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ABSTRACT
Smartphones must balance power and performance. While most
smartphones offer a power-saving mode, they typically provide a bi-
nary choice between full performance and monolithic performance
degradation (e.g., reducing both screen brightness and processing
speed) to save power. Could smartphones improve the user ex-
perience by automatically degrading only selected features based
on the usage context? To gauge whether preferences for power-
saving strategies vary by context, we conducted a 304-participant,
survey-based experiment. Each participant was assigned a context
(e.g., navigation) and degradation level. They viewed a series of
side-by-side simulations of one smartphone operating normally
in that context and another operating with reduced GPS accuracy,
processing speed, or screen brightness. Participants rated their will-
ingness to accept each tradeoff to save power. Contrasting current
power-saving modes, we found that participants’ preferences did
indeed vary by context. Using factor analysis to cluster preferences,
we identified key personas that pave the way toward context-aware
and self-aware alternatives to smartphone power-saving modes.
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1 INTRODUCTION
Smartphone batteries last for a limited time on a single charge, and
fears of running out of battery make users anxious [31]. Most smart-
phones have a power-saving mode that automatically prolongs
battery life by sacrificing performance, but these modes typically
do not allow users to customize which aspects of performance to
degrade [4, 21]. Users instead turn to ad hoc strategies, such as
closing background apps. Unfortunately, these strategies are often
ineffective [18, 22], especially when users have an incorrect mental
model of their phone battery [16, 35]. Manual adjustments can also
be time consuming since they require readjustment whenever the
user’s context or goals change.

These shortcomings could be alleviated with a self-aware system
that automatically adjusts battery consumption to meet the user’s
power and performance goals in a given situation [26]. Researchers
have investigated how to implement power management based on
end-user goals [20, 29], but surprisingly little work has employed
user-centered research to determine what these goals actually are.
To the best of our knowledge, most smartphone power-saving sys-
tems do not consider context when making power-performance
tradeoff decisions. This gap has motivated the Adaptive Battery fea-
ture of Android Pie [2, 34], though it only considers the frequency
of use of specific apps. Instead, we aim to improve existing power-
saving modes by taking into account users’ power-performance
goals and the factors that affect them.

We hypothesized that user preferences would differ depending
on the task a user was doing on their phone (context) and on the
degree of the performance degradation (quality level). In a survey-
based, 304-participant online experiment with a mixed-subjects
design, we studied willingness to accept three power-saving perfor-
mance degradations (tradeoffs): reduced GPS accuracy, processing
speed, and brightness. We randomly assigned each participant to a
context and level. For each of the three tradeoffs, we showed them
a comparison of two smartphone screens in their assigned context,
one running normally and one degraded to their assigned level.
We asked participants how often they would accept this tradeoff
given a corresponding amount of power savings, comparing par-
ticipants’ responses between the assigned contexts. To simulate
these tradeoffs realistically, we based our demonstrations on real
measurements of each tradeoff on a Google Pixel. To allow for ad-
ditional analysis across contexts, we also asked participants about
their preferences for all relevant context-tradeoff combinations.

We found that GPS acceptance varied across contexts and lev-
els, and processing speed acceptance varied across contexts. While
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brightness acceptance did not vary significantly across contexts in
the between-subjects portion of our study, it did vary significantly
in the within-subjects portion. Participants expressed a variety of
concerns, such as inaccurate GPS readings while navigating unfa-
miliar places (yet not wanting to run out of battery), sensitivity to
reduced processing speed when playing games, and reluctance to re-
duce screen brightness when working with photos. More generally,
participants indicated frequent worries about running out of bat-
tery on their phone, and they reported often using both automatic
power-saving modes and manual adjustments to save power.

To better understand cross-cutting patterns in participants’ pref-
erences, we also clustered their responses using factor analysis. As
one might expect, we found that participants’ overall willingness
to accept a given tradeoff was correlated across contexts. In addi-
tion, we identified a cluster representing participants reluctant to
accept reduced phone brightness and speed while playing a game,
and another representing participants reluctant to accept reduced
phone speed while taking a photo. We also observed a larger cluster
representing participants reluctant to accept any tradeoffs while
navigating, as well as reluctant to accept mission-critical tradeoffs
while taking a photo or watching a video. Our results pave the way
toward better modeling users as part of developing context-aware
and self-aware power-saving modes that conserve power while
preserving much of the phone’s user experience, different from the
monolithic approach of current power-saving modes. We discuss
considerations for transferring these results to practice.

2 RELATEDWORK
We build on existing literature on human-battery interaction (HBI).
Rahmati et al. examined user concerns about battery life and mis-
conceptions about batteries, proposing improvements for battery
indicators [35]. Various studies have piloted interactive battery
interfaces [17, 39] and battery-awareness applications [6] to de-
termine their effect on user behavior. Other works have studied
user charging habits [10, 16]. Recent work has studied human-
battery interaction in specific populations, such as among cultural
groups [14, 32] or users with visual impairments [40]. Hosio et al.
prompted study participants to attach a monetary value to battery
life, concluding that battery value is affected by context [27]. We
contribute to this literature by studying whether user acceptance
of power-performance tradeoffs is also contextual.

Outside of HBI, prior work has examined battery performance,
establishing technical benchmarks while acknowledging that users
differ in their priorities. Lee et al. sought to improve quality of
service by consulting users’ battery lifetime goals [29]. Other works
that focus on technical improvements have asserted that users
differ in their tolerance for battery depletion [38] and their energy
goals [24]. These works suggest that users should not be left out of
battery-management decisions, yet have not systematically studied
users’ preferences and tradeoff decisions. We fill this gap.

Technological advances have made mobile devices more capable
of modifying their own processes as part of context-aware [9, 13,
19, 37] or self-aware [1, 25, 26, 30] computing systems. Prior work
on context-aware battery management proposed improvements to
mobile systems [11, 23, 28] and to mobile applications [41]. Ravi et
al. used context awareness to aid mobile devices in predicting when

the device would next be charged [36]. Martins et al. proposed an
abstracted interface that lets users make informed power trade-
offs while allowing applications to react autonomously to these
choices [33]. Hoffmann et al.’s framework for self-aware systems as-
serts that “self-aware computational models [should] automatically
adjust their behavior in response to environment stimuli to meet
user specified goals” [26], motivating us to elicit users’ specified
goals for mobile battery usage. Our work aids the development of
context- and self-aware battery systems by presenting insights into
the tradeoffs users would want their phones to make under vari-
ous conditions. Future work can leverage these insights to develop
self-aware power-saving modes that improve battery life without
meaningfully impacting the user experience on a phone.

3 METHOD
We conducted an online, survey-based study of smartphone users
in August 2020. The survey focused on what performance tradeoffs
a user would accept, as well as how these preferences varied across
contexts. We validated the survey through pilot testing and cogni-
tive interviews. We recruited participants on Prolific. We required
participants be 18+ years old, live in the US, regularly use a smart-
phone, have a 95%+ approval rating on Prolific, and take the survey
in the Firefox, Safari, or Chrome web browser with JavaScript en-
abled (necessary for our side-by-side videos). We compensated $5
USD for this IRB-approved, 30-minute study.

Conditions. To collect information on tradeoff preferences for
a variety of situations, part of the study used a between-subjects
design where we randomly assigned participants to one of six
contexts detailed in Table 1: playing a game, navigating with a
map, taking photos, using social media, watching a video, or web
browsing. Since there is no baseline way to use a smartphone, we
chose to study a sample of contexts based on tradeoff-relevant apps
commonly used on Apple and Android phones [3, 7, 8, 12].

We tested three performance tradeoffs detailed in Table 2: re-
duced screen brightness, processing speed, and GPS accuracy. Re-
duced screen brightness is achieved by lowering the screen bright-
ness setting below the level set by the user or phone. Reduced
processing speed is achieved by lowering the Dynamic Voltage
and Frequency Scaling (DVFS), which affects the power and speed
settings on the phone’s processors. Reduced GPS accuracy polls for
location less frequently. While this latter tradeoff cannot currently
be achieved, even on a rooted phone, because of the proprietary
nature of current GPS apps, we simulated the tradeoff with a GPS
spoofing app that removes a fraction of the points in a GPS trace
and then proportionally raises the polling frequency.

Not all tradeoffs apply to all contexts. We asked all participants
about reduced screen brightness and reduced processing speed,
but only asked participants in the navigation, game, and photo
conditions about reduced GPS accuracy. These three contexts are
the only ones where an app would collect GPS data periodically for
the app’s main function. Navigating with a map relies on updated
GPS data on the user’s location, some games (e.g., Pokemon Go) use
a person’s real-time location for game play, and camera apps record
location information in photo metadata. While apps in the other
contexts can collect location data, it is either not typically part of
those apps’ main functionality or the location data is collected only
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Table 1: The six contexts and how they were described to participants. Each participant was randomly assigned to one context.
Context Description Presented to Participants

Gaming When we say “playing a game,” we include anything that you consider to be a game. Some examples of apps that people use for playing
a game are: Candy Crush, Sudoku, Fruit Ninja.

Navigation When we say “navigating with GPS,” we mean using your phone to direct you somewhere using GPS. This could include reading the
directions off the screen or having the phone display and speak the directions out loud. This only includes times where you are actively
moving towards your destination, so this does NOT include, for example, looking up directions before you leave your house.

Photo When we say “taking photos,” we mean using your phone as a camera to take a photo. This does NOT include editing or viewing your
photos. Some examples of apps that people use for taking photos are: Google Camera, Apple Camera, Snapchat.

Social Media When we say “using social media,” we mean using your phone to look at, post on, or otherwise interact with a social media website.
Some examples of apps that people use for using social media are: Facebook, Instagram, Twitter.

Video When we say “watching a video,” we mean using your phone to watch a video from any source. Some examples of apps that people use
for watching a video are: YouTube, TikTok, Netflix.

Web Browsing When we say “web browsing,” we mean any activity you do on your phone in a web browser. This probably means going to a website.
This does NOT include internet-connected apps that have specific purposes, like a social media or weather app. Some examples of apps
that people use for web browsing are: Safari, Chrome, Firefox.

Table 2: The descriptions provided to participants explaining each tradeoff.
Tradeoff Description

GPS When GPS accuracy is normal, your phone will sync frequently with GPS satellites, so your device will have accurate and frequently
updated location information. When GPS accuracy is reduced, your phone will sync less frequently, so it may not know your exact location.

Speed When processing speed is normal and you tap on your phone screen, the device will respond immediately. When processing speed is
reduced, you may notice a lag between your actions and your phone’s response.

Brightness When screen brightness is normal, your screen should be easy to see. When screen brightness is reduced, your screen may look dimmer
than you would normally want it to be.

Table 3: Each participant was assigned a quality level indicating the amount of performance degradation and the accompany-
ing increase in time the phone would last on a charge, as compared to lasting for one hour. This table lists those mappings.

Tradeoff Description Low Medium High

GPS Reduced GPS accuracy 1 hour, 31 minutes (1.51 hours) 1 hour, 21 minutes (1.35 hours) 1 hour, 14 minutes (1.24 hours)
Speed Reduced processing speed 2 hours, 7 minutes (2.12 hours) 1 hour, 54 minutes (1.90 hours) 1 hour, 31 minutes (1.51 hours)

Brightness Reduced screen brightness 1 hour, 14 minutes (1.23 hours) 1 hour, 13 minutes (1.22 hours) 1 hour, 12 minutes (1.21 hours)

once (e.g., to display the local weather) and is thus unaffected by
polling frequency.

To understand how user preference varies with the degradation
magnitude and accompanying battery savings, we also randomly
assigned participants to one of three quality levels: low, medium,
or high. In the high condition, the degradation and subsequent
power savings are small. In the low condition, the degradation and
subsequent power savings are larger. To determine how much of
the degradation to apply at each level, we collected power usage
data from an automated web-browsing benchmark on a rooted
Google Pixel phone. We chose three locations on these power usage
curves that represented sufficiently distinct power levels and used
the corresponding level of reduction. Table 3 presents the battery
savings for each level, which was shown to participants to inform
their decision about the tradeoff.

Survey Instrument. After completing a consent form, partici-
pants indicated how often they use their phone for their assigned
context and provided examples of apps they use in that context.
We then elicited their preferences regarding the two or three trade-
offs relevant to their assigned context in randomized order in the
between-subjects portion of our study. This portion of the study

aimed to unpack individual preferences. For each tradeoff, we pro-
vided a text description and side-by-side visual example contrasting
what an app in that context would look like normally and with the
tradeoff applied, as shown in Figure 1. We also noted how much
extra time the battery would last with the tradeoff (e.g., “for every
1 hour of use, the phone would instead last for 1.5 hours”). We
required participants to watch the side-by-side videos for their
complete duration. We then asked participants to indicate if they
would always, sometimes, or never accept the given tradeoff at the
given level. If a participant answered sometimes, we asked them to
describe the situations in which they would and would not accept
the tradeoff. For participants who answered always or never, we
asked them to explain their reasoning and describe situations where
they would have answered differently.

While the between-subjects portion gave us rich data about
specific preferences and underlying rationales, we also wanted to
understand how preferences for different tradeoffs and contexts
broadly related to each other. Thus, we also conducted a within-
subjects portion. We asked participants to rate, on a 5-point Likert
scale, how likely they would accept each of the three tradeoffs for
each of the six contexts, without additional visual examples or
notes about battery savings. These questions thus represent 18
tradeoff-context pairs. Recall that participants watched videos
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Figure 1: An example of the primary comparison task. Par-
ticipants saw a pair of videos or images demonstrating nor-
mal phone behavior (left) in the assigned context alongside
a synchronized version demonstrating a tradeoff (right) at
the assigned quality level.

in the between-subjects portion. Half of the contexts were not
relevant to GPS, so they did not see videos about GPS. In piloting,
we found that asking those participants about GPS tradeoffs was
confusing. Thus, half of the participants responded only to speed
and brightness tradeoffs in the within-subjects portion, resulting
in only 12 (not 18) tradeoff-context pairs.

We also elicited participants’ smartphone habits and demograph-
ics. We asked participants a series of questions about their general
smartphone usage, interactions with power-saving modes, and
charging behaviors. Finally, we collected participants’ technical
expertise, phone purchasing preferences, and basic demographics.

For the tradeoffs, we based our visual examples and estimates
of power savings on real-world measurements. We created the ex-
amples using the most popular free app related to each task that
was available on the Google Pixel phone. The images for the screen
brightness tradeoff came from phone screenshots and photo-editing
software. Videos of reduced GPS accuracy were screen recordings
taken directly from the phone. For processing speed, screen record-
ings did not accurately communicate the performance degradation,
so we simulated it by recording on a phone with normal process-
ing speed and then reducing the frame rate of the video to match
the level of reduction users would have experienced. To determine
the extra time saved by each tradeoff for each level, we collected
power usage benchmark data to calculate the percentage change in
power usage between the reduced and non-reduced trials. We then
converted the percentage change into a time savings relative to the
baseline (selected via pilot testing) of one hour.

Analysis. Quantitative analyses followed three templates. First,
we aimed to understand how participants’ willingness to accept
each of the three tradeoffs varied by context and level, as well as
the participant’s demographics. We thus built an ordinal logistic
regression model for each tradeoff. The willingness to accept the
tradeoff was the dependent variable. We included the following

independent variables, or IVs: the assigned context (categorical),
the assigned quality level (ordinal), the interaction between the
context and level, the participant’s age range (ordinal), their gender
(categorical), their technical background (categorical), how long
their phone battery lasts (continuous), how frequently they worry
about running out of battery (ordinal), and how frequently they use
their phone for the assigned context (ordinal). We used backward-
elimination by AIC to build a parsimonious model. We focus on the
odds ratio, which is the change in odds for a unit increase (ordinal
and continuous IVs) or relative to the baseline (categorical IVs).

Our second set of quantitative analyses sought to understand
how participants’ responses varied across related questions (e.g.,
comparing a participant’s willingness to accept a GPS tradeoff
across each of the six contexts). Because these data are not inde-
pendent, we used the Friedman test, a non-parametric analogue of
the repeated measures ANOVA. We first performed the Friedman
test across all groups of interest for a particular research question.
If this omnibus test was significant, we then performed post-hoc,
pairwise comparisons of groups using Eisinga et al.’s method for
pairwise comparisons of Friedman rank sums [15]. To control for
type I errors in these pairwise comparisons, we used Holm cor-
rection and report the corrected p-values. For all of our statistical
testing, 𝛼 = .05.

Third, to identify clusters of preferences among participants,
we performed factor analysis. Specifically, we used maximum-
likelihood factor analysis with a varimax rotation across the 18
tradeoff-condition pairs in the within-subjects portion of our study.
Because half of the participants were assigned a context for which
GPS tradeoffs did not apply, we included in our first model only
the half of participants who had been asked all 18 questions. We
repeated this process for the 12 tradeoff-condition pairs for speed
and brightness, which all participants answered.

We performed qualitative analysis of answers to free-response
questions regarding decisions to always, sometimes, or never accept
a tradeoff. With three tradeoffs to ask about, three answer choices,
and two free-responses questions asked per choice, we looked at
data from 18 questions. For each question, one coder created a
codebook through open coding. A second coder independently
used that codebook to code all data, and the coders met to resolve
discrepancies. Krippendorff’s 𝛼 (reliability) was 0.79.

Limitations. Our study could not fully immerse participants
in experiencing each tradeoff in their daily life due to constraints
of the COVID-19 pandemic and survey-based study designs. We
explicitly instructed participants to report their habits from before
COVID-19. Because many participants were working from home
during the time of the study, some participants may not have been
able to remember their pre-COVID habits clearly.

We showed changes to a smartphone through a simulation ob-
served on a computer screen. Participants relied on text descriptions
and side-by-side images or videos to understand how the tradeoffs
would affect their phones, but did not experience the changes on
their own devices while performing their usual activities. The side-
by-side comparison was necessary to provide a baseline for the
simulation, but this presents a limitation as users may have reacted
more strongly to changes when seeing them alongside the original
configuration. With reduced GPS accuracy, participants saw how
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the apps would react, but did not experience the tradeoff while
actually navigating. With reduced screen brightness, participants’
perceptions may have been affected by their computers’ screen
brightness or ambient lighting. For the photo context specifically,
participants saw a slideshow of screenshots of the map data at-
tached to an image. These examples may have been more difficult
to understand if participants were unfamiliar with photo metadata.
For the speed tradeoff, participants were not tapping and scrolling
themselves, so they may not have been able to fully judge the effect
of the tradeoff on the phone’s responsiveness. Finally, the brightness
examples could have looked different to participants with different
screen-brightness settings on their computers.

Despite these limitations, our simulations provide important
data. Users’ contextual preferences, or lack thereof, regarding smart-
phone performance-power tradeoffs have not been widely studied.
These simulations provide a highly controlled way to elicit user
perceptions with consistent experiences for participants. Future
work could communicate these tradeoffs by modifying the user
experience on participants’ own phones, using our findings from
these simulations to set initial quality levels and identify contexts
likely to have a large impact on preferences.

4 RESULTS
First, we summarize our participants’ demographics and phone-use
habits. Then, we examine thewithin-subjects data to compare accep-
tance of tradeoffs across all six contexts, employing factor analysis
to identify personas that predict users’ responses for a grouping
of tradeoff-context pairs. Next, we examine the between-subjects
data to determine additional factors that affected participants’ ac-
ceptance of each tradeoff. We discuss the qualitative factors that
participants frequently mentioned for all three tradeoffs, and then
we present a regression model and additional reasoning for each
tradeoff individually. Finally, we examine participants’ relative pref-
erences about a tradeoff within one app context.

4.1 Participant Demographics and Phone Usage
A total of 350 crowdworkers completed the survey, which took a
median of 22.9 minutes and a mean of 27.7 minutes. We excluded 46
participants for failing attention or quality checks, leaving us with
304 participants. Among participants, 55.9% were men, 41.8% were
women, and 2.3% were non-binary. Participants were younger than
the general population: 22.7% were 18–24 years old, 41.8% were
25–34 years old, 24.3% were 35–44 years old, and the remaining
11.2% were age 45+. Overall, 32.9% of participants reported having
a technical background (defined as a degree or job in CS, IT, or a
similar field), while the remaining 67.1% did not.

The majority of participants (73.7%) owned only one smartphone,
while 24.7% owned two and 1.6% owned three or more. Apple
phones were the most popular among participants, with 44.7%
reporting Apple as their primary phone’s brand. In addition, 30.9%
reported that their primary phone was made by Samsung, and 4.9%
by Google. Participants reported depending heavily on their phone.
Among participants, 34.9% reported using their primary phone at
least four hours a day, and 95.4% reported using it for at least an
hour a day. Notably, 84.6% of participants “somewhat” or “strongly”
agreed that it would be a problem if their primary smartphone

“ran out of battery early in the day and [they] couldn’t charge it
for the rest of the day.” Participants rated the importance of 13
characteristics when deciding to buy a phone on a five-point Likert
scale (“not at all important” to “extremely important”). The two
highest rated categories were phone performance (88% “very” or
“extremely” important) and battery life (87%), our key tradeoff.

Running out of battery was a major concern. Participants re-
ported that, on a single charge, their primary phone would last an
average of 10.8 hours (1Q: 6 hours; median: 8 hours; 3Q: 12 hours).
Critically, 38.2% of participants worried about their battery dying at
least once a day, while 64.8% worried about it at least once a week.
In contrast, only 12.5% of participants never worried. Participants
reported wide use of phone power-saving modes. Overall, 81.6%
of participants used such a mode, with 39.8% reporting that their
phone enables it automatically when the battery is low and 41.8%
reporting that they turn it on manually. In contrast, only 17.1% of
participants reported not using such a mode.

4.2 Expected Willingness to Make Tradeoffs
As previously mentioned, we collected participants’ preferences
both within-subjects and between-subjects. We use the within-
subjects data, presented in this sub-section and the following sub-
section, to understand relationships between preferences, as well
as the relative importance of tradeoffs. We later use the between-
subjects data to better understand individual preferences.

In the within-subjects portion, we asked all participants to rate
their likelihood to accept each tradeoff in each of the six contexts,
leading to 18 tradeoff-context pairs. For example, “How likely would
you be to accept reduced [screen brightness], like you saw in the
examples on the previous page, in order to save battery when using
your phone for [navigating with a map]?” Answers were on a five-
point Likert scale from “extremely likely” to “extremely unlikely.”
Recall that participants in the between-subjects portion saw videos
about an assigned context. Only half of those contexts were relevant
to GPS tradeoffs and therefore only half of participants saw a video
about GPS. Participants who did not see a video about GPS did not
answer within-subjects questions about GPS.

Figure 2 shows the distributions of these preferences for the
three tradeoffs. As we hypothesized, preferences were contextual.
First, responses for the GPS tradeoff varied by context (Friedman
𝜒2 (5) = 114.87, 𝑝 < .001). Participants were least likely to accept
reduced GPS accuracy in the navigation context, with only 23.4% of
participants rating themselves somewhat or extremely likely to do
so. Participants were more likely to accept the GPS tradeoff in all
five other contexts: social media (𝑝 < .001), video (𝑝 < .001), web
browsing (𝑝 < .001), photo (𝑝 < .001), and game (𝑝 < .001). Be-
tween 50.3% and 61.7% of participants rated themselves somewhat
or extremely likely to accept the GPS tradeoff in those contexts. No
other pairwise differences between contexts were significant.

Responses for the speed tradeoff also varied by context (Friedman
𝜒2 (5) = 111.99, 𝑝 < .001). Participants were more likely to accept
reduced speed while using social media than in the navigation (𝑝 <

.001), game (𝑝 < .001), video (𝑝 < .001), or photo (𝑝 = .003) contexts.
Whereas 60.8% of participants were somewhat or extremely likely
to accept reduced speed when using social media, only between
37.5% and 50.6% answered similarly for those other four contexts.
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GPS Tradeoff (Within-Subjects)
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Speed Tradeoff (Within-Subjects)

0% 25% 50% 75% 100%

Brightness Tradeoff (Within-Subjects)

Extremely likely Somewhat likely Neither likely nor unlikely Somewhat unlikely Extremely unlikely

Figure 2: Toward the end of the survey, participants reported their likelihood for accepting their assigned tradeoff in the six
contexts (within-subjects). These graphs show participants’ responses for these abstract considerations of tradeoffs.

Furthermore, the 56.6% of participants who were somewhat or
extremely likely to accept reduced speed while web browsing was
significantly more than for navigation (𝑝 = .020), game (𝑝 < .001),
and video (𝑝 = .002). Participants were also less likely to accept the
speed tradeoff in the game context than in navigation (𝑝 = .010)
and photo (𝑝 < .001).

Finally, responses for the brightness tradeoff again varied by con-
text (Friedman 𝜒2 (5) = 181.14, 𝑝 < .001). Participants were more
likely to accept reduced brightness while web browsing than in the
navigation (𝑝 < .001), game (𝑝 < .001), video (𝑝 < .001), or photo
(𝑝 < .001) contexts. Whereas 64.2% of participants were somewhat
or extremely likely to accept reduced brightness while browsing
the web, this percentage varied from 32.6% to 49.3% for those four
other contexts. The 65.5% of participants who were somewhat or
extremely likely to accept reduced brightness while using social
media was also significantly more than those same four contexts:
navigation (𝑝 < .001), game (𝑝 < .001), video (𝑝 < .001), and
photo (𝑝 < .001). Furthermore, the 32.6% of participants who were
somewhat or extremely likely to accept reduced brightness in the
photo contexts, the lowest of the six contexts, was also significantly
less than the navigation (𝑝 < .001), game (𝑝 < .001), and video
(𝑝 = .002) contexts.

4.3 Clustering Preferences via Factor Analysis
While preferences are inherently subjective, a power-saving mode
can best balance tradeoffs if it can predict these subjective prefer-
ences without requiring much input from the user. To that end, we
used factor analysis to search for “personas,” or clusters in pref-
erences for a participant. If a phone can identify a given user’s
persona with one question and then accurately predict that user’s
preferences for a number of different pairs of tradeoffs (e.g., speed)
and contexts (e.g., gaming), it can save battery while respecting a
user’s preferences.

We performed maximum-likelihood factor analysis (using vari-
max rotation) across the 18 tradeoff-context pairs for the half of
participants who had seen videos about the GPS tradeoff. Note that
we performed factor analysis for the data from all participants in

the 12 tradeoff-context pairs excluding GPS and found highly simi-
lar results, so we present only the former. Through factor analysis,
we identified a smaller number of latent factors, each of which we
call a persona and assign a descriptive name. Each of the original
tradeoff-context pairs has a loading (-1 to 1) on each latent factor.
Loadings close to 1 indicate that the latent factor captures nearly
all of that variable’s variance, whereas those close to -1 indicate it
captures it with inverse polarity. Numbers close to 0 indicate that
the latent factors capture little of the original pair’s variance.

To capture the 18 tradeoff-context pairs, using six latent factors
was sufficient (𝜒2 (60) = 61.8, 𝑝 = 0.410), whereas five latent factors
was marginal (𝜒2 (73) = 92.3, 𝑝 = 0.063). Cumulatively, the six
factors explained 68.7% of the variance. While this does not explain
all of the variation in the data, these factors can still help determine
the appropriate contexts for making a power-performance tradeoff.

The first three factors (personas) respectively cluster subjective
preferences about the three tradeoffs across contexts. The persona
we named GPS Overall has large loadings on preferences about
the GPS tradeoff in five of the six contexts (all except navigation).
The Speed Overall persona has large loadings on preferences about
the speed tradeoff in all six contexts, and these are the largest
loadings on any factor for all of these contexts other than navigation.
Similarly, the Brightness Overall persona has large loadings on
preferences about the brightness tradeoff in all six contexts, and
these are the largest loadings on any factor for all of these contexts
other than navigation and photo. In short, participants who cared
about a particular tradeoff in one context also tended to care about
that same tradeoff in other contexts.

The remaining three factors (personas) capture more specific
aspects of participants’ subjective preferences. First, the Naviga-
tion & Media persona most strongly captures tradeoffs that are
mission-critical during navigation, as well as while taking photos
or watching videos. In particular, this persona has strong loadings
on all three tradeoffs in the navigation context, representing the
heaviest loading on any factor for all three. In addition, this per-
sona also has a heavy loading on the brightness tradeoff in the
photo context, as well as weaker loadings on the speed tradeoff in
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Table 4: Factor analysis on participants’ likelihood to accept speed, brightness, and GPS tradeoffs in the six contexts. The
largest loading per tradeoff-context pair is bolded. We omit loadings < 0.25. There were 141 participants (those who saw GPS).

Tradeoff 1: GPS 2: Speed 3: Brightness 4: Navigation 5: Gaming 6: Photography Communality
Overall Overall Overall & Media Critical Latency

Speed in gaming 0.70 0.43 0.72
Speed in navigation 0.36 0.61 0.57
Speed in photo 0.59 0.29 0.51 0.74
Speed in social media 0.75 0.65
Speed in video 0.76 0.28 0.69
Speed in web browsing 0.79 0.75
Brightness in gaming 0.70 0.44 0.70
Brightness in navigation 0.40 0.56 0.48
Brightness in photo 0.38 0.57 0.54
Brightness in social media 0.88 0.86
Brightness in video 0.60 0.37 0.61
Brightness in web browsing 0.87 0.83
GPS in gaming 0.73 0.57
GPS in navigation 0.62 0.44
GPS in photo 0.81 0.71
GPS in social media 0.90 0.85
GPS in video 0.87 0.80
GPS in web browsing 0.89 0.87

the photo context and both the brightness and speed tradeoffs in
the video context. In short, this persona captures that some par-
ticipants had strong preferences about being unlikely to accept
battery-saving, performance-degrading tradeoffs particularly in
the navigation context, as well as in the tradeoffs most relevant to
taking a photo (particularly screen brightness) or watching a video.

Next, the Gaming Critical persona captures that some partic-
ipants had strong preferences against accepting battery-saving,
performance-degrading tradeoffs in speed or brightness while play-
ing a game on their phone. In some sense, this persona captures
the preferences of “gamers,” who care about full performance while
playing a game, whereas non-gamers might not care about hav-
ing degraded performance while playing a game if it saves battery.
The final persona, Photography Latency, captures only the single
tradeoff-context pair of speed while taking a photo. Essentially,
some participants expected to be especially sensitive to the phone’s
speed while taking a photo, whereas others did not. As we discuss
further in Section 5, we imagine that a self-aware system would ask
the user a few questions or generalize based on some observations
of behavior to place a given user into these particular personas,
roughly approximating their subjective preferences for context-
aware modes for saving battery on a phone.

4.4 Factors Correlated with Acceptance
While the previous analyses reported on our within-subjects data,
we now discuss our between-subjects data. Our main response
variables were participants’ willingness to accept reduced GPS
accuracy, processing speed, or screen brightness in their assigned
context and at their assigned quality level. Before presenting how
preferences differed along these factors, we first describe two factors
that participants considered regardless of the tradeoff of interest.

Across all three tradeoffs, an important factor in participants’
decisions was their phone’s battery status. One of the most common
reasons for always accepting a tradeoff was to save battery. For par-
ticipants who selected always, 49/90 (54.4%) mentioned battery life
as a reason for accepting the brightness tradeoff, 9/21 (42.9%) for the
GPS tradeoff, and 60/132 (45.5%) for the speed tradeoff. Participants

who would sometimes accept the tradeoff often mentioned battery
life as well, with three distinct factors that affected their choice:
access to a charger, current battery level, and anticipated battery
needs. As an example of the charger access theme, when asked
about accepting reduced screen brightness, P53 stated, “If I couldn’t
charge my phone for a long time I would accept it.” Charger ac-
cess was mentioned in 34/160 (21.3%) brightness responses, 25/115
(21.7%) speed responses, and 2/54 (3.7%) GPS responses. As an ex-
ample of the current battery level theme, P40 was willing to accept
reduced GPS accuracy “if my battery was very low.” Low battery
was mentioned in 33/160 (20.6%) brightness responses, 10/54 (18.5%)
GPS responses, and 14/115 (12.2%) speed responses. Regarding an-
ticipated battery needs, when asked about accepting reduced pro-
cessing speed, P128 stated, “I can reduce the web browsing speed if I
wanna save my battery life for some other tasks I wanna do.” Future
battery needs featured in 17/160 (10.6%) brightness responses, 6/54
(11.11%) GPS responses, and 15/115 (13.0%) speed responses.

Additionally, many participants mentioned characteristics of
navigation routes that affected their decision, such as: familiarity
with the area, number of turns, length of drive, and traffic volume.
For example, when asked about accepting the brightness tradeoff,
P95 stated, “During a dark night, on a particularly straight stretch
of road with no turns or other directions - my screen would not
need to use full brightness to display information to me.” Similarly,
P35 was willing to accept reduced GPS accuracy for “low traffic
areas, or maybe areas I’m somewhat familiar with,” and P54 was
okay with reduced processing speed “on long drives or anywhere
there aren’t quick road changes.”

4.4.1 Speed. In our regression (Table 5), we found that partici-
pants’ preferences about the speed tradeoff varied by context, as
further visualized in Figure 3. Compared to the web browsing con-
text, participants were significantly less likely to accept the speed
tradeoff in three of the five other contexts: gaming (0.38× as likely,
𝑝 = .014), navigation (0.44× as likely, 𝑝 = .023), and photo (0.39×
as likely, 𝑝 = .017). Furthermore, the difference in one of the two
remaining contexts, social media (0.51× as likely, 𝑝 = .068), was
marginally significant.
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Table 5: Our parsimonious ordinal logistic regressionmodel
for respondents’ willingness to accept a speed tradeoff
never (0), sometimes (1), or always (2) based on the app con-
text, the quality level, and the participant’s demographics.
For categorical IVs, we indicate the baseline category. For
ordinal IVs, we indicate the fitted function. We indicate the
odds ratio (OR), coefficient (Coeff.), and standard error (SE).

Factor Baseline OR Coeff. SE z p

Context: Gaming Web Browsing 0.384 -0.957 0.388 -2.466 0.014
Context: Navigation Web Browsing 0.443 -0.815 0.358 -2.279 0.023
Context: Photo Web Browsing 0.390 -0.941 0.395 -2.380 0.017
Context: Social Media Web Browsing 0.505 -0.683 0.375 -1.824 0.068
Context: Video Web Browsing 0.794 -0.231 0.363 -0.635 0.526

0% 25% 50% 75% 100%

Gaming

Navigation

Photo

Social Media

Video

Web Browsing

Speed Tradeoff by Context

Always Sometimes Never

Figure 3: How likelihood to accept a speed tradeoff varied
across contexts.

The most common reason participants selected for always ac-
cepting the speed tradeoff was that they felt that the difference
between the examples shown was insignificant. For example, “I
couldn’t tell a difference in the two” (P13) or “the one on the right is
still accurate enough” (P14). The second most common reason was
to preserve battery life. In contrast, 52.6% of the 57 participants who
selected never expressed a general preference for normal processing
speed or an annoyance with the reduced version, such as “I like
things fast and not delayed” (P204).

For the 115 participants who selected sometimes, many men-
tioned the battery or navigation route contexts previously discussed.
The other biggest reason for not accepting the tradeoff was the time-
sensitivity of the task: “I would not accept reduced processing speed
in games where timing was a crucial element. For example, games
that included a timer or countdown, or games where speed mat-
tered, I would not accept reduced processing speed” (P7). 22.6% of
participants mentioned a time-sensitive task in their response.

4.4.2 Brightness. In our regression (Table 6), we found that only
the participant’s age was significantly correlated with their prefer-
ences about the brightness tradeoff, as further visualized in Figure 4.
Older participants were 0.23× as likely as younger participants to
accept the brightness tradeoff (𝑝 = .016). Even younger participants’
free-text justifications sometimes encoded age-related factors, such

Table 6: Our parsimonious ordinal logistic regressionmodel
for respondents’ willingness to accept a brightness tradeoff.

Factor Baseline OR Coeff. SE z p

Age Range (linear fit) 0.225 -1.492 0.618 -2.417 0.016

0% 25% 50% 75% 100%

18-24 Years Old

25-34 Years Old

35-44 Years Old

45+ Years Old

Brightness Tradeoff by Age

Always Sometimes Never

Figure 4: How likelihood to accept a brightness tradeoff var-
ied by the participant’s age.

as P219 saying they would not accept reduced brightness when
“trying to show the game to some near-blind gen xer like my dad.”

For the 90 participants who responded always, many cited battery
savings in their reason. Others mentioned that they generally prefer
lowered screen brightness or already lower it on their device (24.4%),
or that reduced brightness feels better on their eyes (20%). As P194
put it: “I always reduce screen blindness and utilise night mode,
I use electronic devices frequently and do not like the sensation
of burning retinas after midnight.” Additionally, 22.2% of these
participants felt that the reduced screen brightness would not affect
their ability to perform their assigned task. For example, P161 felt
“the dull screen is still very easy to see and appreciate.”

Like participants who indicated always, participants who chose
never to accept reduced screen brightness were also concerned
with their eye health. Of these 54 participants, 18.5% mentioned
concerns about eye strain in their explanations. Participants who
chose never also reported a general preference for clear displays
and full brightness (24.1% and 27.8% of participants, respectively).
18.5% of these participants were also concerned about being able
to see well enough to complete their assigned task. Finally, 20.4%
of participants felt the reduced brightness tradeoff was not worth
it, such as P30: “I prefer a bright, clear screen. 20 min wouldn’t be
enough to deal with the lowness of the other.”

The 160 participants who selected sometimes also differed on
whether reduced or normal screen brightness was better for their
eyes. When asked for situations where participants would accept
the tradeoff, nine mentioned eye protection and four preferred
reduced brightness anyways. Conversely, when asked for situations
where participants would not accept the tradeoff, nine said that
the normal brightness was easier on their eyes, and eight preferred
normal brightness most of the time.

Besides battery characteristics, the most common factor that
affected acceptance sometimes was the light level of the surround-
ing environment. 17.5% of these participants would accept reduced
brightness in any dim lighting, 16.9% would accept it at nighttime,
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Table 7: Our parsimonious ordinal logistic regressionmodel
for respondents’ willingness to accept a GPS tradeoff.
Factor Baseline OR Coeff. SE z p

Context: Gaming Navigation 1.398 0.335 0.395 0.849 0.396
Context: Photo Navigation 3.037 1.111 0.415 2.680 0.007
Quality Level (linear fit) 2.194 0.786 0.293 2.685 0.007
Gender: Woman Man 0.472 -0.752 0.347 -2.165 0.030
Gender: Non-binary Man 1.005 0.005 1.033 0.005 0.996

0% 25% 50% 75% 100%

Gaming

Navigation

Photo

GPS Tradeoff by Context

0% 25% 50% 75% 100%

High

Medium

Low

GPS Tradeoff by Quality

0% 25% 50% 75% 100%

Man

Woman

GPS Tradeoff by Gender

Always Sometimes Never

Figure 5: How participants’ likelihood to accept a GPS trade-
off varied across the three significant dimensions. Because
only a few participants identified as non-binary, the sample
size is too small for meaningful comparison.

and 12.5% would accept it when indoors. Additionally, 28.8% men-
tioned not accepting reduced brightness when in bright light or
sunlight, 22.5% when outdoors, and 8.1% during the daytime.

4.4.3 GPS. In our regression (Table 7), we found that participants’
preferences about the GPS tradeoff varied by context, quality level,
and the participant’s gender. Compared to the navigation context,
participants were 3.0× as likely to accept the GPS tradeoff in the
photo context (𝑝 = .007), while preferences did not differ signifi-
cantly in the gaming context. Note that GPSwas not directly applica-
ble in the other three contexts, so we did not ask those participants
about GPS. With an increase in quality level and a corresponding
decrease in battery savings, participants were 2.2× as likely to ac-
cept the GPS tradeoff (𝑝 = .007). Finally, compared to men, women
were 0.47× as likely (i.e., less likely) to accept the GPS tradeoff
(𝑝 = .030). Figure 5 visualizes these trends.

For the 54 participants who would sometimes accept the GPS
tradeoff, the most common factors that affected acceptance were
characteristics of the navigation route and battery status. Addi-
tionally, 18.5% of these participants mentioned that they would
not accept reduced GPS accuracy when playing a game that uses
location data, and 18.5% mentioned that they would not accept the
reduction for any kind of navigation situation. While these par-
ticipants selected that they would sometimes accept the tradeoff,
their free-response answers indicate that they actually would never
accept the tradeoff anytime it actually affected them.

This trend was common across all of the GPS responses. Of the
21 participants who selected that they would always accept reduced
GPS accuracy for their assigned task, only 6 (28.6%) indicated that
they would still always accept the tradeoff in other situations. Out
of the 66 participants who said they would never accept the tradeoff
for their assigned task, only 22 (33.3%) were willing to accept the
tradeoff in other circumstances, and only 6 of these participants
actually named contexts that were potentially relevant to GPS ac-
curacy. The remaining situations were: when using apps that do
not need exact location data (9 participants), when not using their
phones to navigate (8), or when using their phone for social media
or web browsing, both tasks that do not typically use frequently
updated location data (6).

Participants who would never accept the GPS tradeoff most com-
monly expressed a need for accurate location information. Out of 66
participants, 40.9% expressed a sentiment similar to P71, who wrote,
“I would want to know precise information about my location at all
times.” More specifically, 28.8% were concerned with getting lost or
otherwise messing up their navigation, such as P301: “The reduced
accuracy would cause me to get lost and miss exits due to the lag of
the GPS system behind my movements.” Finally, 18.2% felt that the
reported increase in battery was not enough to make the tradeoff
worth it, such as P73: “It barely gives any extra time to the battery,
and it would be really annoying to deal with.”

4.5 Relative Preferences About Tradeoffs
For three contexts, all three tradeoffs applied, so we first ran an
omnibus Friedman test, subsequently running pairwise tests if the
omnibus test was significant. Participants’ willingness to accept
the tradeoffs varied significantly in the game context (Friedman
𝜒2 (2) = 11.757, 𝑝 = .003). In particular, willingness to accept
reduced GPS was less than the willingness to accept reduced bright-
ness or speed, with marginal significance (both 𝑝 = .056). Partici-
pants’ willingness to accept the tradeoffs also varied significantly in
the navigation context (Friedman 𝜒2 (2) = 39.181, 𝑝 < .001). In par-
ticular, participants were significantly less willing to accept reduced
GPS than to accept reduced brightness or speed (both 𝑝 < .001).
We did not observe significant differences in the photo context
(Friedman 𝜒2 (2) = 1.219, 𝑝 = .544).

In the remaining three contexts, GPS did not have an obvious
application to the app scenario, so we only asked about bright-
ness and speed tradeoffs. Participants were more likely to accept
reduced speed than reduced brightness in both the video (Friedman
𝜒2 (1) = 5.121, 𝑝 = .024) and web browsing (Friedman 𝜒2 (1) =

9.000, 𝑝 = .003) contexts. In both cases, roughly twice as many par-
ticipants were always willing to accept the speed tradeoff than were
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Figure 6: Each participant answered questions about brightness, GPS, and speed tradeoffs for their single assigned context
and quality level. This graph shows how preferences varied across tradeoffs within each context. Note that participants in the
social media, video, and web browsing context were not asked about GPS, which was not applicable to the app scenario used.

always willing to accept the brightness tradeoff. In contrast, we did
not observe significant differences in the social media (Friedman
𝜒2 (1) = 0.154, 𝑝 = .695) context. Figure 6 shows how preferences
for tradeoffs varied within a context.

5 DISCUSSION
We conducted a 304-participant online surveywith amixed-subjects
design to study contextual preferences for tradeoffs between power
savings and performance. Among the six contexts studied, partici-
pants were most likely to accept speed and brightness reductions
when browsing the web or using social media. Reasonably, partici-
pants were least likely to accept performance reductions that would
heavily hinder the task: GPS for navigation, speed for gaming, and
brightness for taking photos. Within each context, participants
preferred reductions in brightness or speed over GPS degradation.
Participants also preferred speed reductions over brightness reduc-
tions when watching videos or browsing the web.

Our results suggest that phones should consider usage context
when managing power and performance, which existing smart-
phones do not offer. A context-aware and self-aware system for
power-management would fill this gap while being minimally in-
trusive to the user. We make the following recommendations for
implementing such a system.

Leverage Predictive Personas.We found six personas that cap-
ture a large set of user preferences. Self-aware systems can leverage
these personas to efficiently predict user preferences about power
and performance tradeoffs. We envision that the smartphone can
ask a few short questions that allow it to assign the user to any rele-
vant personas, subsequently adjusting power and performance set-
tings accordingly. For example, the phone can ask the user whether
they care about their phone performance while playing games in
order to determine whether gaming is an appropriate context for
automatically lowering the processing speed or brightness.

Investigate How to Predict Power Goals. Across all trade-
offs, participants were concerned about their smartphone’s current
battery level, when they will be able to charge their phone next,

and their predicted battery needs until then. Future work should
research accurate means for predicting the latter events, through a
combination of user input and usage data. For example, the system
could ask the user to predict whether their upcoming day will differ
from their norm in terms of workload or charger access, and then
determine power goals for the day using its understanding of a
typical day’s usage and charging patterns.

Utilize Sensor Information. Power considerations should not
be isolated to the user and app context alone. For example, our par-
ticipants indicated environmental light level was important in their
decision regarding the brightness tradeoff. The smartphone should
consider the user’s ideal screen brightness for a given ambient light
in addition to their personas. As many phones already adjust screen
brightness based on user preferences and sensed illuminance in
the environment [5, 34], this particular feature would be easy to
incorporate into a context- and self-aware system.

Pay Careful Consideration to Navigation. Participants of-
ten expressed hesitation towards performance degradation during
navigation, but also felt uncomfortable having low battery while
navigating an unfamiliar place. This tension highlights the need for
the self-aware system to specifically consider GPS navigation needs
when setting power goals. Future work can investigate whether
this can be done automatically or through asking the user directly.
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