the number of passwords in S that each would
guess, breaking ties arbitrarily. We append wlistfailure,
maintaining the order from the original wlist. This combined
wordlist, optimized on evaluation set S, is termed wlistS .

B. Evaluation Procedure and Results

We used this approach to reorder both the XATO wordlist,
which contains only passwords, and the PGS wordlist, which
contains passwords followed by natural language dictionaries.
We did so for each of the six evaluation sets. Compared

to the original, reordering a wordlist based on one evalua-
tion set decreased guessing performance substantially for all
other evaluation sets (Figure 4b in Appendix E). Data-driven
wordlist reordering for Hashcat appears to overfit and would
not be recommended, at least for small evaluation sets.

X. OPTIMIZATION 3: RULE LIST COMPLETENESS

Some prior work has automatically generated new rules
and then enumerated their guesses to test their effectiveness
cracking evaluation sets [38], [39]. We similarly generate new
rules, yet use our analytical tools to reason efficiently about
their effectiveness. Adding these potentially “missing” rules
enable more passwords to be guessed, as well as more quickly.

A. Approach

The space of possible rules is huge. By randomly or com-
prehensively generating rules, we extend a wordlist wlist
with rules it does not already contain. We then reorder this
extended list based on other evaluation sets as in Section VIII.

B. Evaluation Procedure and Results

Using each of our three wordlists in turn with the JtR
SpiderLabs rule list, we tested on the four English-language
evaluation sets with identical composition policies. First, we
reordered SpiderLabs based on the three other evaluation
sets (termed reordered). We then generated the 15,085 JtR
rules that consist of a single transformation and are both
invertible and countable. Adding those to the SpiderLabs rule
list (extended), we followed the same reordering procedure
and cut off guessing at the previous number of guesses.

This procedure identified rules that are both new and effec-
tive. Figure 2 shows the guessability of both Battlefield Heroes
and Brazzers. Compared to the original ordering (light colors),
reordering based on other evaluation sets (mid colors) leads to
passwords being guessed more quickly, echoing Section VIII.
However, extending SpiderLabs and then reordering it (dark
colors) leads to passwords being guessed even more quickly,
as well as previously unguessed passwords being guessed.
Results were similar across the evaluation sets.

We then analyzed the new rules. Cutting off at the same
number of guesses as the original SpiderLabs with Battlefield
Heroes as the evaluation set, we observed 3,495 new rules
having been executed in the extended attack. While the original
SpiderLabs contained only 5,146 rules, many of them utilized
JtR’s rule preprocessor to make a large number of guesses in
a single rule (e.g., appending a digit). We found that 178 of
the newly identified rules were strict subsets of an existing
SpiderLabs rule (e.g., appending a specific digit) that had a
higher success density than the superset rule. Another 115 new
rules were either contained verbatim in John or Megatron, or
they were strict subsets of a rule in those lists. The remaining
3,202 rules were completely new to our three JtR rule lists.

XI. OPTIMIZATION 4: WORDLIST COMPLETENESS

Our invert_rule process moves backwards from pass-
words to the preimages that, when transformed, guess that

BField:Extended

BField:Original
BField:Reordered

Brazzers:Extended

Brazzers:Original
Brazzers:Reordered

40%

50%

60%

70%

80%

90%

107
109 1011 1013

Guesses

P
e

rc
e

n
t
g

u
e

s
s
e

d

Fig. 2: The guessability of Battlefield Heroes and Brazzers
using the PGS wordlist and the JtR SpiderLabs rule list in its
original order (light), reordered based on the other sets (mid),
and extended with “missing” rules and then reordered (dark).

password. We modified this process to identify what we term
missing words, or words that perhaps should have been in the
wordlist based on a given evaluation set. The intuition is to
leverage “cache misses” to improve wordlist completeness.

A. Approach

Given an evaluation set S, a wordlist wlist, and a (re-
ordered) rule list rlist, we use invert_rule to invert
each password pw ∈ S to generate preimages pi. Each
preimage not in the wordlist (i.e., pi /∈ wlist) is a potential
missing word. To identify preimages likely to generalize, for
each unique password pw ∈ S, we assign a credit c ∈ [0, 1] to
each potential preimage pi /∈ wlist inversely proportional to
the rule’s position in rlist. A preimage identified with the
first rule in rlist will receive c = 1, while one identified
with the middle rule will receive c = 0.5. This approach
prioritizes preimages used early in an attack. For a particular
password, credit for a particular preimage is given only once.

After following this process for all unique passwords in set
S, we rank preimages in descending order of credit summed
across passwords, keeping those above a threshold.

B. Evaluation Procedure and Results

We follow this procedure for all six evaluation sets using
the fully invertible SpiderLabs rule list and both the LinkedIn
and PGS wordlists. We use the rule ordering self-optimized for
each evaluation set (Section VIII). To emphasize new cracks,
we use only the passwords in each evaluation set that would
not otherwise be guessed by a given wordlist and rule list.

Table VI presents a manual thematic categorization of the
100 preimages with the highest credit for the 000webhost,
Battlefield Heroes, and Neopets evaluation sets. This process
produces site-specific words (e.g., “bfheroes”), meaningful
strings unrelated to the site, and short (2–3 character) strings.

To understand whether this procedure results in more ef-
fective guessing in realistic scenarios (i.e., testing on sets
not used for optimization), we first used the four English-
language evaluation sets with identical password policies to
identify words potentially missing from the PGS wordlist,
which includes both passwords and natural language. To test
the impact on guessing, we used a random sample of 500,000

TABLE VI: A manual categorization of the top 100 preimages
identified as potentially “missing” from the PGS wordlist.

Category Examples 000webhost BField Neopets

Set-specific bfheroes; ilovmyneopets””” 9 7 3
Meaningful la la la; Son-gouku; MaSterBrain 34 73 68
Short strings a2; a23; 7a; b2; q2; 2k; 18 6 3
Unidentified gawabint1; kur0=ud1 39 14 26

passwords from each of the other three sets to generate the
top million words “missing” from PGS. We modeled an attack
using SpiderLabs rules and the missing words as the wordlist.

In each case, this attack made 1.7 × 1013 extra guesses,
successfully guessing 221 Clixsense passwords, 157 Battle-
field Heroes passwords, 128 Brazzers passwords, and 118
Neopets passwords from our 25,000-password evaluation sets.
None of these passwords would have been guessed otherwise
by SpiderLabs. While the success density of such attacks is
low, they are appropriate at the end of an attack when high-
probability guesses have been exhausted. For comparison, the
final 1.7×1013 guesses with the PGS wordlist and SpiderLabs
rule list (reordered on the three other sets combined) resulted
in zero successful guesses for any of the four test sets.

XII. COMPARISONS TO EXISTING ALGORITHMS / METERS

Our analytical techniques enable two primary applications:
proactive password checking and data-driven configuration
(improvement) of transformation-based attacks. Here, we an-
alyze these applications relative to prior approaches.

First, our guess-number calculator enables real-time pass-
word checking, which is effectively a server-side password
meter. Here, we highlight two experiments comparing our
approach to meters using combinatoric estimates (zxcvbn) [22]
and Neural Networks [13]. Appendix C expands on both.

Following best practices in comparing meters [53], we
examined how meters’ guess numbers for a given password
were correlated with the number of times that password
appeared in an evaluation set. As shown in Table VII, our
analytical JtR and Hashcat approaches are better correlated
with the frequency counts than existing meters. Correlations
approaching 1 indicate better alignment with frequency counts.
For example, for the Brazzers set, JtR had a correlation of
0.734 and Hashcat had a correlation of 0.731, compared to
0.693 and 0.702 for zxcvbn and Neural Networks, respectively.
However, while existing meters estimate a guess number for
every password, our approach assigns the same large guess
number to any passwords unguessed by JtR or Hashcat.

Unlike any prior meter, ours is the first to provide real-
time models of guessing attacks widely used in the wild.
To evaluate whether existing meters already fully captured
these attacks, we examined whether those meters made unsafe
errors, rating guessable passwords as strong. Reflecting real
attacks, we rated the 25% of each password set with the
lowest guess numbers (guessed first) for Hashcat and JtR as
practically weak. As shown in Table VIII, all meters rated
at least some practically weak passwords among the 25%
of hardest-to-guess passwords. While this represents only a

TABLE VII: Coverage (%) and accuracy (rw, weighted Spear-
man correlation) of our approach and existing meters.

Meter 000webhost Brazzers Neopets

% rw % rw % rw

Hashcat (Sec. VII) 40.1 0.512 83.3 0.731 77.8 0.806
JtR: Extended (Sec. X) 40.3 0.515 79.4 0.734 76.4 0.805

Neural Network [13] 100.0 0.507 100.0 0.702 100.0 0.795
zxcvbn [22] 100.0 0.437 100.0 0.693 100.0 0.696

TABLE VIII: The number of passwords (of 25,000) in each set
that were among the 25% easiest to guess by JtR or Hashcat,
yet rated among the 25% hardest to guess by a given meter.

Meter 000webhost BField Brazzers Clixsense CSDN Neopets

Markov: Multi [53] 11 16 19 22 24 34
PCFG: 2016 [54] 15 0 0 0 18 1

Neural Network [13] 11 12 19 21 23 28
zxcvbn [22] 21 39 35 84 22 32
zxcvbn/LinkedIn-30k 19 33 14 26 22 30

fraction of a percent of passwords in the set, their strength
estimates differed radically from real attacks.

Second, our optimization techniques improve the efficacy
of transformation-based attacks. As detailed in Appendix D,
we compared JtR both pre- and post- optimization, as well
as Hashcat, to the probabilistic approaches. Echoing prior
work [8], [13], Neural Networks performed best on a guess-by-
guess basis, and probabilistic approaches often outperformed
pre-optimization JtR and Hashcat. However, at 109 guesses,
post-optimization JtR performed similarly to, or better than,
all approaches other than Neural Networks for four of the six
evaluation sets. Our results suggest that JtR and Hashcat, if
configured using techniques we propose, may not lag as far
behind probabilistic approaches as previously thought. Further-
more, JtR and Hashcat have practical advantages; they gener-
ate guesses far more quickly than probabilistic approaches.

XIII. CONCLUSIONS AND DISCUSSION

We have presented some of the first techniques for prin-
cipled, scientific analysis of popular password-cracking soft-
ware’s most common attack, the mangled-wordlist attack. Our
tools provide the first computationally efficient analysis of
password security against the types of mangled-wordlist at-
tacks actually performed in the wild. We also showed how our
techniques enable four data-driven optimizations to improve
the ordering and completeness of rule lists and wordlists, better
aligning our models with experienced attackers’ non-public
(and effective) configurations.

Our tools, which we are releasing open-source,2 directly
enable real-time, server-side estimation of password strength.
A company could deploy our guess-number calculator, disal-
lowing passwords deemed guessable. Prior work has found
that, when discouraged [29] or forbidden [7] from using a
weak password, users rarely pick the next most probable
password permitted. Future empirical studies are needed to
capture humans’ adaptation mechanisms [55]; attackers could
perhaps encode these behaviors in new transformation rules.

2https://github.com/UChicagoSUPERgroup/analytic-password-cracking

https://github.com/UChicagoSUPERgroup/analytic-password-cracking

REFERENCES

[1] J. Bonneau, “The Science of Guessing: Analyzing an Anonymized
Corpus of 70 Million Passwords,” in Proc. IEEE S&P, 2012.

[2] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F.
Cranor, P. G. Kelley, R. Shay, and B. Ur, “Measuring Password Guess-
ability for an Entire University,” in Proc. CCS, 2013.

[3] D. Goodin, “13 Million Plaintext Passwords Belonging
to Webhost Users Leaked Online,” October 28, 2015,
https://arstechnica.com/information-technology/2015/10/13-million-
plaintext-passwords-belonging-to-webhost-users-leaked-online/.

[4] X. Yang, “Chinese Internet Suffers the Most Serious User
Data Leak in History,” Forcepoint Blog, December 26, 2011,
https://blogs.forcepoint.com/security-labs/chinese-internet-suffers-
most-serious-user-data-leak-history.

[5] D. Goodin, “Why Passwords Have Never Been Weaker – And Crackers
Have Never Been Stronger,” Ars Technica, August 20, 2012, http:
//arstechnica.com/security/2012/08/passwords-under-assault/.

[6] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive Password-
Strength Meters from Markov Models,” in Proc. NDSS, 2012.

[7] P. Kelley, S. Kom, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. López, “Guess Again (and Again and
Again): Measuring Password Strength by Simulating Password-Cracking
Algorithms,” in Proc. IEEE S&P, 2012.

[8] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri,
D. Kurilova, M. L. Mazurek, W. Melicher, and R. Shay, “Measuring
Real-World Accuracies and Biases in Modeling Password Guessability,”
in Proc. USENIX Security, 2015.

[9] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing Metrics
for Password Creation Policies by Attacking Large Sets of Revealed
Passwords,” in Proc. CCS, 2010.

[10] M. Dell’Amico and M. Filippone, “Monte Carlo Strength Evaluation:
Fast and Reliable Password Checking,” in Proc. CCS, 2015.

[11] J. Ma, W. Yang, M. Luo, and N. Li, “A Study of Probabilistic Password
Models,” in Proc. IEEE S&P, 2014.

[12] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaa-
bane, “OMEN: Faster Password Guessing Using an Ordered Markov
Enumerator,” in Proc. ESSoS, 2015.

[13] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin,
and L. F. Cranor, “Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks,” in Proc. USENIX Security, 2016.

[14] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek, “Password
Cracking Using Probabilistic Context-Free Grammars,” in Proc. IEEE
S&P, 2009.

[15] D. Goodin, “Anatomy of a Hack: How Crackers Ransack
Passwords Like “qeadzcwrsfxv1331”,” Ars Technica, May 27, 2013,
http://arstechnica.com/security/2013/05/how-crackers-make-minced-
meat-out-of-your-passwords/.

[16] Trustwave SpiderLabs, “SpiderLabs/KoreLogic-Rules,” Sep. 2012, https:
//github.com/SpiderLabs/KoreLogic-Rules.

[17] KoreLogic, “Crack me if you can,” 2018, https://contest.korelogic.com/.
[18] G. Picchioni, “Hey, I Just Met You, and This is Crazy, But Here’s My

Hashes, So Hack Me Maybe?” SpiderLabs Blog, Sept. 25, 2012, https:
//www.trustwave.com/Resources/SpiderLabs-Blog/Hey,-I-just-met-
you,-and-this-is-crazy,-but-here-s-my-hashes,-so-hack-me-maybe-/.

[19] m3g9tr0n, “Cracking Story - How I Cracked Over 122 Million
SHA1 and MD5 Hashed Passwords,” Thireus’ Bl0g, August 28,
2012, https://blog.thireus.com/cracking-story-how-i-cracked-over-122-
million-sha1-and-md5-hashed-passwords/.

[20] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The Tangled
Web of Password Reuse,” in Proc. NDSS, 2014.

[21] A. Greenberg, “The police tool that pervs use to steal nude pics from
Apple’s iCloud,” Wired, September 2, 2014, https://www.wired.com/
2014/09/eppb-icloud/.

[22] D. L. Wheeler, “zxcvbn: Low-Budget Password Strength Estimation,”
in Proc. USENIX Security, 2016.

[23] H.-C. Chou, H.-C. Lee, H.-J. Yu, F.-P. Lai, K.-H. Huang, and C.-W.
Hsueh, “Password Cracking Based On Learned Patterns From Disclosed
Passwords,” IJICIC, vol. 9, no. 2, pp. 821–839, 2013.

[24] M. Dürmuth, A. Chaabane, D. Perito, and C. Castelluccia, “When
Privacy Meets Security: Leveraging Personal Information for Password
Cracking,” CoRR, vol. abs/1304.6584, pp. 1–19, Apr. 2013.

[25] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek, S. M.
Segreti, B. Ur, L. Bauer, N. Christin, and L. F. Cranor, “Can Long
Passwords Be Secure and Usable?” in Proc. CHI, 2014.

[26] Y. Zhang, F. Monrose, and M. K. Reiter, “The Security of Modern Pass-
word Expiration: An Algorithmic Framework and Empirical Analysis,”
in Proc. CCS, 2010.

[27] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password Strength: An
Empirical Analysis,” in Proc. INFOCOM, 2010.

[28] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor,
“How Does Your Password Measure Up? The Effect of Strength Meters
on Password Creation,” in Proc. USENIX Security, 2012.

[29] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F.
Cranor, H. Dixon, P. E. Naeini, H. Habib, N. Johnson, and W. Melicher,
“Design and Evaluation of a Data-Driven Password Meter,” in Proc.
CHI, 2017.

[30] T. Hunt, “Have I been pwned?” 2018, https://haveibeenpwned.com/.
[31] A. Narayanan and V. Shmatikov, “Fast Dictionary Attacks on Passwords

Using Time-Space Tradeoff,” in Proc. CCS, 2005.
[32] R. Veras, C. Collins, and J. Thorpe, “On the Semantic Patterns of

Passwords and their Security Impact,” in Proc. NDSS, 2014.
[33] Y. Chrysanthou, “Modern Password Cracking: A Hands-On Approach

to Creating an Optimised and Versatile Attack,” Master’s thesis, Royal
Holloway, University of London, 2013.

[34] A. Forget, S. Chiasson, P. C. van Oorschot, and R. Biddle, “Improving
Text Passwords Through Persuasion,” in Proc. SOUPS, 2008.

[35] S. Fahl, M. Harbach, Y. Acar, and M. Smith, “On the Ecological Validity
of a Password Study,” in Proc. SOUPS, 2013.

[36] X. de Carné de Carnavalet and M. Mannan, “From Very Weak to Very
Strong: Analyzing Password-Strength Meters,” in Proc. NDSS, 2014.

[37] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted Online
Password Guessing: An Underestimated Threat,” in Proc. CCS, 2016.

[38] S. Marechal, “Automatic Mangling Rules Generation,” Passwords ’12,
2012, http://www.openwall.com/presentations/Passwords12-Mangling-
Rules-Generation/.

[39] P. Kacherginsky, “Smarter Password Cracking with PACK,” Pass-
words ’13, 2013, http://thesprawl.org/research/automatic-password-rule-
analysis-generation/.

[40] Openwall, “Wordlist Rules Syntax,” 2018, https://www.openwall.com/
john/doc/RULES.shtml.

[41] Hashcat, https://hashcat.net/wiki/doku.php?id=rule based attack.
[42] Y. Baburov, “python-chartrie,” https://github.com/buriy/python-chartrie.
[43] Llamasoft, https://github.com/llamasoft/HashcatRulesEngine.
[44] M. Burnett, “Ten Million Passwords FAQ,” February 10, 2015, https:

//xato.net/ten-million-passwords-faq-3b2752ed3b4c.
[45] S. Perez, “117 Million LinkedIn Emails and Passwords From a 2012

Hack Just Got Posted Online,” TechCrunch, May 18, 2016, http://tcrn.
ch/23Xcd6R.

[46] Z. Li, W. Han, and W. Xu, “A Large-Scale Empirical Analysis of
Chinese Web Passwords,” in Proc. USENIX Security, 2014.

[47] Hashcat Forum, https://hashcat.net/forum/thread-5486.html.
[48] Openwall, “John the Ripper’s Cracking Modes,” http://www.openwall.

com/john/doc/MODES.shtml.
[49] J. Walker, “LulzSec Over, Release Battlefield Heroes Data,” Rock Paper

Shotgun, June 26, 2011, https://www.rockpapershotgun.com/2011/06/26/
lulzsec-over-release-battlefield-heroes-data/.

[50] J. Cox, “Nearly 800,000 Brazzers Porn Site Accounts Exposed
in Forum Hack,” Vice Motherboard, September 5, 2016,
https://motherboard.vice.com/en us/article/vv7pgd/nearly-800000-
brazzers-porn-site-accounts-exposed-in-forum-hack.

[51] D. Goodin, “6.6 Million Plaintext Passwords Exposed as Site Gets
Hacked to the Bone,” Ars Technica, September 13, 2016, https:
//arstechnica.com/information-technology/2016/09/plaintext-passwords-
and-wealth-of-other-data-for-6-6-million-people-go-public/.

[52] J. Cox, “Another Day, Another Hack: Tens of Millions
of Neopets Accounts,” Vice Motherboard, May 5, 2016,
https://motherboard.vice.com/en us/article/ezpvw7/neopets-hack-
another-day-another-hack-tens-of-millions-of-neopets-accounts.

[53] M. Golla and M. Dürmuth, “On the Accuracy of Password Strength
Meters,” in Proc. CCS, 2018.

[54] S. Komanduri, “Modeling the Adversary to Evaluate Password Strength
with Limited Samples,” Ph.D. dissertation, CMU, 2016.

[55] M. Wei, M. Golla, and B. Ur, “The Password Doesn’t Fall Far: How
Service Influences Password Choice,” in Proc. WAY, 2018.

https://arstechnica.com/information-technology/2015/10/13-million-plaintext-passwords-belonging-to-webhost-users-leaked-online/
https://arstechnica.com/information-technology/2015/10/13-million-plaintext-passwords-belonging-to-webhost-users-leaked-online/
https://blogs.forcepoint.com/security-labs/chinese-internet-suffers-most-serious-user-data-leak-history
https://blogs.forcepoint.com/security-labs/chinese-internet-suffers-most-serious-user-data-leak-history
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
https://github.com/SpiderLabs/KoreLogic-Rules
https://github.com/SpiderLabs/KoreLogic-Rules
https://contest.korelogic.com/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hey,-I-just-met-you,-and-this-is-crazy,-but-here-s-my-hashes,-so-hack-me-maybe-/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hey,-I-just-met-you,-and-this-is-crazy,-but-here-s-my-hashes,-so-hack-me-maybe-/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Hey,-I-just-met-you,-and-this-is-crazy,-but-here-s-my-hashes,-so-hack-me-maybe-/
https://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/
https://blog.thireus.com/cracking-story-how-i-cracked-over-122-million-sha1-and-md5-hashed-passwords/
https://www.wired.com/2014/09/eppb-icloud/
https://www.wired.com/2014/09/eppb-icloud/
https://haveibeenpwned.com/
http://www.openwall.com/presentations/Passwords12-Mangling-Rules-Generation/
http://www.openwall.com/presentations/Passwords12-Mangling-Rules-Generation/
http://thesprawl.org/research/automatic-password-rule-analysis-generation/
http://thesprawl.org/research/automatic-password-rule-analysis-generation/
https://www.openwall.com/john/doc/RULES.shtml
https://www.openwall.com/john/doc/RULES.shtml
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://github.com/buriy/python-chartrie
https://github.com/llamasoft/HashcatRulesEngine
https://xato.net/ten-million-passwords-faq-3b2752ed3b4c
https://xato.net/ten-million-passwords-faq-3b2752ed3b4c
http://tcrn.ch/23Xcd6R
http://tcrn.ch/23Xcd6R
https://hashcat.net/forum/thread-5486.html
http://www.openwall.com/john/doc/MODES.shtml
http://www.openwall.com/john/doc/MODES.shtml
https://www.rockpapershotgun.com/2011/06/26/lulzsec-over-release-battlefield-heroes-data/
https://www.rockpapershotgun.com/2011/06/26/lulzsec-over-release-battlefield-heroes-data/
https://motherboard.vice.com/en_us/article/vv7pgd/nearly-800000-brazzers-porn-site-accounts-exposed-in-forum-hack
https://motherboard.vice.com/en_us/article/vv7pgd/nearly-800000-brazzers-porn-site-accounts-exposed-in-forum-hack
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://motherboard.vice.com/en_us/article/ezpvw7/neopets-hack-another-day-another-hack-tens-of-millions-of-neopets-accounts
https://motherboard.vice.com/en_us/article/ezpvw7/neopets-hack-another-day-another-hack-tens-of-millions-of-neopets-accounts

APPENDIX

A. Detailed Explanations of Handling Particular Transformation Rules
In Table I, we claimed that a handful of transformation rules are not fully invertible or are not countable. Here, we detail

why this is the case. We also justify our decision to enumerate guesses for rules that are only regex-invertible.
1) The Complexity of Memory Commands: JtR supports memory commands that memorize a string (M), query the memory

and reject the word if unchanged (Q), insert substrings from memory into a guess at a given position (XNMI), and perform
numeric operations to calculate differences (vVNM) [40]. Hashcat supports five similar memory commands.

Our tool handles the common special case when the Q command is both the only memory command in a rule and appears
as the final transformation. Skipping a guess if the input has not changed is often desirable, so this special case is commonly
used. We handle this special case by removing the target password from the set of possible preimages after inversion.

While this common case is covered, our analytical techniques cannot efficiently invert or count rules containing memory
commands in their full generality. Consider the fourth command above, vVNM. By concatenating several such commands, a
rule can express any straight-line arithmetic program, and hence any computation expressible in a program with a fixed number
of instructions. If JtR were to allow arbitrarily long rules with any number of variables, then in principle any computation
would be possible (so, for example, one could write a rule that checks if the length of the input word is prime, or represents
a three-colorable graph under some unary encoding, etc.). The variables used by vVNM can be used by XNMI. Hence, its
behavior depends on some arbitrary computation. We observe that JtR does not fully support completely arbitrary computation
like this, and only allows for 11 variables, along with other length restrictions. However, it appears impossible to efficiently
analyze such general computation simulated with JtR rules.

2) Performance Tradeoffs of Enumeration / Non-Simple Regexes: While JtR and Hashcat transformations for truncation and
substring extraction are regex-invertible and our tool supports comparing such regexes individually against each wordlist entry,
by default we enumerate and sort guesses for such rules as if they were uninvertible. We do so for performance.

We sampled 100 Hashcat regex-invertible rules and compared the wall-clock time of enumerating guesses versus evaluating
the regex against each wordlist entry. We separately tested XATO and LinkedIn as the wordlist. We found the total time (both
precomputation and evaluating 25,000 passwords from 000webhost) for the larger LinkedIn wordlist was 1.98× 104 seconds
for guess enumeration and 8.96×109 seconds for regex matching. For the smaller XATO wordlist, these values were 1.09×104

seconds and 6.88× 108 seconds, respectively. Thus, we enumerate regex-invertible rules by default.
3) The Complexity of Hashcat Shift Case Commands: There are two Hashcat-specific transformations we can invert, yet

cannot count. These transformations “lowercase the whole line, then uppercase the first letter and every letter after a space”
(E) and “lowercase the whole line, then uppercase the first letter and every letter after a custom separator character” (eX).
Similar to purge, supporting these transformations in the general case would require detailed case analysis. Consider a rule
that lowercases the whole line, then uppercases the first letter and every letter after a space, and then requires the resultant
word to contain “a.” If the input word has only one “a,” but the character before “a” is a space, then the word is rejected. To
correctly count guesses, one has to know the relative locations of all “a”s and spaces, which is inconsistent with our approach.

B. Evaluating Guess Number Accuracy
The lower and upper bounds on a password’s guess number are computed by summing the guesses made by the rules

up to and including (respectively) the rule that first guesses that password. Thus, we must ensure that invert_rule and
guess_count are accurate. We did so by creating unit tests of single transformations, as well as by creating a random-rule
generator, crafting 100,000 invertible rules each for JtR and Hashcat. We did not observe any false positives or negatives
comparing invert_rule with the software’s output on random samples of our evaluation sets.

To test the accuracy of guess_count, we focused on the complexity created by rejection transformations. Therefore, we
randomly generated 100,000 JtR rules and 100,000 Hashcat rules containing at least three transformations and at least three
more rejection transformations in arbitrary order. The analytical guess_count results exactly matched the empirical results
of enumerating the guesses for all 100,000 Hashcat rules. JtR discards guesses that exactly match previous guess. Muting this
behavior results in a 100% match between the analytical guess_count results and the empirical results.

C. Detailed Comparison to Existing Password Meters / Proactive Password Checkers
Proactive password checking using a JtR or Hashcat attack as the metric of password strength entails computing a given

password’s guess number. Our techniques enable this to be done server-side in under a second for many combinations of rule
lists and wordlists. Here, we compare the accuracy and coverage of our techniques to existing meters. For equality, we trained
each meter using a sample of 10 million LinkedIn passwords [45] as the training data (probabilistic methods) or wordlist
(software tools). We had to use a sample because of implementation limitations for many probabilistic approaches.

Hashcat used the Best64 rules followed by the T0XlC rules and the generated2 rules. JtR used the John rules followed by
the SpiderLabs rules and the Megatron rules. As in Section VIII, we reordered these rules for each evaluation set based on the
other five (JtR Reordered). As in Section X, we extended this list with “missing” rules prior to reordering (JtR Extended).

As one point of comparison, we arranged this sample of 10 million LinkedIn passwords (6 million after discarding duplicates)
in descending order of frequency (LinkedIn: 10M), assigning the guess number 1 to the most frequent password, the guess
number 2 to the second most frequent, and so on. To test an analogue appropriate for client-side password checking, we also
tested the 30,000 most frequent of these (LinkedIn: 30k). We tested the popular zxcvbn client-side meter [22], which uses
combinatoric heuristics to estimate guess numbers. For more equal comparison with other approaches, we also tested replacing
zxcvbn’s built-in dictionary of 30,000 frequent RockYou passwords with LinkedIn-30k (zxcvbn + LinkedIn-30k).

We also compared to probabilistic approaches, including a Neural Network password meter [13]. We also tested a PCFG
(PCFG: 2016) that integrates probability smoothing and other enhancements over previous PCFG approaches [54]. Finally.
Markov: Multi is a meter that calculates password probabilities under Markov models of different orders (n-gram sizes) [53].

To compare meters, Golla et al. recommend computing the weighted Spearman correlation (rw) between a meter’s guess
number or probabilities and a ground truth source [53]. For each evaluation set, we evaluated each of the 25,000 passwords
with each meter. As ground truth, we used the frequency of that password in that set (the full set, not the sample, for greater
precision). Correlation values closer to 1 indicate better alignment between the meter’s ranking and the frequency counts.

Our analytical techniques for JtR and Hashcat had higher correlation (better agreement with the ground truth) for each
of the six evaluation sets than both the popular zxcvbn meter and any probabilistic approach we tested (Neural Networks,
Markov: Multi, PCFG: 2016), as shown in Table IX. This greater accuracy, however, comes partially at a cost of the ability
to relatively rank passwords that are potentially guessable, yet non-trivial to guess. Three approaches we tested — Neural
Networks, Markov: Multi, and zcxvbn — estimate a guess number for every possible password. For the remaining approaches,
including JtR and Hashcat, passwords that are not guessed in the attack have no true guess number, so we assigned them a
guess number one past the maximum guess number. We define a meter’s % coverage to be the percentage of passwords that
are assigned a true guess number (i.e., not one past the maximum guess number). Hashcat and JtR had roughly 40% coverage
for 000webhost, roughly 50% coverage for CSDN, and roughly 70%–80% coverage for the four other approaches (Table IX).
Thus, these approaches cannot fully leverage the training data in rating the strength of some unseen passwords.

TABLE IX: A comparison of the coverage and accuracy of server-side (top) and client-side (bottom) password meters.

Meter Type 000webhost Battlefield Heroes Brazzers Clixsense CSDN Neopets

% rw % rw % rw % rw % rw % rw

Hashcat (Sec. VII) Server 40.1 0.512 73.6 0.641 83.3 0.731 69.6 0.695 53.0 0.730 77.8 0.806
JtR: Original (Sec. VII) Server 39.5 0.512 69.8 0.643 78.4 0.732 68.2 0.696 51.8 0.720 75.4 0.798
JtR: Reordered (Sec. X) Server 39.5 0.515 69.8 0.644 78.4 0.734 68.2 0.698 51.8 0.731 75.4 0.804
JtR: Extended (Sec. X) Server 40.3 0.515 70.9 0.644 79.4 0.734 69.1 0.696 52.5 0.729 76.4 0.805
LinkedIn-10M [45] Server 12.2 0.511 37.0 0.712 46.8 0.775 37.0 0.774 23.9 0.768 33.0 0.747
Markov: Multi [53] Server 100.0 0.472 100.0 0.539 100.0 0.629 100.0 0.589 100.0 0.663 100.0 0.693
PCFG: 2016 [54] Server 59.4 0.454 84.5 0.613 91.6 0.707 80.2 0.664 76.1 0.645 83.8 0.752

LinkedIn-30k [45] Client 3.7 0.354 17.2 0.717 24.3 0.771 17.2 0.714 14.6 0.651 10.3 0.494
Neural Network [13] Client 100.0 0.507 100.0 0.604 100.0 0.702 100.0 0.654 100.0 0.686 100.0 0.795
zxcvbn [22] Client 100.0 0.437 100.0 0.586 100.0 0.693 100.0 0.577 100.0 0.667 100.0 0.696
zxcvbn + LinkedIn-30k Client 100.0 0.440 100.0 0.575 100.0 0.668 100.0 0.616 100.0 0.669 100.0 0.700

Taking the tradeoff between accuracy and % coverage further, we treated a small and a medium-size list of LinkedIn passwords
(LinkedIn-30k and LinkedIn-10M) as meters. For four of the six evaluation sets, LinkedIn-10M had a higher correlation (rw)
than any meter, including JtR or Hashcat. However, the % coverage for this approach ranged from 12.2% to only 46.8%, losing
any ability to distinguish between any previously unseen passwords.

Many passwords in a given set are singletons, appearing once. As passwords that are frequently used should likely not be
considered strong, we also evaluated when meters assigned passwords appearing frequently (≥ 5 times) in an evaluation set
guess numbers ranking them among the 25% of hardest-to-guess passwords in that set. These can be considered unsafe errors.
As shown in Table X, no meter consistently minimizes the number of unsafe errors, rating common passwords as strong. For
some sets, the JtR or Hashcat approaches had the fewest unsafe errors. For other sets, the Neural Network had the fewest.

Using our JtR and Hashcat guess-number calculators as server-side meters thus strikes a balance between accuracy and
% coverage. Most crucially, however, our approach models the approaches real attackers use in actual attacks.

D. Detailed Comparison to Existing Password-Cracking Algorithms
Our techniques can also be used to improve the expected success per guess of JtR and Hashcat. Therefore, we compared how

JtR and Hashcat compare against the other major password-guessing approaches in an attack. As with the meter comparisons, we
again used a sample of 10 million LinkedIn passwords as the wordlist or training data. In addition to the relevant techniques
also tested as meters, we used Monte Carlo methods proposed by Dell’Amico et al. [10] to evaluate two Markov models
(Markov: 4-gram and Markov: Backoff), as well as the original PCFG proposal (PCFG: 2009) [14]. The latter only guesses
passwords whose component strings were seen verbatim in training, which is why some passwords are never guessed. We also
graph an attack that has optimal Perfect Knowledge of the evaluation set (i.e., knows the full password distribution a priori).

TABLE X: The number of passwords that appear frequently (≥ 5 times) in a set, yet are rated by the meter as among the 25%
of hardest-to-guess (or least probable) passwords.

Meter 000webhost Battlefield Heroes Brazzers Clixsense CSDN Neopets

Hashcat (Sec. VII) 301 12 63 48 157 792
JtR: Original (Sec. VII) 322 16 61 49 216 877
JtR: Reordered (Sec. X) 294 20 66 46 111 814
JtR: Extended (Sec. X) 297 17 62 39 113 795
LinkedIn: 10M [45] 665 32 87 74 477 1611
Markov: Multi [53] 258 32 63 86 200 736
PCFG: 2016 [54] 324 16 66 52 220 950

LinkedIn: 30k [45] 967 149 270 300 854 2580
Neural Network [13] 236 19 53 51 166 502
zxcvbn [22] 311 33 72 153 200 793
zxcvbn + LinkedIn-30k 299 40 97 110 199 763

25 %

50 %

75 %

100 %

10
4

10
7

10
10

10
13

10
16

%
 G

u
e
s
s
e
d

Guesses

Perfect Knowledge
Markov: 4-gram
Markov: Backoff
Markov: OMEN
JtR: Original
JtR: Reordered
JtR: Extended
Hashcat
PCFG: 2009
PCFG: 2016
Neural Network

25 %

50 %

75 %

100 %

10
4

10
7

10
10

10
13

10
16

%
 G

u
e
s
s
e
d

Guesses

Perfect Knowledge
Markov: 4-gram
Markov: Backoff
Markov: OMEN
JtR: Original
JtR: Reordered
JtR: Extended
Hashcat
PCFG: 2009
PCFG: 2016
Neural Network

Fig. 3: Guessability of Neopets (left) and 000webhost (right) passwords against different password-cracking approaches.

Figure 3 shows this comparison among password-cracking algorithms for Neopets (left) and 000webhost (right). The graphs
for the remaining four evaluation sets resembled Neopets far more closely than 000webhost. Echoing prior work [8], [13], we
found probabilistic approaches (particularly Neural Networks and PCFG) often performed best on a guess-by-guess basis.

Surprisingly, though, JtR Extended (using our optimization techniques to add “missing” rules and reorder the rules) performed
about as well as, or even better than, probabilistic approaches other than Neural Networks at 109 guesses for four of the six
evaluation sets. That is, a billion-guess attack will guess about as many passwords using JtR Extended as any approach other
than Neural Networks. This result is particularly important because all probabilistic approaches inherently incur substantial
computational costs to generate guesses in descending probability order. Therefore, our results somewhat contradict prior work
and suggest that JtR and Hashcat, if configured using the techniques we propose, may not lag as far behind probabilistic
approaches as previously thought. That said, after 109 guesses, JtR Extended performance tended to plateau.

E. Additional Figures and Tables

000webhost

BField(self−optimized)

Brazzers
Clixsense

CSDN

Neopets

OriginalOrdering

40%

50%

60%

70%

80%

107
109 1011

Guesses

P
e

rc
e

n
t

g
u

e
s
s
e

d

(a) Reordering JtR rule lists: PGS wordlist, Megatron rule list.

000webhost

BField(self-optimized)

Brazzers
Clixsense
CSDN
Neopets
OriginalOrdering

40%

50%

60%

70%

107
109 1011

Guesses

P
e

rc
e

n
t

g
u

e
s
s
e

d

(b) Reordering Hashcat wordlists: PGS wordlist, T0XlC rule list.

Fig. 4: The impact of reordering rule lists and wordlists. Each graph shows the guessability of Battlefield Heroes reordered
artificially based on itself (self-optimized) and on each of the five other evaluation sets. Unlike for other JtR rule lists, Figure 4a
show that the original order of the Megatron rule list is nearly optimal, while reordering rules based on any English-language
set also led to a nearly optimal ordering. Reordering words (Figure 4b), however, appears to overfit to the data.

TABLE XI: The first 100 of the 5,146 SpiderLabs rules and
their final position after reordering based on each evaluation
set using the PGS wordlist.

Rule Original Position 000webhost CSDN Others
cAz"[0-9]" 1 547 993 501 - 609
Az"[0-9]" 2 271 246 183 - 295
cAz"[0-9][0-9]" 3 569 416 508 - 637
Az"[0-9][0-9]" 4 507 367 313 - 527
cAz"[0-9][0-9][0-9]" 5 587 425 535 - 668
Az"[0-9][0-9][0-9]" 6 568 388 506 - 637
cAz"[0-9][0-9][0-9][0-9]" 7 608 437 552 - 688
Az"[0-9][0-9][0-9][0-9]" 8 588 406 527 - 660
cA0"[0-9]" 9 584 994 616 - 1517
A0"[0-9]" 10 553 380 494 - 607
cA0"[0-9][0-9]" 11 590 1001 624 - 1529
A0"[0-9][0-9]" 12 571 384 507 - 638
cA0"[0-9][0-9][0-9]" 13 627 433 551 - 1443
A0"[0-9][0-9][0-9]" 14 581 399 518 - 655
cA0"[0-9][0-9][0-9][0-9]" 15 634 1034 567 - 710
A0"[0-9][0-9][0-9][0-9]" 16 601 413 536 - 666
/asa@[:c] 17 369 971 377 - 1456
/asa4[:c] 18 437 970 257 - 585
/AsA4[:c] 19 372 129 703 - 1508
/AsA@[:c] 20 806 1052 702 - 857
/bsb8[:c] 21 1427 775 432 - 1169
/BsB8[:c] 22 1546 1053 726 - 1599
/ese3[:c] 23 376 381 176 - 589
/EsE3[:c] 24 1547 1054 75 - 1600
/isi1[:c] 25 436 964 181 - 355
/isi![:c] 26 1548 1055 1451 - 1611
/isi|[:c] 27 1549 1056 1489 - 1612
/IsI1[:c] 28 310 1057 205 - 818
/IsI![:c] 29 1550 1058 1490 - 1613
/IsI|[:c] 30 1551 1059 1491 - 1614
/lsl1[:c] 31 538 955 367 - 1365
/lsl7[:c] 32 556 957 605 - 1517
/lsl|[:c] 33 1552 1060 1492 - 1615
/lsl![:c] 34 1553 1061 606 - 1616
/Lsl1[:c] 35 751 477 2 - 650
/Lsl7[:c] 36 752 478 651 - 810
/Lsl|[:c] 37 749 479 652 - 811
/Lsl![:c] 38 750 480 76 - 812
/oso0[:c] 39 275 961 85 - 232
/OsO0[:c] 40 131 474 55 - 649
/sss$[:c] 41 1405 1062 614 - 1514
/sss5[:c] 42 1469 958 412 - 1447
/SsS$[:c] 43 1554 1063 148 - 1515
/SsS5[:c] 44 190 1064 197 - 1605
/tst+[:c] 45 1555 1065 611 - 1606
/TsT+[:c] 46 1556 1066 1496 - 1617
/1s1![:c] 47 1442 949 433 - 1518
/1s1i[:c] 48 541 948 541 - 1471
/1s1I[:c] 49 1465 952 1362 - 1509
/1s1|[:c] 50 1557 1067 1497 - 1608
/0s0o[:c] 51 549 239 409 - 1469
/0s0O[:c] 52 1458 911 1315 - 1470
/3s3e[:c] 53 1436 819 448 - 1294
/3s3E[:c] 54 1437 820 1229 - 1609
/4s4a[:c] 55 368 179 321 - 1336
/4s4A[:c] 56 1426 770 380 - 1273
/5s5s[:c] 57 393 318 229 - 542
/5s5S[:c] 58 1425 769 1172 - 1312
/7s7l[:c] 59 1420 761 1143 - 1286
/7s7L[:c] 60 1417 762 1144 - 1618
/8s8b[:c] 61 542 779 540 - 1343
/8s8B[:c] 62 1428 780 1279 - 1619
/asa@/bsb8[:c] 63 1558 1068 1499 - 1620
/asa@/BsB8[:c] 64 1559 1069 1500 - 1621
/asa@/ese3[:c] 65 1467 1070 601 - 1622
/asa@/EsE3[:c] 66 1560 1071 1501 - 1623
/asa@/isi1[:c] 67 1461 1072 594 - 1524
/asa@/isi![:c] 68 1561 1073 1317 - 1624
/asa@/isi|[:c] 69 1562 1074 1502 - 1625
/asa@/IsI1[:c] 70 1563 1075 5 - 1626
/asa@/IsI![:c] 71 1564 1076 1503 - 1627
/asa@/IsI|[:c] 72 1565 1077 1504 - 1628
/asa@/lsl1[:c] 73 1566 1078 570 - 1620
/asa@/lsl7[:c] 74 1567 1079 1505 - 1629
/asa@/lsl|[:c] 75 1568 1080 1506 - 1630
/asa@/lsl![:c] 76 1569 1081 1507 - 1631
/asa@/Lsl1[:c] 77 1570 1082 1508 - 1632
/asa@/Lsl7[:c] 78 1571 1083 1509 - 1633
/asa@/Lsl|[:c] 79 1572 1084 1510 - 1634
/asa@/Lsl![:c] 80 1573 1085 1511 - 1635
/asa@/oso0[:c] 81 1444 1086 455 - 1371
/asa@/OsO0[:c] 82 1574 1087 1512 - 1636
/asa@/sss$[:c] 83 1136 1088 1293 - 1637
/asa@/sss5[:c] 84 1575 1089 468 - 1629
/asa@/SsS$[:c] 85 1576 1090 1513 - 1638
/asa@/SsS5[:c] 86 1577 1091 1514 - 1639
/asa@/tst+[:c] 87 1578 1092 1515 - 1640
/asa@/TsT+[:c] 88 1579 1093 1516 - 1641
/asa@/1s1![:c] 89 1580 1094 467 - 1642
/asa@/1s1i[:c] 90 1581 1095 1090 - 1643
/asa@/1s1I[:c] 91 1582 1096 1091 - 1644
/asa@/1s1|[:c] 92 1583 1097 1519 - 1645
/asa@/0s0o[:c] 93 1584 1098 264 - 1646
/asa@/0s0O[:c] 94 1585 1099 1520 - 1647
/asa@/3s3e[:c] 95 1081 1100 801 - 1648
/asa@/3s3E[:c] 96 1586 1101 1522 - 1649
/asa@/4s4a[:c] 97 957 1102 748 - 1551
/asa@/4s4A[:c] 98 958 1103 1524 - 1650
/asa@/5s5s[:c] 99 905 1104 1525 - 1651
/asa@/5s5S[:c] 100 906 1105 1526 - 1652

TABLE XII: The first 100 of the 15,324 Megatron rules and
their final position after reordering based on each evaluation
set using the PGS wordlist.

Rule Original Position 000webhost CSDN Others
: Al"1" 1 8 378 2 - 11
\]\] Q 2 3 6 1 - 1
u Q 3 77 19 16 - 56
D5 Q 4 21 501 5 - 38
D3 Q 5 20 83 7 - 43
c Q 6 7 280 3 - 17
: Al"2" 7 45 147 12 - 24
: Al"3" 8 27 119 19 - 28
: Al"7" 9 35 45 16 - 25
D2 Q 10 16 25 14 - 33
: Al"5" 11 26 268 15 - 31
D6 Q 12 17 30 2 - 8
: Al"4" 13 23 118 12 - 25
D4 Q 14 11 82 7 - 29
: Al"6" 15 51 226 18 - 60
: Al"8" 16 46 41 22 - 64
: Al"12" 17 15 23 2 - 155
D1D1 Q 18 18 15 14 - 1173
: Al"9" 19 29 106 32 - 141
: Al"123" 20 6 11 8 - 22
: Al"23" 21 49 247 34 - 299
} Q 22 36 49 37 - 54
: Al"13" 23 203 213 30 - 73
: Al"0" 24 60 28 28 - 36
: Al"11" 25 25 54 14 - 111
\]\]\] Q 26 4 9 4 - 89
: Al"07" 27 1049 397 67 - 725
: Al"01" 28 31 212 32 - 153
: Al"21" 29 39 104 53 - 173
: Al"22" 30 56 214 26 - 213
: Al"08" 31 117 334 48 - 487
: Al"06" 32 352 398 100 - 812
Xm1z Q 33 13 10 3 - 129
r Q 34 48 12 37 - 76
: Al"!" 35 340 322 25 - 5556
: Al"69" 36 95 173 137 - 428
D1 Q 37 213 84 20 - 66
: A0"1" 38 136 1214 108 - 1625
: Al"14" 39 204 283 65 - 813
: Al"10" 40 82 52 54 - 174
: Al"05" 41 353 400 138 - 339
: Al"15" 42 227 335 102 - 488
\]\] Q Al"y" 43 1187 499 143 - 1180
: Al"88" 44 167 72 56 - 287
u Q Al"1" 45 1034 1192 385 - 1529
: Al"16" 46 127 507 68 - 291
: Al"09" 47 226 153 122 - 194
: Al"s" 48 650 385 48 - 341
: Al"18" 49 327 44 77 - 195
: Al"a" 50 47 51 43 - 1377
\]\] Q Al"e" 51 1183 1086 44 - 1174
: Al"17" 52 120 248 183 - 547
: Al"24" 53 83 396 46 - 367
: A0"j" 54 110 1249 186 - 1426
: Al"”. 55 176 487 190 - 5557
: Al"89" 56 139 85 47 - 490
\]\] Q Al"1" 57 107 174 233 - 703
: Al"04" 58 115 215 290 - 656
: Al"03" 59 572 336 67 - 1753
: Al"25" 60 94 123 59 - 340
D1D1D1 Q 61 12 14 9 - 72
: Al"00" 62 108 26 40 - 162
: Al"02" 63 328 285 124 - 724
c Q Al"1" 64 69 1183 52 - 311
x05d Q 65 33 8 6 - 63
: Al"20" 66 325 60 68 - 221
: Al"99" 67 52 61 28 - 264
: Al"77" 68 78 287 123 - 811
: Al"87" 69 129 252 41 - 116
: Al"19" 70 113 508 123 - 489
\]\]\]\] Q 71 5 2 7 - 16
>2 o2n 72 297 662 74 - 242
: A0"a" 73 68 1215 168 - 1718
: Al"z" 74 308 492 334 - 1777
: Al"27" 75 354 284 127 - 409
: Al"92" 76 72 349 58 - 378
/i si1 Q 77 57 387 20 - 68
>2 o2y 78 1289 1169 277 - 539
>2 o2m 79 298 1173 80 - 278
D7 Q 80 9 20 6 - 14
: Al"90" 81 269 188 44 - 375
: Al"26" 82 355 286 126 - 558
: Al"33" 83 66 57 51 - 175
: Al"93" 84 168 295 82 - 435
: Al"28" 85 119 185 78 - 368
>3 o3y 86 1279 1156 250 - 1275
: Al"86" 87 326 218 288 - 441
: A0"m" 88 1300 383 231 - 1631
/e se3 Q 89 41 449 18 - 508
: Al"91" 90 100 135 80 - 492
>4 o4y 91 291 1145 172 - 1584
D6 /a sa4 Q 92 99 1047 109 - 1141
: Al"94" 93 96 356 59 - 158
>3 o3i 94 293 1158 56 - 1590
D1 /s ss5 Q 95 240 2721 210 - 1502
: Al"95" 96 140 514 85 - 383
>3 o3a 97 76 1159 151 - 1274
: A0"k" 98 1351 693 189 - 1661
/o so0 Q 99 19 1048 7 - 32
\]\] Q Al"o" 100 1186 77 154 - 368

