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particular password?
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Why Measure Password Strength?

• Eliminate bad passwords

– Organizational password audits

• Help users make better passwords

– Determine if interventions are effective

– Provide users feedback
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Password-Strength Metrics

• Statistical approaches

– Traditionally: Shannon entropy

– Recently: α-guesswork

• Disadvantages for researchers

– No per-password estimates

– Huge sample required
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Parameterized Guessability

• How many guesses a particular cracking 

algorithm with particular training data 

would take to guess a password
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j@mesb0nd007!

Guess # 366,163,847,194
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Guess # past cutoff

n(c$JZX!zKc^bIAX^N
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Guessability Plots
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Guessability Plots
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Advantages of Guessability

• Straightforward

• Models an attacker

• Per-password strength estimates
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Single Cracking Approach



25

Default Configuration
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Questions About Guessability

1) How does guessability used in research 

compare to an attack by professionals?

2) Would substituting another cracking 

approach impact research results?
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Approach
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4 password sets

5 password-cracking approaches

Approach

password

iloveyou

teamo123

…

passwordpassword

1234567812345678

!1@2#3$4%5^6&7*8

…

Pa$$w0rd

iLov3you!

1QaZ2W@x

…

pa$$word1234

12345678asDF

!q1q!q1q!q1q

…
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Four Password Sets

• Basic (3,062): 8+ characters

password

• Complex (3,000): 8+ characters, 4 classes

Pa$$w0rd

• LongBasic (2,054): 16+ characters

passwordpassword

• LongComplex (990): 12+ characters, 3+ classes

pa$$word1234
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Five Cracking Approaches

• John the Ripper

• Hashcat

• Markov models

• Probabilistic Context-Free Grammar

• Professionals
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• Guesses variants of input wordlist

John the Ripper
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• Guesses variants of input wordlist

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Speed: Fast

– 1013 guesses

• “JTR”

John the Ripper
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John the Ripper
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John the Ripper
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[change e to 3]

w
o

rd
lis

t

ru
le

s

g
u
e

s
s
e

s



45

usenix
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Hashcat

• Guesses variants of input wordlist

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Speed: Fast

– 1013 guesses
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Hashcat
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Hashcat

usenix
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[add 1 at end]
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usenix
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usenix
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Markov Models

• Predicts future characters from previous

• Approach requires weighted data:

– Passwords

– Dictionaries

• Ma et al. IEEE S&P 2014

• Speed: Slow

– 1010 guesses
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Probabilistic Context-Free Grammar

• Generate password grammar

– Structures

– Terminals

• Kelley et al. IEEE S&P 2012

– Based on Weir et al. IEEE S&P 2009

• Speed: Slow Medium

– 1014 guesses

• “PCFG”
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Professionals (“Pros”)

• Contracted KoreLogic

– Password audits for Fortune 500 companies

– Run DEF CON “Crack Me If You Can”

• Proprietary wordlists and configurations

– 1014 guesses

– Manually tuned, updated
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4 password sets 5 approaches

Approach

password

iloveyou

teamo123

…

passwordpassword

1234567812345678

!1@2#3$4%5^6&7*8

…

Pa$$w0rd

iLov3you!

1QaZ2W@x

…

pa$$word1234

12345678asDF

!q1q!q1q!q1q

…
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Outline of Results

• Importance of Configuration

• Comparison of Approaches

• Impact on Research Analyses



73

Configuration Is Crucial

LongComplex



74

Configuration Is Crucial

LongComplex



75

Configuration Is Crucial

LongComplex



76

Configuration Is Crucial

LongComplex



77

Configuration Is Crucial

LongComplex



78

Outline of Results

• Importance of Configuration

• Comparison of Approaches

• Impact on Research Analyses
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Comparison for Complex Passwords
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Min_auto Conservative Proxy for Pros
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Outline of Results

• Importance of Configuration

• Comparison of Approaches

• Impact on Research Analyses
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Impact on Research

• Coarse-grained analyses same results

• Fine-grained analyses different

• Analysis of one password different
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Per-Password Highly Impacted

• JTR guess # 801

• Not guessed in 1014 PCFG guesses

P@ssw0rd!
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Per-Password Highly Impacted

12345678password
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Per-Password Highly Impacted

• PCFG guess # 130,555

12345678password
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Per-Password Highly Impacted

• PCFG guess # 130,555

• Not guessed in 1010 JTR guesses

12345678password
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Password Guessability Service (PGS)

• Guessability of plaintext passwords

https://pgs.ece.cmu.edu
asdfF123#

P@ssw0rd!

Qwertyuiop!1

…

"Guess #", "Password"

"127188816", "Qwertyuiop!1"

"1853004462", "asdfF123#"

"2251762491", "P@ssw0rd!"

...
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Password Guessability Service (PGS)

• Guessability of plaintext passwords

https://pgs.ece.cmu.edu

"Guess #", "Password"

"127188816", "Qwertyuiop!1"

"1853004462", "asdfF123#"

"2251762491", "P@ssw0rd!"

...

asdfF123#

P@ssw0rd!

Qwertyuiop!1

…
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